Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 159294 dokumen yang sesuai dengan query
cover
Aghni Ulma Saudi
"Unsur Logam Tanah Jarang (LTJ) ditemukan pada bijih monasit yang merupakan produk sampingan dari pengolahan bijih timah di Pulau Bangka, yang kadarnya dapat ditingkatkan melalui proses mekanokimia dan pemanggangan. Proses mekanokimia dilakukan dengan menambahkan NaOH padat dengan variasi penambahan 0%, 33% dan 50% pada umpan bijih monasit. Bijih kemudian dipanggang pada temperatur 400, 500, 600 dan 1000o C. Hasil kemudian dicuci, dikeringkan, lalu diamati morfologi dan nilai grade serta recovery-nya.
Hasil akhir menunjukkan morfologi bijih setelah diberikan perlakuan menjadi lebih halus dalam hal struktur permukaan maupun ukuran butir. Sedangkan nilai recovery paling baik didapatkan pada variasi penambahan NaOH 33% dan temperatur pemanggangan 400o C, yaitu mencapai 91,3%. Proses mekanokimia dan pemanggangan dinilai efektif dalam meningkatkan kadar LTJ pada bijih monasit.

Rare earth elements (REE) is found in monazite ore that is the by-product from tin ore extraction in Bangka Island, which the grade can be upgraded through mechanochemical and roasting process. Solid NaOH was added to monazite ore in mechanochemical process with addition that variates from 0%, 33% and 50%. The ore was roasted in 400, 500, 600 and 1000o C afterwards, to examine the most optimal temperature for roasting. And the results were washed, dried and then characterized by its morphology, grade and recovery value.
The final results showed that the ore morphology became finer by its surface structure as well as the grain size that reduced. The best recovery value is obtained by the sample with 33% NaOH addition and 400o C roasting temperature which was 91,3%. Mechanocehemical dan roasting process was successfully upgrading REE content in monazite ore."
Depok: Universitas Indonesia, 2016
S61913
UI - Skripsi Membership  Universitas Indonesia Library
cover
Matthew Alexander Tjhia
"Pemanfaatan logam tanah jarang (LTJ) atau rare earth elements (REE) dalam industri meningkat seiring perkembangan teknologi. Cerium (Ce) dan Ytterbium (Yb) adalah 2 dari 17 LTJ yang terbagi menjadi LREE dan HREE. Metode yang umum dipakai dalam industri adalah pelindian menggunakan basa. LTJ memiliki bentuk senyawa fosfat yang sulit untuk diproses lebih lanjut. Maka dari itu, senyawa fosfat didekomposisi menjadi hidroksida sebelum diubah menjadi oksida. Proses dekomposisi dengan milling menggunakan NaOH 33 wt% selama 120 menit. Dilanjutkan dengan pemanggangan selama 2 jam pada 400℃. Pencucian dilakukan pada 70℃ selama 30 menit dan pengeringan pada 120℃ selama 120 menit. Analisis dilakukan menggunakan XRF, XRF, dan SEM-EDS. Hasilnya menunjukkan adanya recovery dan kenaikan grade dari Ce dan Yb. Secara keseluruhan recovery dan grade Ce lebih tinggi dari Yb dan nilainya menurun seiring dengan menurunnya ukuran partikel. Untuk ukuran partikel +65#, -65# +100#, -100# +140#, -140# +170#, dan -170#. %Grade dari Ce berturut-turut adalah 2,653; 4,116; 3,829; 1,861; dan 1,376. %Grade dari Yb 0,263; 0,159; 0,148; 0,117; dan 0,108. %Recovery dari Ce berturut-turut adalah 46,43; 44,77; 38,59; 18,07; dan 13,8. %Recovery dari Yb adalah 22,69; 22,44; 14,52; 11,21; dan 9,54.

