Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 36548 dokumen yang sesuai dengan query
cover
Siti Nur Noviyani Witayati
"ABSTRAK
Tugas akhir ini membahas mengenai metode Bayes dalam penaksiran parameter skala dari distribusi Nakagami menggunakan dua fungsi loss, yaitu Square Error Loss Function dan Precautionary Loss Function. Pada tugas akhir ini juga akan dicari Resiko Posterior dari masing-masing taksiran. Sebagai pembanding untuk taksiran dengan menggunakan metode Bayes, akan dicari juga taksiran parameter skala dari distribusi Nakagami menggunakan metode Maksimum Likelihood. Sebagai ilustrasi, akan dilakukan simulasi dengan data yang berdistribusi Nakagami ( ). Setelah taksiran telah didapatkan, akan dihitung Mean Square Error dari masing-masing taksiran. Hal tersebut dilakukan untuk mengetahui seberapa baik taksiran yang dihasilkan oleh metode Bayes.

ABSTRACT
This paper discusses about Bayesian Method in estimating the scale parameter of Nakagami Distribution using two loss function, that is Square Error Loss Function and Precautionary Loss Function. This paper will also find the posterior risk from each of the estimator. As the comparison of the Bayesian estimate, the estimator using Maximum Likelihood method will also be considered. For the illustration, simulation with Nakagami distributed data ( ) will be performed. Once the estimate have been obtained, Mean Square Error on each estimate will be calculated. This is done to measure the performance of the estimate produced by Bayesian method.
"
2016
S62664
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam pengujian hipotesis berganda, dilakukan pengujian lebih dari
satu hipotesis, yang diuji pada satu waktu secara simultan. Apabila masingmasing
pengujian dalam suatu family hipotesis mempunyai probabilitas
melakukan kesalahan tipe 1, maka secara keseluruhan pada pengujian
hipotesis berganda akan terjadi penggandaan probabilitas kesalahan tipe 1.
Probabilitas melakukan kesalahan tipe1 pada pengujian hipotesis berganda
akan semakin membesar seiring dengan meningkatnya jumlah pengujian.
Untuk mengatasi hal itu, ada beberapa cara untuk mengukur kesalahan tipe1
dalam family hipotesis diantaranya Family Wise Error Rate (FWER), False
Discovery Rate (FDR), dan positif False Discovery Rate (pFDR). Untuk
mengontrol kesalahan tersebut, diperlukan suatu metode sedemikian
sehingga probabilitas kesalahan tipe 1 keseluruhan ≤ α. Pada tugas akhir ini,
akan dibahas metode - metode pengujian untuk hipotesis berganda yaitu
metode Bonferroni yang merupakan salah satu metode untuk FWER, metode
Benjamin-Hochberg untuk FDR yang memperbaiki Metode Bonferroni dan
metode Storey untuk pFDR yang memperbaiki Metode Benjamin-Hochberg."
Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"[Letak geografis Indonesia berada di pertemuan dua lempeng yaitu Asia dan Australia, hal ini menyebabkan banyak terdapat gunung merapi. Selain itu pegunungan di Indonesia didominasi oleh gunung yang aktif dan berpotensi meletus sewaktu-waktu. Kondisi tersebut mengharuskan warga negara Indonesia, khususnya yang tinggal di sekitaran pegunungan berapi aktif tanggap akan bencana yang letusan gunung berapi. Berkembangnya sains dan teknologi informasi dapat memberi kontribusi dalam rangka mitigasi bencana geologi yang diakibatkan aktivitas vulkanik dalam bentuk aplikasi pendeteksi potensi bencana gunung merapi. Penelitian ini menghasilkan suatu aplikasi pendeteksi status gunung berapi. Data latih yang digunakan diambil dari situs Pusat Vulkanologi dan Mitigasi Bencana Gunung Berapi yang diklasifikasikan dalam tiga status yaitu normal, siaga, dan waspada. Pengklasifikasi Bayesian digunakan karena merupakan metode berbasis probabilitas yang sederhana namun handal. Berdasarkan hasil pengujian dengan