Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 189399 dokumen yang sesuai dengan query
cover
Urip Priyono
"Tingkat kesuksesan pemboran geotermal di Indonesia masih menjadi kendala utama dalam upaya pengembangan geothermal. Lapangan geotermal ?X? merupakan salah satu daerah prospek di Indonesia yang belum dilakukan pengeboran oleh pihak pengembang. Manifestasi yang muncul ke permukaan berupa mata air panas dan alterasi batuan, dengan tidak adanya manifestasi fumarol maka menjadi tantangan tersendiri dalam melakukan kegiatan eksplorasi geotermal di daerah penelitian.
Penelitian ini difokuskan pada penentuan target pemboran di zona prospek. Adapun metode yang digunakan yaitu: remote sensing citra Landsat 7, 3D-MT serta geokimia. Analisis struktur permukaan lapangan geotermal "X" menggunakan citra satelit DEM dan Landsat 7. Teknologi citra dalam hal ini remote sensing sangat membantu dalam memetakan sebaran manifestasi aktivitas geothermal di suatu wilayah. Sedangkan untuk analisis struktur bawah permukaan dapat dilakukan dengan bantuan metode geofisika magnetotelluric (MT) didukung dengan data geologi dan data geokimia. Analisis data 3-D magnetotelluric (MT) dapat membantu mengintepretasikan resistivitas batuan bawah permukaan.
Hasil Intepretasi data pada penelitian ini yaitu model konseptual dan luasan wilayah prospek. Mengacu pada model konseptual, dimana terdapat zona upflow yang ditandai adanya alterasi batuan dan adanya pola dome pada penampang resistivitas 3-D magnetotelluric (MT) di dekat struktur utama yang mengontrol aktivitas geotermal daerah penelitian, sedangkan zona outflow berarah ke barat dan timur daerah penelitian, sehingga penelitian ini merekomendasikan titik pemboran di zona upflow yang diharapkan berada pada zona dengan permeabilitas serta temperatur yang tinggi.

Drilling success ratio of geothermal in Indonesia is still a major constraint in the development of geothermal. Geothermal field "X" is one of the unexploited, prospected field in Indonesia. Manifestations of a possible geothermal field are hot springs and rock alteration; the lack of fumarole manifestation has become a challenge in conducting geothermal exploration in the study area.
This research is focused on determining the drilling target of the prospected zone. The methodes used for this research are Landsat 7 image remote sensing, 3D-MT and geochemistry. The structure of geothermal field ?X??s surface is analyzed with DEM satellite image and Landsat 7. The imaging technology of remote sensing is very helpful in mapping the distribution of geothermal activity manifestation in a region. Meanwhile, analysis of subsurface structures can be done with the help of geophysical methods magnetotelluric (MT) is supported by geological and geochemistry data. The data analysis of 3-D magnetotelluric (MT) resistivity can help interpretation in sub-surface rocks.
Interpretation of data resulted in this research is the conceptual model and measuring the prospected region of the research areas. Based on the conceptual model, in which there?s an upflow zone marked with rock alterations and dome patterns on ressistivity of 3-D MT section near the main structure that controls the geothermal activities in the study area; while the outflow zone pointing west and east of the study area, allowing this research to recommend drilling target at the upflow zone expected to be at the high permeability and high temperature.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45299
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahmi Alfi Sani
"Sistem panas bumi Baturraden berasosiasi dengan aktivitas vulkanik yang berkembang akibat tektonik Jawa pada Kala Paleosen. Pada Kala ini mulai terbentuk struktur geologi yang intensif. Hal ini memicu magma andesitis untuk keluar pada Zaman Kuater. Intensitas aktivitas vulkanisme Gunung Slamet yang tinggi pada Kala Holosen mengakibatkan material vulkanik muda menutupi data permukaan seperti struktur geologi dan alterasi. Padahal data tersebut sangat membantu dalam mengidentifikasi zona permeable dan zona reservoir.
Penelitian ini dilakukan untuk memastikan zona permeable dan zona reservoir dengan mengkorelasikan data struktur geologi dan magnetotelluric (MT). Korelasi ini diperoleh melalui analisis komperhensif berdasarkan litologi, struktur permukaan, karakteristik dan model MT 3D. Selain itu juga untuk meningkatkan tingkat keyakinan terhadap korelasi, pada penelitian ini mengaplikasikan metode gravity.