The industry's use of rare earth metals (LTJ) or rare earth elements (REE) is increasing along with technological developments. Cerium (Ce) and Ytterbium (Yb) are 2 of the 17 LTJ divided into LREE and HREE. The method commonly used in industry is alkaline leaching. LTJ has a phosphate compound form which is difficult to process further. Therefore, phosphate compounds are decomposed into hydroxides before being converted into oxides. Decomposition process by milling using 33 wt% NaOH for 120 minutes. They were followed by roasting for 2 hours at 400℃. Washing was carried out at 70℃ for 30 minutes, and drying at 120℃ for 120 minutes. Analysis was performed using XRF, XRF, and SEM-EDS. The results show a recovery and grade increase of Ce and Yb. Overall the recovery and grade of Ce are higher than Yb, and its value decreases with decreasing particle size. For particle sizes +65#, -65# +100#, -100# +140#, -140# +170#, and -170#. %Grade of Ce respectively is 2.653; 4.116; 3,829; 1,861; and 1.376. %Grade from Yb 0.263; 0.159; 0.148; 0.117; and 0.108. %Recovery of Ce respectively is 46.43; 44.77; 38.59; 18.07; and 13.8. %Recovery of Yb is 22.69; 22.44; 14.52; 11.21; and 9.54.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Nur Fakhriy Yahya
"Indonesia merupakan salah satu negara penghasil timah terbesar di dunia. Cadangan timah Indonesia menjadi yang terbesar kedua di dunia setelah Tiongkok dengan total 800 ribu ton. Penambangan timah menghasilkan produk samping berupa mineral pembawa LTJ, yaitu Monasit. Monasit pada penambangan timah di Bangka memiliki kadar 16,41 kg. Pemanfaatan monasit sebagai mineral pembawa LTJ menjadi peluang bagi Indonesia untuk mengekstraksi LTJ di dalamnya karena aplikasi LTJ yang semakin luas. Dekomposisi mekanokimia merupakan salah satu proses yang dapat digunakan untuk melakukan benefisiasi dari mineral monasit. Pencampuran dengan NaOH akan membentuk LTJ-hidroksida yang kemudian dapat menghilangkan pengotor fosfat pada mineral monasit. Serangkaian proses dilakukan pada penelitian ini dengan parameter penambahan 33 wt% NaOH, waktu penggilingan 120 menit, kecepatan penggilingan 650 rpm, temperatur roasting 120 oC, waktu roasting 120 menit, temperatur pencucian 70 oC, waktu pencucian 30 menit, kecepatan pengadukan 680 rpm, dan pengeringan pada temperatur 120 oC selama 120 menit. Variabel bebas dari proses ini adalah ukuran partikel, yaitu +65#, -65# +100#, -100# +140#, -140# +170#, dan -170#. Proses pembentukan pelet dan roasting dilakukan untuk mengubah bentuk LTJ hidroksida menjadi LTJ Oksida. Kemudian, pencucian akan melarutkan pengotor fosfat pada mineral monasit. Pada penelitian ini dilakukan karakterisasi menggunakan SEM-EDS, XRD, dan XRF untuk memberikan informasi mengenai perubahan kadar dari unsur Lantanum dan Yttrium pada mineral monasit. Hasil penelitian ini menunjukkan adanya pembentukan LTJ-oksida setelah proses roasting dan hilangnya senyawa Natrium Fosfat (Na3PO4) setelah proses pencucian. Dari kelima ukuran partikel didapatkan nilai %recovery dan grade terbesar dari lantanum adalah 70,08 % dan 1,543% berturut-turut pada ukuran partikel -65#+100#. Sedangkan pada yttrium didapatkan nilai %recovery dan grade terbesar adalah 23,31% dan 1,681% berturut-turut pada ukuran partikel +65#.