jumlah data latih terbesar mencapai tingkat akurasi 90%. Dengan demikian dapat dikatakan bahwa aplikasi pendeteksi potensi bencana gunung berapi memiliki performa yang baik dalam mengklasifikasi status gunung berapi., Letak geografis Indonesia berada di pertemuan dua lempeng yaitu Asia dan Australia, hal ini menyebabkan banyak terdapat gunung merapi. Selain itu pegunungan di Indonesia didominasi oleh gunung yang aktif dan berpotensi meletus sewaktu-waktu. Kondisi tersebut mengharuskan warga negara Indonesia, khususnya yang tinggal di sekitaran pegunungan berapi aktif tanggap akan bencana yang letusan gunung berapi. Berkembangnya sains dan teknologi informasi dapat memberi kontribusi dalam rangka mitigasi bencana geologi yang diakibatkan aktivitas vulkanik dalam bentuk aplikasi pendeteksi potensi bencana gunung merapi. Penelitian ini menghasilkan suatu aplikasi pendeteksi status gunung berapi. Data latih yang digunakan diambil dari situs Pusat Vulkanologi dan Mitigasi Bencana Gunung Berapi yang diklasifikasikan dalam tiga status yaitu normal, siaga, dan waspada. Pengklasifikasi Bayesian digunakan karena merupakan metode berbasis probabilitas yang sederhana namun handal. Berdasarkan hasil pengujian dengan jumlah data latih terbesar mencapai tingkat akurasi 90%. Dengan demikian dapat dikatakan bahwa aplikasi pendeteksi potensi bencana gunung berapi memiliki performa yang baik dalam mengklasifikasi status gunung berapi.]"
MULTI 1:1 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Hamelryck, Thomas, editor
"This book is an edited volume, the goal of which is to provide an overview of the current state-of-the-art in statistical methods applied to problems in structural bioinformatics (and in particular protein structure prediction, simulation, experimental structure determination and analysis). It focuses on statistical methods that have a clear interpretation in the framework of statistical physics, rather than ad hoc, black box methods based on neural networks or support vector machines. In addition, the emphasis is on methods that deal with biomolecular structure in atomic detail. Therefore, the book includes introductory chapters that contain a solid introduction to key topics such as Bayesian statistics and concepts in machine learning and statistical physics."
Berlin: [Springer-Verlag, ], 2012
e20419296
eBooks  Universitas Indonesia Library
cover
Yuridunis Saidah
Depok: Universitas Indonesia, 2010
S27783
UI - Skripsi Open  Universitas Indonesia Library
cover
Universitas Indonesia, 2003
S27378
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldila Fitrilia
"ABSTRAK
Analisis survival merupakan analisis statistika yang digunakan untuk menyelidiki waktu tahan hidup suatu benda atau individu pada keadaan tertentu. Dalam melakukan analisis survival dibutuhkan data survival yang meliputi waktu survival dan status waktu survival dari objek yang diteliti. Data survival yang diperoleh dapat berupa data lengkap atau data tidak lengkap. Data tidak lengkap data tersensor dapat berupa data tersensor kanan, kiri, atau interval. Data tersensor kanan dapat berupa data tersensor kanan tipe I atau data tersensor kanan tipe II. Dalam penelitian ini akan digunakan data tersensor kanan tipe II. Fungsi survival yang akan digunakan adalah fungsi survival dari distribusi Lomax. Distribusi Lomax memiliki dua paremeter, yaitu parameter bentuk dan parameter skala. Dalam penelitian ini, parameter yang akan ditaksir adalah parameter bentuk dengan asumsi parameter skala telah diketahui. Metode yang digunakan dalam penelitian ini adalah metode Bayes. Penelitian ini akan menggunakan prior Gamma sebagai distribusi conjugate prior dan fungsi Loss yang akan digunakan dalam penelitian ini adalah balanced squared error loss function BSELF .