Hasil penelitian dari penelitian ini menunjukan adanya korelasi antara struktur geologi dengan data MT antara lain inversi 3D MT, polar diagram, induction arrow, splitting curve, nilai tipper dan nilai ellipticity. Korelasi tersebut memperlihatkan adanya kontol struktur NE-SW terhadap hadirnya zona main conductor dan zona deformasi. Struktur NE-SW yang bersifat ekstensional mengontrol vulkanisme komplek Gunungapi Slamet dan zona permeable dari sistem panas bumi Baturraden sehingga zona pemboran diorientasikan NE-SW dengan target pemboran berarah NW-SE.

Baturraden geothermal system associated by volcanic activity which grown by Paleocene tectonic in Java. At the time, initial geological structure was established intensively thus it triggered andesitic magma to flow out in Quaternary Period. High intensity of Mt. Slamet volcanism in Holocene Epoch affected younger volcanic material could covered surface data such as geological structure and alteration. Whereas those data are very helpful to identify permeable zone and reservoir zone.
This study will be conducted to ensure the presence of the permeable zone and reservoir zone by correlating geological structure and magnetotelluric (MT). The correlations are acquired through a comprehensive analysis of lithology, surface structure, MT data characterization and MT 3D model. Furthermore, to improve confidence level of the correlation, the study applies gravity method.
The result of this study shows that there are any correlations between geological structure and MT data including 3D MT inversion, polar diagram, induction arrow, splitting curve, tipper value and ellipticity value. The Correlations present the influence NE-SW structure to the existence of main conductor and deformation zone. Extensional NE-SW structure triggered volcanism of Slamet Volcano Complex and permeable zone of Baturraden geothermal system thus drilling zone should be oriented NE-SW direction with well targeting should be pointed to NW-SE direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45312
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwiandaru Darmawan
"Fase eksplorasi geotermal masih memiliki resiko yang tinggi dan rintangan yang besar bagi industri geotermal. Tujuan utama dari eksplorasi adalah penentuan lokasi pemboran. Kriteria kesuksesan target pemboran adalah area yang memiliki temperatur dan permeabilitas yang tinggi. Temperatur berasosiasi dengan keberadaan sumber panas (heat source) menjadi target dalam penelitian ini dan jumlah energi termal yang tersimpan, sedangkan permeabilitas berhubungan dengan keberadaan struktur geologi baik patahan maupun kekar yang terisi fluida yang dapat menjadi media perpindahan energi panas. Pada penelitian sebelumnya gambaran dari boundary bawah permukaan masih belum tergambar dengan jelas dikarenakan keterbatasan data MT, dan belum dilakukannya analisis data gravity. Untuk mendapatkan informasi tersebut, penelitian ini dilakukan dengan analisis First Horizontal Derivative (FHD) dan Second Vertical Derivative (SVD) serta hasil inversi 3-Dimensi Magnetotelluric (MT) diaplikasikan pada penelitian ini untuk memetakan struktur resistivitas bawah permukaan, juga diketahui daerah reservoir dari Base of Conductor (elevasi BOC di 2000m). Selanjutnya diintegrasikan hasil dari Fault Fracture Density (FFD) untuk melihat sejauh mana pengaruh manifestasi terhadap struktur di permukaan serta gravity untuk mengindentifikasi zona permeabel, agar dapat membantu dalam pembangunan model konseptual serta deliniasi prospek area. Dari hasil analisis terpadu kemudian dapat ditentukan rekomendasi target pemboran. Terdapat 2 titik sumur rekomendasi dibagian utara dan barat Gunung W. Hasil akhir penelitian akan memberikan informasi atas upaya mengurangi risiko pada fase eksplorasi dan meningkatan rasio kesuksesan dalam pemboran. 