Indonesia is one of the largest tin-producing countries in the world. Indonesia's tin reserves are the second largest in the world after China with a total of 800 thousand tons. Tin mining produces by-products in the form of rare earth mineral carriers, namely Monasit. Monazite in tin mining on Bangka has a grade of 16.41 kg. The utilization of monazite as a carrier mineral for rare earth is an opportunity for Indonesia to extract rare earth in it due to the wider application of rare earth. Mechanochemical decomposition is one of the processes that can be used to carry out the beneficiation of monazite minerals. Mixing with NaOH will form REE-hydroxide which can then remove phosphate impurities in monazite minerals. A series of processes were carried out in this study with the parameters of adding 33 wt% NaOH, grinding time 120 minutes, grinding speed 650 rpm, roasting temperature 120 oC, roasting time 120 minutes, washing temperature 70 oC, washing time 30 minutes, stirring speed 680 rpm, and drying at 120 oC for 120 minutes. The independent variable of this process is the particle size, namely +65#, -65# +100#, -100# +140#, -140# +170#, and -170#. Roasting and forming pellets processes is chosen to change the form of REE-hydroxide into REE-oxide. Then, washing will dissolve the phosphate impurities in monazite minerals. In this study SEM-EDS, XRD, and XRF is used to provide information about changes in levels of the elements Lanthanum and Yttrium in monazite minerals. The results of this study indicate the formation of REE-oxide after the roasting process and the loss of sodium phosphate (Na3PO4) after the washing process. Of the five particle sizes, the highest % recovery and grade values of Lanthanum were 70.08% and 1.543% respectively at particle size -65#+100#. Meanwhile, for Yttrium, the highest % recovery and grade values were 23.31% and 1.681% respectively at +65# particle size.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Krisma Yessi
"Karet alam merupakan salah satu komoditas terbesar yang ada di Indonesia. Hanya saja Karet alam tidak dapat digunakan dalam bentuk murni karena sifat mekaniknya yang rendah. Oleh karena itu, perlu penambahan aditif seperti vulkanisir dan pengisi dalam senyawa karet untuk meningkatkan sifat mekaniknya. Pengisi yang umum adalah karbon hitam yang tidak mendukung teknologi hijau. Sebagai upaya untuk mengatasinya digunakan lignin sebagai pengisi yang murah dengan jumlah melimpah dan dapat terurai. Hanya saja penggunaan lignin sebagai pengisi karet alam (NR) memiliki masalah utama yaitu misibilitas antara NR dan lignin karena NR adalah polimer non-polar sedangkan lignin adalah polimer polar. Dari penelitian yang sudah dilakukan sifat mekanik kekerasan bertambah dengan adanya pengaruh lignin yang ditambahkan tetapi tidak demikian dengan sifat tariknya yang mengalami penurunan, hal ini karena tidak kompatibelnya karet alam dan lignin. Upaya yang dilakukan adalah dengan menambahkan coupling agent yang dibuat dari campuran lateks dan selulosa bakteri. Penelitian berhasil membuat coupling agent karet alam dan selulosa bakteri yang kemudian ditambahkan ke karet alam dan lignin. Diperoleh peningkatan sifat mekanik yaitu kekerasan dan kuat tarik untuk lignin 30 phr dan lignin 50 phr dengan penambahan coupling agent 2 dan 4 phr. Sedangkan untuk ketahanan termal tidak memberikan pengaruh yang signifikan. Peningkatan sifat mekanik ini menjadi katalis dalam peningkatan penggunaan bahan yang dapat diperbaharui dalam sektor industri karet.

Natural rubber is one of the largest commodities in Indonesia. Natural rubber cannot be utilised in its pure form due to its poor mechanical properties. It is therefore necessary to add additives such as vulcanizers and fillers to enhance the mechanical properties of rubber compounds. A common filler is carbon black, which does not support green technology. In an effort to address this issue, lignin is used as a cheap, abundant, and biodegradable filler. However, the use of lignin as a filler for natural rubber (NR) has a significant problem due to the incompatibility of natural rubber and lignin because NR is a non-polar polymer while lignin is a polar polymer. This research indicates that the mechanical properties of hardness increase when lignin is added, while the tensile properties decrease. Experiments are made by combining latex and bacterial cellulose to create a coupling agent. This study was successful in producing natural rubber- bacterial cellulose coupling agents, which were subsequently combined with natural rubber and lignin. The enhanced mechanical properties, including hardness and tensile strength, were obtained for lignin (30 phr and 50 phr) through the addition of coupling agents (2 phr and 4 phr). Meanwhile, the thermal resistance does not have a significant effect. This increase in mechanical properties has become a catalyst for increasing the use of renewable materials in the rubber industry.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Riessa Nanda Mertamani
"Penggunaan unsur logam tanah jarang LTJ banyak dimanfaatkan untuk bahan baku sumber energi nuklir kimia katalis elektronik dan optik Unsur LTJ yang terkandung dalam bijih monasit hasil produk sampingan pengolahan bijih timah ditingkatkan kadarnya dengan proses mekanokimia untuk mendekomposisi unsur logam tanah jarangnya dengan menambahkan larutan NaOH sebagai pelarut NaOH berkadar 50 b v ditambahkan pada proses mekanokimia dengan presentase penambahan yaitu sebesar 76 80 83 87 dan 90 dari jumlah total berat NaOH dan umpan Proses mekanokimia dilakukan selama 120 menit dengan kecepatan putar 660 rpm Hasil dekomposisi bijih monasit dikarakterisasi bentuk morfologinya komposisi kimia perubahan fasa reaksinya terhadap pengaruh termal dan juga recovery nya Hasil penelitian didapatkan pada kondisi penambahan larutan NaOH sebesar 76 80 83 87 dan 90 diperoleh hasil rekoveri masing masing sebesar 80 8 83 9 78 2 68 dan 56 3 Bijih monasit mengalami transformasi fasa dari monasit fosfat menjadi LTJ hidroksida yang dapat dipengaruhi oleh penambahan larutan NaOH sebesar 80 pada proses dekomposisi mekanokimia.