ABSTRACT
Survival analysis is a statistical analysis used to investigate the life time of an object or an individual in a special case. In survival analysis, survival data is needed which includes the survival time and status of the survival time of the object under study. The survival data obtained can be either complete data or incomplete data. Incomplete data censored data can be either right, left, or interval censored data. The right censored data can be either right censored data type I or type II. In this study will be used the right censored data type II. The survival function to be used is the survival function of the Lomax distribution. The Lomax distribution has two parameters, that is the shape parameter and the scale parameter. In this study, the parameter will be estimate is the shape parameter with the assumption of scale parameters has been known. The method used in this study is Bayes method. This study will use prior Gamma as conjugate prior distribution and Loss function will be used in this study is balanced squared error loss function BSELF."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Mochamad Ivan Janitra Rama
"Distribusi Weibull digunakan untuk menyelesaikan masalah-masalah yang menyangkut lama waktu suatu objek yang mampu bertahan hingga akhirnya objek tersebut tidak berfungsi (dengan kata lain rusak atau mati). Distribusi Weibull merupakan salah satu solusi untuk masalah fleksibilitas yang tidak dimiliki oleh distribusi Exponensial, yaitu hanya memiliki bentuk fungsi hazard yang konstan. Dalam melakukan inferensi dari kasus yang dimodelkan dengan distribusi Weibull, perlu dilakukan penaksiran terhadap parameternya. Distribusi Weibull dua parameter memiliki parameter skala dan parameter shape. Pada skripsi ini, akan dilakukan penaksiran parameter skala dari distribusi Weibull pada data terpancung kiri dan tersensor kanan dengan asumsi bahwa parameter shape diketahui menggunakan metode Bayesian. Prosedur dalam penaksiran parameter meliputi penentuan distribusi prior, fungsi dan distribusi posterior. Kemudian penaksir titik Bayes diperoleh dengan meminimumkan ekspektasi dari fungsi. Fungsi yang digunakan adalah Squared Error Loss Functio (SELF) dan Precautionary Loss Function (PLF). Kemudian dilakukan simulasi data untuk membandingkan nilai Mean Squared Error (MSE) dari taksiran parameter skala menggunakan fungsi. Hasil simulasi menunjukan bahwa taksiran parameter menggunakan fungsi memiliki nilai MSE yang lebih kecil untuk parameter skala lebih kecil atau sama dengan satu sedangkan taksiran parameter menggunakan fungsi PLF memiliki nilai MSE yang lebih kecil untuk parameter skala lebih besar daripada satu.

Weibull distribution is used to solve problems that involve the length of time an object is able to survive until the object is not function (in other words damaged or dead). Weibull distribution is one of many solutions to the flexibility problem that is not owned by an Exponential distribution, which only has the form of a constant hazard function. In making inferences from cases modeled with the Weibull distribution, it is necessary to estimate the parameters. The two-parameter Weibull distribution has a scale parameter and a shape parameter. In this thesis, the scale parameter of the Weibull distribution will be estimated on left truncated and right censored data assuming that the shape parameter are known using Bayesian method. The procedure in parameter estimation includes the determination of the prior distribution, the likelihood function and the posterior distribution. Then the point estimator of the scale parameter is obtained by minimizing the expectation of loss function. The loss function used in this thesis are Squared Error Loss Function (SELF) and Precautionary Loss Function (PLF). Data simulation is done to compare the value of Mean Squared Error (MSE) from the estimated parameters using SELF and PLF. The simulation result shows that the estimated parameter using SELF has a smaller MSE value for scale parameter below or equal one while the estimated parameter using PLF has a smaller MSE value for scale parameter above one."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simbolon, Helen Giovani
"Tugas akhir ini membahas mengenai penggunaan metode Maksimum Likelihood (ML) dan Bayes dalam penaksiran parameter shape 𝛽 pada distribusi Kumaraswamy. Kedua metode tersebut akan dibandingkan berdasarkan Mean Square Error (MSE) yang diperoleh dari masing-masing taksiran. Pada metode Bayes digunakan dua fungsi Loss yaitu Square Error Loss Function (SELF) dan Precautionary Loss Function (PLF). Selanjutnya, akan dibandingkan Resiko Posterior yang diperoleh dari kedua fungsi loss tersebut. Hasil yang diperoleh dari perbandingan tersebut diterapkan pada data hidrologi sebagai rekomendasi metode terbaik yang dapat menggambarkan data tersebut.

This paper disscusses about Maximum Likelihood (ML) and Bayes method in estimating the shape β parameter in Kumaraswamy distribution. Both of the methods will be compared according to Mean Square Error (MSE) obtained from each estimator. At Bayes method, it will be used two Loss functions, those are Square Error Loss Function (SELF) and Precautionary Loss Function (PLF). Then, Posterior Risk obtained from both of loss functions will be compared. The comparison will be applied to hydrological data as a recommendation for the best method in representating the data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63791
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>