The geothermal exploration phase still has a high risk and a large obstacle for the geothermal industry. The main objective of exploration is to determine the location of the drilling. Success criteria for drilling targets are areas that have a high temperature and permeability. The temperature associated with the presence of heat sources is the target in this study and the amount of thermal energy stored, while permeability is related to the presence of geological structures, both fractures and burly filled with fluid which can be a medium of heat energy transfer. In previous studies, the picture of the subsurface boundary was not clearly drawn due to the limitation of MT data, and gravity data analysis had not been carried out. To obtain this information, this study was conducted with First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) analysis and the results of 3-Dimensional Magnetotelluric (MT) inversion were applied in this study to map the subsurface resistivity structure, also known the reservoir area of the base. of Conductor (BOC elevation at 2000m). Furthermore, the results of the Fault Fracture Density (FFD) are integrated to see the extent of the influence of manifestations on the structure on the surface and gravity to identify the permeable zone, in order to assist in the construction of a conceptual model and delineation of prospect areas. From the results of the integrated analysis can then be determined by drilling target targets. There are 2 recommended well points in the north and west of Mount W. The results of the study will provide information on efforts to reduce risk in the exploration phase and increase the success ratio in drilling. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fikri Fahmi
"Daerah prospek panas bumi Arjuno-Welirang berada di jalur ring of fire Indonesia dan berlokasi di Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, dan Kota Batu Provinsi Jawa Timur. Secara geologi batuan di daerah ini didominasi oleh batuan vulkanik berupa lava dan piroklastik yang berumur kuarter. Manifestasi yang muncul di permukaan berupa fumarol - solfatar yang terletak di puncak Gn. Welirang dan mata air panas yang berada di sebelah barat dan baratlaut Gn. Welirang bertipe bicarbonate dengan suhu berkisar antara 39 - 55 0C. Inversi 2-D dan 3-D dari data Magnetotellurik dilakukan untuk mengetahui struktur resistivitas bawah permukaan dengan menggunakan software WinGlink dan MT3DInv-X.
Hasil penelitian ini menunjukan bahwa inversi 3-D mampu menggambarkan struktur bawah permukaan dengan lebih baik dibandingkan dengan inversi 2-D. Lapisan konduktif (<15 ohm-m) dengan ketebalan sekitar 1 - 1,5 km diindikasikan sebagai clay cap dari sistem panas bumi. Lapisan yang berada di bawah clay cap dengan nilai resistivitas sedikit lebih tinggi (20 - 60 ohm-m), diindikasikan sebagai zona reservoir. Body dengan nilai resistivitas yang tinggi (>80 ohm-m), diinterpretasikan sebagai heat source yang berasosiasi dengan aktivitas vulkanik Gn. Arjuno-Welirang.
Tahap akhir dari penelitian adalah mengintegrasikan data MT, geologi dan geokimia, untuk membangun model konseptual. Luas daerah prospek untuk sistem geotermal Arjuno-Welirang sekitar 18 km2 dengan pusat reservoar berada di bawah puncak Welirang. Temperatur reservoar geotermal Arjuno-Welirang dihitung dengan menggunakan geotermometer gas CO2 sekitar 260oC. Potensi dari sistem geotermal Arjuno-Welirang dihitung dengan metode Volumetrik Lump Parameter adalah sebesar 144 MWe.

Arjuno-Welirang Geothermal prospect area is situated in ring of fire Indonesia and located in Kab. Mojokerto, Kab. Malang, Kab. Pasuruan, and Kota Batu, East Java. Geologically, the prospect area is dominated by Quartenary volcanic rocks, both lava and phyroclastic. Surface manifestations occured in this prospect area are fumaroles-solfatara found on top of Mount Welirang. Other manifestanions found in this area are hot springs on the West and Northwest of Mount Welirang that catagorized as bicarbonate type with temperatures range between 39 to 55 oC. The 2-D and 3-D inversion MT data are performed to determine the subsurface resistivty structure. The 2-D inversion was done by using WinGlink software, while the 3-D inversion has been carried out using MT3DInv-X software.
The result of the inversion shows that the 3-D inversion can deliniate the subsurface structure more clearly than the 2-D inversion. The conductive layer (<15 ohm-m) with a thickness of about 1 - 1,5 km is indicated indicating the clay cap of the geothermal system. A slighty higher resistivity value (20-60 ohm-m) is discovered below the clay cap, indicating the reservoir zone. Body with high resistivity values (> 80 ohm-m) is interpreted as heatsource of geothermal system associated with volcanic activity of Mount Welirang.