The use of rare earth metal elements REE is widely used as raw material for nuclear energy sources chemicals catalysts electronics and optics Rare earth elements contained in monazite ore can be beneficiated by mechanochemical process to decompose the rare earth metal elements by adding NaOH solution as a solvent NaOH 50 w v was added to the mechanochemical process with the percentage increase in the amount of 76 to 80 83 87 and 90 of the total weight of NaOH and feed Monazite ore decomposition is characterized by the form of the morphology chemical composition phase change reaction to thermal influence and also the percentage of its recovery The results showed the addition of NaOH solution conditions by 76 to 80 83 87 and 90 recovery results obtained respectively by 80 8 83 9 78 2 68 and 56 3 Monazite ores undergo a phase transformation from monazite phosphate into LTJ hydroxide which can be influenced by the addition of NaOH solution in the amount of 80 at mechanochemical decomposition process
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58468
UI - Skripsi Membership  Universitas Indonesia Library
cover
"[Logam tanah jarang merupakan suatu elemen yang sedang dibutuhkan oleh dunia untuk pengembangan teknologi tinggi. LTJ ini dapat dihasilkan dari ekstraksi mineral monasit. Proses dekomposisi diperlukan agar memudahkan ektraksi bijih monasit ini . Pada penelitian ini dilakukan proses dekomposisi bijih monasit PT Timah menggunakan NaOH dengan cara mekanokimia. Padatan NaOH dicampurkan dengan bijih monasit menggunakan rasio penambahan padatan NaOH yang berbeda-beda. Proses milling dilakukan menggunakan plenatary ball mill selama 120 menit dengan kecepatan rotasi 660 putaran per menit. Bijih monasit yang telah digiling kemudian dicuci dan dikeringkan. Karakterisasi mineral akan dilakukan menggunakan XRF untuk menghitung grade dan recovery, XRD untuk mengetahui perubahan fasa yang terjadi, SEM untuk melihat perubahan bentuk setelah proses milling dilakukan, FTIR untuk melihat pemutusan gugus fosfat, dan DSC untuk mengetahui reaksi yang terjadi. Dari semua karakterisasi ini didapatkan hasil proses mekanokimia dengan penambahan NaOH yang optimal ada pada penambahan NaOH 66.7%., Rare earth element is element that have high demand in the world because of their properties for development of advanced technology. REE can be produced from monazite mineral extraction. The decomposition process is necessary in order to facilitate the extraction of these monazite ore. In this study the decomposition was conducted with mechanochemical process using NaOH solid as reagen. NaOH solid mixed with monazite ore using different ratio of NaOH solid. Milling process was performed using plenatary ball mill for 120 minutes at 660 rpm. The monazite that milled then washed and dried. The characterization of this mineral was conducted using XRF, XRD, FTIR, SEM, and DSC. From all of the characterization that performed, showed that the process can be effective with the addition of NaOH solid 66.7%.]"
Fakultas Teknik Universitas Indonesia, 2014
S57934
UI - Skripsi Membership  Universitas Indonesia Library
cover
Falah Herdino
"Tailing (residu) bauksit hasil pencucian pada pengolahan bijih bauksit telah menumpuk sebanyak 3 ton di Indonesia salah satunya di Dareah Wacopek, Pulau Bintan, Provinsi Kepulauan Riau. Penimbunan residu tersebut menyebabkan pencemaran lingkungan sehingga perlu pemanfaatan dari residu tersebut yaitu dengan ekstraksi logam tanah jarang (LTJ). Peningkatan logam tanah jarang ini dengan proses mekanokimia dengan penambahan NaOH sebanyak 0%, 33.33%, dan 50%. Kemudian diberi proses pemanggangan pada temperatur 400°C, 500°C, 1000°C dan 1100°C. Diperoleh hasil nilai recovery yang variatif terhadap yttrium, cerium, neodymium, lanthanum dan samarium. Morfologi dari residu bauksit sebelum dan setelah proses mekanokimia juga diamati pada studi ini.