The final stage of the research is to intergrate the MT data, geology and geochemistry data, to build a conceptual model. The coverage boundary of the prospective area is about 18 km2 with the summit of Mount Welirang as the center of reservoar. Temperature of geothermal reservoir based on CO2 gas geothermometer is about 260oC.The capacity of Arjuno-Welirang geothermal system counted using Volumetric Lump Parameter method is about 144 MWe.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S52633
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deni Saputra
"[Daerah prospek panas bumi Gunung Arjuno dan Gunung Welirang berada pada jalur vulkanik yang dikenal dengan jalur ring of fire, yaitu rentetan gunung api, baik yang aktif, maupun gunung api yang tidak aktif. Gunung tersebut berasosiasi
dengan pembentukan sistem panas bumi yang ditandai dengan kemunculan manifestasi yang terdiri dari mata air panas Padusan, Coban dan Cangar serta adanya fumarol yang terdapat di komplek Gunung Welirang. Dari hasil perhitungan geothermometer daerah prospek panas bumi Gunung Arjuno dan
Gunung Welirang memiliki temperatur 250o C dan masuk dalam kategori high temperature (>225 oC). Untuk mengetahui batas, kedalaman, dan geometri dari reservoir yang ada, dilakukan pengukuran dengan metode Magnetotellurik (MT), Time Domain Electromagnetic (TDEM) dan gaya berat. Dari hasil pengukuran
tersebut, dilakukan pemodelan pada 138 data MT, 103 data TDEM dan 253 data gaya berat. Selanjutnya hasil pemodelan dianalisa dengan menggunakan penampang 1 dimensi, 2 dimensi dan visualisasi 3 dimensi. Karakteristik reservoir berada pada kisaran 10-30 Ohm-m dengan nilai densitas rata-rata 2.2
gr/cc dan menghasilkan prospek panas Gunung Arjuno dan Gunung Welirang sekitar 40 km2 dengan potensi yang dapat dikembangkan untuk pembangkit tenaga listrik sebesar 140 MWe, rekomendasi penentuan titik bor eksplorasi berada di 2 km baratlaut dari komplek Gunung Welirang.

The geothermal prospect areas Mount Arjuno and Mount Welirang is on track which is known as volcanic ring of fire, which is a series of volcanoes, both active and inactive volcanoes. The mountain is associated with the formation of geothermal systems that are characterized by the appearance of manifestations consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the geothermal prospect areas Mount Arjuno and Welirang has a temperature of 250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results were analyzed using 1 dimensional cross-section, 2 dimensional and 3 dimensional visualization. The position of the reservoir is in the range of 10-30 Ohm-m with an average density value 2.2 g/CC3 to generate hot prospects Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.;The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang., The geothermal prospect areas Mount Arjuno and Mount Welirang is on track
which is known as volcanic ring of fire, which is a series of volcanoes, both active
and inactive volcanoes. The mountain is associated with the formation of
geothermal systems that are characterized by the appearance of manifestations
consisting of Padusan, Coban and Cangar hot springs and their fumaroles located
in Mount Welirang complex. From the calculation geothermometer, the
geothermal prospect areas Mount Arjuno and Welirang has a temperature of
250°C and in the category of high temperature (190 oC-236 oC). To determine the
boundary, the depth, and the geometry of the existing reservoir, measured by the
method of magnetotelluric (MT), Time Domain Electromagnetic (TDEM) and
gravity. From the results of these measurements, modeling performed on the 138
MT data, 103 TDEM data and 253 gravity data. Furthermore, the modeling results
were analyzed using 1 dimensional cross-section, 2 dimensional and 3
dimensional visualization. The position of the reservoir is in the range of 10-30
Ohm-m with an average density value 2.2 g / CC3 to generate hot prospects
Mt.Arjuno and Mount Welirang approximately 40 km2. with potential developed
for power plants of 140 MWe, recommendations exploration drill point
determination located at 3km north-west of the mountain complex Mount
Welirang.]
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
T43401
UI - Tesis Membership  Universitas Indonesia Library
cover
Irwan Wahyu Kurniawan
"Lapangan Geotermal Salak merupakan lapangan geotermal terbesar di Indonesia dengan kapasitas terpasang sebesar 377 MW. Dari awal beroperasinya pada Februari 1994 sampai dengan Desember 2014 lapangan ini telah memproduksi 421.759.106,78 Ton uap. Dengan produksi sebesar itu, diperlukan manajemen reservoar yang baik untuk menjaga keberlangsungan produksi jangka panjang. Manajemen reservoar sangat penting dalam upaya mengatasi masalah yang terjadi akibat kegiatan produksi dan reinjeksi, oleh karena itu strategi reinjeksi sebaiknya memperhatikan karakteristik reservoar lapangan geotermal.
Penelitian ini menggunakan metode geofisika yaitu 3D MT, Microearthquake dan Microgravity dengan dukungan data sumur dan data produksi serta reinjeksi untuk memprediksi kondisi reservoar sebagai upaya mengantisipasi terjadinya penurunan tekanan reservoar yang berpotensi menurunkan produktifitas sumur produksi.
Hasil penelitian ini menyimpulkan bahwa strategi reinjeksi di Awi 9 memegang peranan penting sebagai heat and pressure support di sumur ? sumur produksi. Namun, terdapat indikasi kompaksi pada reservoar sejalan dengan peningkatan kapasitas produksi, hal ini diperkuat dengan terjadinya penurunan permukaan tanah dan peningkatan kejadian gempa mikro pada daerah resevoar dangkal, terjadi penurunan medan gravitasi pada reservoar produksi yang diidentifikasi berhubungan dengan penurunan tekanan reservoar. Hasil ini digunakan sebagai dasar usulan untuk mempertahankan eksistensi sumur - sumur reinjeksi di Awi 9 dan penempatan sumur reinjeksi brine di zona reservoar produksi.

Salak Geothermal Field is the biggest geothermal field in Indonesia with 377 MW installed capacity. From its commersial operation in February to December 2015, this field has produced 421.759.106,78 Tonnes steam. With these huge production, good reservoir management are necessary to sustain long term production. Reservoir management becomes very important to overcome the problems caused by production and reinjection. Therefore, reinjection strategy should be implemented by considering reservoar characteristic in geothermal field.
This study are using geophysical methods, there are : 3D MT, Microearthquake and Microgravity combined to geological well data support, production and reinjection data to predict reservoir condition as an attempt to anticipate decreasing of reservoir pressure which potentially reduce production.
This study conclude that reinjection strategy in Awi 9 took important part as heat and pressure support to production wells. However, there are some indication of creep compaction in reservoir in line with production capacity escalation, this was supported by land subsidence and increasing of microearthquake event in the shallow part of reservoir, decreasing of gravitational field in production reservoir associated with reservoir pressure drops, this results are used as the basis for the proposals to maintain the existance of reinjection wells in Awi 9 and brine reinjection wells placement in the production reservoir zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
T45306
UI - Tesis Membership  Universitas Indonesia Library
cover
Hikmat Nadzaruddin
"Penentuan prospek zona permeabilitas sekuder ditentukan melalui analisis terpadu pengideraan jauh, data geologi, magnetotellurik dan gravitasi. Berdasarkan analisis penginderaan jauh, kelurusan yang berkembang berarah dominan Baratlaut-Tenggara dan Timurlaut-Baratdaya dengan kerapatan 2.5-3.2 km/km2, berkorelasi dengan kemunculan manifestasi dan alterasi yang berkembang didaerah penelitian. Perkiraan zona alterasi dan manifestasi menggunakana Metoda Direct Principal Component DPC pada citra Landsat 7 ETM menghasilkan area terduga seluas 73 km2 dari 160 km2 luasan area penelitian yang terkonfirmasi berdasarkan peta sebaran alterasi dan manifestasi yang berada didalam area terduga. Berdasarkan pemodelan inversi 3D MT dan forward modelling 2D data gravitasi, lapisan claycap bernilai resistivitas < 10 ?m dengan densitas 1.7-1.9 gr/cc merupakan alterasi argilik pada formasi Aimere dan Siutoro. Top of Reservoir TOR ditandai dengan keberadaan alterasi propilitik pada sumur MT-02 berada pada kisaran kedalaman 400-600 mdpl dengan ketebalan reservoar berkisar 800-1000 m dengan nilai resistivitas 10-100 ?m dan densitas 2.1-2.6 gr/cc yang diperkirakan berada pada formasi volkanik tua. Heatsource diperkirakan merupakan tubuh intrusi formasi Bajawa dibagian Timurlaut dan pluton formasi kompleks kerucut breksi volkanik dibagian Baratdaya dengan nilai resistivitas >150 ?m dan densitas 2.7-3.1 gr/cc. Manifestasi berupa mataair panas ML1 dan ML2, fumarol dan kolam lumpur panas diperkirakan merupakan upflow dari sistem geotermal berasosiasi dengan Tinggian Volkanik dengan karakter Fluida 2 Fasa yang berada diatas heatsource dibagian Timurlaut. Perkiraan temperatur reservoar berkisar 200-300°C berdasarkan profil temperatur sumur MT-02 dan geotermometer gas. Delineasi daerah prospek reservoar ditentukan seluas 1.6 km2 berdasarkan hasil depth slice elevasi 400m pemodelan inversi 3D MT. Rekomendasi sumur pemboran trajectory menargetkan sesar F08 Sesar Waeluja mengacu kepada hasil analisis curve splitting, FHD, SVD yang mengkonfirmasi keberadaan struktur bawah permukaan diperkirakan merupakan prospek zona permeabilitas sekuder dengan temperatur dan permeabilitas tinggi.