Bauxite residue as the result of ore dressing of bauxite mining has stickpiled as much as three tons in Indonesia one of them in the Wacopek, Bintan Island, Riau Province. The residue causes environmental pollution that needs to utilization of the residue. One of them is the extraction of rare earth metals (REEs). Rare earth metal was increased with mechanochemical process with the addition of NaOH as much as 0%, 33.33% and 50%. Then given a roasting process at a temperature of 400°C, 500°C, 1000°C and 1100°C. The results varied recovery value of the yttrium, cerium, neodymium, lanthanum and samarium. Morphology of the bauxite residue before and after mechanochemical process was also observed in this study.
"
Depok: Universitas Indonesia, 2015
S61585
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robby Krisnaldo Elvin
"Mineral mangan merupakan salah satu mineral yang paling banyak ditemui di kerak bumi. Sebagian besar produksi mangan dan paduannya di dunia saat ini diserap oleh industri baja. Ferromangan merupakan salah satu logam paduan dengan kandungan mangan yang sangat tinggi, yaitu sekitar 65 - 90%. Sebanyak 90%, ferromangan digunakan untuk menambahkan unsur mangan kedalam material baja untuk memperbaiki sifat-sifat mekanik dari material baja, seperti kekuatan, hardenability, dan ketahanan terhadap aus. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan kadar kokas terhadap keefisienan proses reduksi bijih mangan lokal kadar menengah menjadi produk ferromangan. Proses reduksi dilakukan pada tungku submerged arc furnace tiga fasa dengan kapasitas 100 Kg/Batch dilengkapi dengan tiga buah elektroda grafit. Setiap percobaan menggunakan 30 Kg bijih mangan lokal, 12 Kg limestone, dan kadar kokas yang bervariasi, yaitu 5,5 Kg (18,33%), 7,5 Kg (25,00%), 9,5 Kg (31,67%), dan 11,5 Kg (38,33%). Hasil penelitian menunjukkan bahwa kuantitas dan kualitas produk ferromangan yang dihasilkan meningkat seiring dengan bertambahnya kadar kokas yang digunakan. Dimana kandungan mangan pada ferromangan dan massa/yield produk ferromangan cenderung meningkat. Kandungan mangan pada produk ferromangan tertinggi sebesar 78% pada pengujian menggunakan kokas sebanyak 7,5 Kg (25,00%). Sedangkan massa produk ferromangan tertinggi terdapat pada pengujian dengan menggunakan kokas sebanyak 9,5 Kg (31,67%), yaitu 12,8 Kg. Dan pada penggunaan energi selama proses berlangsung cenderung menurun dengan penambahan kokas, dimana penggunaan energi terendah selama proses reduksi berlangsung pada pengujian menggunakan kokas sebanyak 9,5 Kg (31,67%) sebesar 7,03 KWh/Kg. Namun konsumsi elektroda cenderung meningkat. Sehingga konsumsi elektroda grafit terendah pada saat menggunakan kokas 5,5 Kg (18,33%), yaitu sebesar 0,75 Kg. Berdasarkan aspek ekonomi, pengujian dengan keuntungan tertinggi terdapat pada pengujian menggunakan kokas sebanyak 9,5 Kg (31,67%) yaitu sebesar Rp 62.565 pada tiap satu kali pengujian.