Prospect identification of secondary permeability zone determined by using integrated analysis of remote sensing, geological, magnetotelluric and gravity data. Lineament pattern characterized the geological structural development dominates on NW SE and SW NE direction with lineament density reach 2.5-3.2 km km2 correlates with the appearance of surface manifestation and alteration zone within research area. Prediction of alteration and manifestation by using Direct Principal Component DPC technique from Landsat 7 ETM image resulting predicted area of 73 km2 out of 160 km2 research area and confirmed by comparing with the alteration and manifestation map from the previous research. 3D MT inversion model and 2D forward modelling gravity resulting geophysical characterization of the geothermal system. Claycap characterize as resistivity value 10 m with density 1.7 1.9 gr cc refer to Aimere and Siutoro argillic altered formation. Top of Reservoar TOR identifies in comparison with log description MT 02 well with the appearance of prophylitic alteration found at elevation of depth 400-600 msl with thickness of reservoir 800 1000m below characterized as resistivity value 10 100 m with density 2.1-2.6 gr cc interpreted as old volcanic formation. Heatsource interpreted as intrusive body of Bajawa formation found on the Northeastern part while at the Southwestern part related with the pluton of the breccia volcanic cone complex with the resistivity value 150 m and the density value 2.7 3.1 gr cc. Surface manifestation lies above the heatsource at Northeastern identified as the upflow zone of the typical Volcanic Associated Geothermal System on High Terrain with the 2 Phase Fluid characteristic. Reservoir temperature predicted 200-300°C based on temperature profile from well MT 02 and gas geothermometer. Delineation of the reservoir prospect area determined 1.6 km2 wide based on depth slice of 3D MT inversion at elevation 400 msl. Recommended trajectory drilling well, targeting F08 fault Waeluja Fault based on the result of confirmation of the occurrence subsurface geological structure using curve splitting, FHD, SVD predicted as the prospect of secondary high permeability zone and high temperature."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47619
UI - Tesis Membership  Universitas Indonesia Library
cover
Iskandar
"Lapangan geotermal X berada di area gunung A yangmana berdasarkan data geologi ditemukan adanya manifestasi berupa hot spring dan fumarole. Pengukuran MT dilakukan untuk mengetahui persebaran resistivity batuan di bawah permukaan. Pengolahan data MT dilakukan dari analisis time series dan filtering noise kemudian dilakukan Transformasi Fourier dan Robust Processing. Setelah itu baru dilakukan crosspower untuk menyeleksi data sehingga output dari proses ini berupa kurva MT. Setelah didapatkan kurva MT dilakukan koreksi statik dikarenakan kurva TE dan TM terjadi shifting. Untuk proses akhirnya baru dilakukan inversi 2D dan inversi 3D. setelah itu dilakukan perbandingan antara 2D dan 3D. Wilayah interest lapangan X berada di lintasan AA dan lintasan AB. Berdasarkan analisis 3D diidentifikasi bahwa zona alterasi menipis di wilayah upflow dan menebal ke arah outflow yangmana sesuai dengan teori. Wilayah upflow dapat diketahui dengan melihat manifestasi berupa fumarole.

The geothermal field X is located in the area of Mount A which based on geological data found the presence of hot spring and fumarole manifestations. MT measurements were carried out to determine the distribution of rock resistivity in the subsurface. MT data processing is starts from time series analysis and noise filtering then Fourier Transform and Robust Processing are performed. After that, crosspower is done to select data so that the output of this process is an MT curve. After got the MT curve then a static correction is done because the TE and TM curves are shifting. For the final process are 2D inversion and 3D inversion. After that make a comparison between 2D and 3D. The area of interest in field X is on the line AA and line AB. Based on the 3D analysis, it was identified that alteration zones thinned in the upflow region and thickened towards the outflow which is make sense with the theory."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eka Yunita
"Daerah penelitian “M” merupakan salah satu daerah yang memiliki potensi geotermal di Indonesia. Hal tersebut ditunjukkan dengan adanya struktur geologi dan kemunculan manifestasi di permukaan yang dapat membantu dalam mengidentifikasi keberadaan sistem geotermal di bawah permukaan. Penelitian ini menggunakan inversi 3-dimensi magnetotellurik untuk mengetahui distribusi resistivitas di bawah permukaan, penentuan area prospek, serta pembuatan model konseptual dengan integrasi data magnetotellurik dan data pendukung berupa data geologi, geokimia, dan gravitasi. Berdasarkan data pendukung geologi, daerah “M” terdiri dari susunan produk vulkanik berumur kuarter dan struktur geologi dengan arah barat laut-tenggara. Dari data pendukung geokimia, ditemukan endapan travertine di sekitar manifestasi mata air panas yang relatif bersifat netral, temperatur cukup tinggi, dan berasosiasi dengan struktur geologi. Fluida di mata air panas tersebut dominan bertipe bicarbonate water yang menandakan fluida berasal dari reservoir dan dominan telah terkontaminasi oleh meteoric water. Fluida tersebut juga dominan memiliki nilai klorida tinggi yang menandakan bahwa lingkungan manifestasi mata air panas berada di lingkungan vulkanik. Selain itu, perhitungan dengan geotermometer diperoleh dugaan temperatur reservoir berkisar antara 160°C-180°C. Berdasarkan hasil pemodelan inversi 3-dimensi magnetotellurik dan data pendukung berupa model forward2-dimensi gravitasi diketahui sebaran dari variasi resistivitas dan densitas bawah permukaan yang menggambarkan lapisan clay cap, top of reservoir, dan bentuk updome yang kemungkinan merupakan heat source. Lapisan dengan nilai resistivitas rendah diduga merupakan clay cap atau batuan penudung berupa sebaran batuan beku yang mengalami alterasi. Di bawah lapisan clay cap terdapat sebaran resistivitas medium yang diindikasikan sebagai reservoir berupa batu gamping bahbotala. Di bagian bawahnya terdapat lapisan dengan resistivitas tinggi yang kemungkinan adalah batuan metamorf yang menjadi batuan dasar/basement. Diantara basement ini terdapat bentuk updome dengan resistivitas sedikit lebih tinggi yang diduga merupakan batuan terobosan atau intrusi yang dapat menjadi sumber panas bagi sistem geotermal. Sumber panas ini diduga berasal dari Dolok Tinggi Raja dikarenakan terbentuknya dome di permukaan yang mungkin diakibatkan oleh adanya larutan magma yang tidak tererupsikan keluar permukaan sehingga membentuk batuan terobosan di bawah permukaan. Adanya sumber panas ini dapat menimbulkan aliran fluida panas secara vertikal (upflow). Berdasarkan integrasi data-data tersebut, area prospek geotermal di daerah “M” diperkirakan berada di sekitar Dolok Tinggi Raja melebar ke arah timur laut, timur, dan selatan.

The research area "M" is one of the areas with geothermal potential in Indonesia. This is indicated by the presence of geological structures and the appearance of manifestations on the surface which can assist in identifying the presence of subsurface geothermal systems. This study uses 3-dimensional magnetotelluric inversion to determine the distribution of resistivity below the surface, determine prospect areas, and construct a conceptual model by integrating magnetotelluric data and supporting data in the form of geological, geochemical and gravity data. Based on supporting geological data, the "M" area consists of volcanic products of quarter age and geological structures in a northwest-southeast direction. From supporting geochemical data, travertine deposits around hot spring manifestations were found which were relatively neutral, had relatively high temperatures, and were associated with geological structures. The fluid in the hot springs is dominant of the bicarbonate water type, which indicates that the fluid comes from a reservoir and has been predominantly contaminated by meteoric water. The fluid also dominantly has a high chloride value which indicates that the manifestation environment of the hot springs is in a volcanic environment. In addition, calculations with the geothermometer obtained an estimated reservoir temperature ranging from 160°C-180°C. Based on the results of 3-dimensional magnetotelluric inversion modeling and supporting data in the form of a 2-dimensional forward gravity model, it is known that the distribution of resistivity and subsurface density variations describes the clay cap layer, top of reservoir, and up-dome shape which may be a heat source. The layer with a low resistivity value is thought to be a clay cap or a cap rock in the