Manganese is one of the most common minerals in the earth’s crust.Manganese plays an important role in the development of various steel making processes and its continuing importance is indicated by the fact that about 90% of all manganese alloys consumed annually goes into steel production as an alloying element in the form of ferromanganese. Ferromanganese is one of the metal alloys with a high content of manganese, which is about 65 - 90%. Manganese has four functions to steel such as desulphurizing agent, deoxidation agent, enhancing hardness, and wear resistance. This research, studies have been made to obtain the most optimum raw material composition to produce ferromanganese metal based on local medium grade manganese ore with various amount of cokes as its main variable. The process is conducted four times by smelting manganese ore into ferromanganese metal in mini submerged arc furnace (SAF) technology using three graphite electrodes. The process begin with using 30 kg of medium grade manganese ore from Jember, East Jawa-Indonesia, 12 kg of limestone as its fluxing agent, and various number of cokes from 5,5 kg (18,33%), 7,5 kg (25%), 9,5 kg (31,67%), and 11,5 kg (38,33%). Influence of various amount of cokes being used in this study have been investigated. The experiment conducted by increasing number of cokes carried out good results. Higher consumption of cokes will produce bigger number of ferromanganese metal and also the manganese content inside it. The most optimum composition of cokes shown by this study is 9,5 kg (31,67%), producing the biggest number of product at 12,8 kg of ferromanganese and consuming the least energi at 7,03 kwh/kg FeMn. The other result also showed that adding 7,5 kg (25%) of cokes will produce 78% manganese content inside the metal which was the highest manganese content. However, with an increase of cokes, the electrode consumption will also increase. The experiment with 5,5 kg (18,33%) of cokes carried out the least electrodes consumption at 0,75 kg/process. Moreover, to support the optimum raw material composition, economic evaluation has been conducted. The biggest profit is Rp 62.565,-/process for 9,5 kg (31,67%) of cokes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S61950
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Material adsorben seperti silica gel, Lithium Clorida, selaiu menjadi pilihan
utama dalam dunia industri. Padahal harga material ini relatif mahal Penelitian
terhadap adsorben alam sebagai salah satu adsorben altematif yang murah pengganti
material buatan dalam proses dehumidiftkasi masih belum banyak dilakukan.
Mordenit sebagai salah satu material adsorben alam disinyalir memiliki
kemampuan yang cukup baik dalam menyerap kadar uap air. Untuk itu penelitian lebih
jauh terhadap material ini perlu dilaku kan.
Penelitian ini dibagi dalam dua tahap yaitu: preparasi zeolit yang berlujuan
untuk meningkatkan mutu zeolit alam dalam menyerap uap air dan uji adsorbsi untuk
mengetahui kemampuannya, Dalan1 proses preparasinya, zeolit diaktivasi secara Hsis
dengan cara dikalsinasi, dan dalam pengujiannya kemapuan adsorbsi zeolit clitinjau dari
kadar air kesetimbangan (Equilibrium Moisture Content / EMC) yang dicapainya dan
laju penyerapan yang teljadi selama proses pengujian Pengujian dilakukan pada kondisi
temperatur dan kelembaban yang berbeda, da.n dampak dari perubahan suhu tersebut
terhadap kemampuan penyerapan zeolit akan di teliti. Pada akhirnya penelitian ini akan
membandingkan kemampuan zeolit mordenit dan zeolit klinoptilolit dalam menyerap
kandungan uap air udara.
Hasil dari penelitian ini menunjukkan bahwa zeolit mordenit temyata mampu
menyerap uap air hingga 6,6 persen dari berat keringnya pada kondisi udara tekanan dan
temperatur 25°C dan 10l,8 kPa; dan pada kelembaban relatif (RI-I) 80,83%. Sementara
untuk suhu yang lebih tinggi kemampuan zeolit mordenit cenderung menurun. "
Fakultas Teknik Universitas Indonesia, 2002
S37669
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hidayat
"Kadar air semen (w/c) sangat mempengaruhi kuat tekan beton, kadar air semen yang kecil menghasilkan kuat kuat tekan yang besar, sebaliknya kadar air semen besar menghasilkan kuat tekan beton yang kecil.
Abu terbang ( fly ash ) dapat meningkatkan kuat tekan beton, karena fly ash mengandung SiO2 yang tinggi, kekuatan beton meningkat karena butiran mikrosilika yang sangat halus bereaksi dengan air dan Ca(OH)2 ( kapur ) akan menghasilkan massa yang padat, sehingga menghasilkan kekuatan yang lebih besar.
Pada percobaan ini kuat tekan yang paling besar adalah 50 Mpa yang dihasilkan oleh campuran dengan perbandingan air semen (w/c) -0.3 dan penambahan fly ash 30%.
Dari hasil percobaan ini penulis mengusulkan suatu rancang campur beton ringan dengan memakai zat tambah fy ash yang diberi nama Feret-Fxh."
Depok: Fakultas Teknik Universitas Indonesia, 2003
T2771
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>