form of a distribution of altered igneous rocks. Beneath the clay cap layer, there is a medium resistivity distribution which is indicated as a reservoir in the form of bahbotala limestone. At the bottom, there is a layer with high resistivity which is probably the metamorphic rock that became the basement. Among these basements, there is an up-dome with slightly higher resistivity which is thought to be a breakthrough or intrusive rock which can be a heat source for geothermal systems. This heat source is thought to have originated from Dolok Tinggi Raja due to the formation of a dome on the surface which may be caused by the presence of magma solution that has not erupted off the surface to form breakthrough rock below the surface. The existence of this heat source can cause a vertical flow of hot fluid (up-flow). Based on the integration of these data, the geothermal prospect area in the “M” area is estimated to be around Dolok Tinggi Raja, widening to the northeast, east, and south."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhara Adhnandya Kumara
"Dewasa ini Indonesia tengah berusaha untuk memenuhi kebutuhan energi untuk tujuan ketahanan energi nasional. Salah satu energi yang tengah diusahakan adalah energi baru dan terbarukan yang salah satunya adalah energi panas bumi. Untuk mencapai target ini, eksplorasi energi panas bumi perlu digencarkan. Dalam eksplorasi panas bumi, metode yang sering digunakan adalah metode magnetotellurik. Dalam melakukan survei magnetotellurik terdapat banyak hal yang perlu dipertimbangkan untuk membuat suatu desain survei. Salah satu parameter penting dalam proses akuisisi data adalah mengetahui jumlah dan jarak antar stasiun yang tepat untuk memberikan gambaran bawah permukaan terbaik. Jarak antar stasiun sebaiknya tidak terlalu besar, dikhawatirkan apabila terlalu besar resolusi yang didapatkan terlalu rendah dan juga terjadi ekstraplorasi pada saat pengolahan data. Namun, apabila membuat jarak terlalu rapat itu juga akan menguras biaya dan waktu selama pengukuran. Terutama dalam survei magnetotellurik, untuk mendapatkan data yang dalam diperlukan waktu pengukuran yang semakin lama. Biasanya dalam eksplorasi panas bumi, pengukuran data magnetotellurik dapat dilakukan hinnga 24 jam. Sehingga apabila semakin banyak titik yang diukur semakin lama juga waktu yang diperlukan untuk mengukur. Pada saat ini, belum ada penelitian yang membahas berapa jarak optimum dalam akuisisi data magnetotelurik untuk eksplorasi panas bumi. Penggunaan jarak antar stasiun pada penelitian-penelitian sebelumnya sangatlah bervariatif. Hal ini tentunya berpengaruh pada gambaran sistem panas bumi hasil pengolahan data magnetotelurik tersebut. Penelitian ini bertujuan untuk mengetahui jarak antar stasiun yang paling optimum untuk eksplorasi pada lapangan panas bumi. Dimana penelitian ini akan dilakukan dengan melakukan pemodelan kedepan (forward modelling) dan pemodelan inversi (inverse modelling). Dengan membuat beberapa model dan melakukan variasi jarak stasiun, jarak antar stasiun yang optimal dapat disimpulkan. Berdasarkan studi yang dilakukan diketahui bahwa dengan jarak 500-1000 meter untuk daerah interest sudah mampu menggambarkan batasan clay cap dengan baik sehingga jarak ini sudah optimum. Sementara itu, diluar daerah interest diperlukan beberapa stasiun pengikat dengan jarak 1000 meter. Dibandingkan dengan inversi 2D, inversi 3D mampu menggambarkan sistem dengan lebih baik.

Currently Indonesia is trying to meet energy needs for national energy security goals. One of the energies being consideredis new and renewable energy, one of which is geothermalenergy. To meet this goal, exploration for geothermalenergy need to be intensified. The geophysics method which usually used for geothermal energy exploration is the magnetotelluric method. One of the important parameters in the data acquisition is decidingthe number and spacing for eachstation to provide the best sub-surfaceimage. The distance between stations should not be too large, that caused the resolution obtained will betoo low and extrapolation also occurs when the data processing obtained. However, if the distance too denseit will also drain the cost and time during the measurement. Especially in magnetotelluric surveys, to obtain deep depthrequires a longer measurement time. Usually in geothermalexploration, measurement of magnetotelluric data can be done up to 24 hours. Thus, whenmore points are measured the longer the time needed to measure. At present, there is no research that discusses the optimum distance in magnetoteluric data acquisition for geothermal exploration. The use of distance between stations in previous studies ishighly varied. This certainly affects the imaging of the geothermal system resulting from the processing of the magnetoteluric data. This study aims to determine the most optimum distance between stations for exploration on geothermal fields. Where this research will be carried out by doing forward modeling and inverse modelling. By building several models and varied the station spacing, optimum spacing in geotermalarea could be concluded. The study result shown that the optimum spacing is 500-1000 meters for the interest zone, it is capable to delineate the Top of Resevoar. Moreover, outside the interest zone several stasion should be put with the station spacing for about 1000 meters. 3D inversion shown better result in the ability on mapping the system compared with 2D inversion."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>