Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 7113 dokumen yang sesuai dengan query
cover
"Sea is a heritance for all people. The usefullnes of sen without considering an ecological aspect has to be prevented as early as possible. In preventing the sea pollution, some regulations regarding pollution of the ship operation are presebted and discussed in this paper."
343 JPIH 17 (1997)
Artikel Jurnal  Universitas Indonesia Library
cover
Rully Andhika
Depok: Fakultas Teknik Universitas Indonesia, 2002
S35524
UI - Skripsi Membership  Universitas Indonesia Library
cover
Almer Ibnu Farhan
"Kecepatan kapal adalah suatu nilai yang penting guna untuk memenuhi standart kecepatan dinas kapal. Pengoptimalan sistem propulsi kapal adalah faktor yang perlu diperhatikan. Beberapa penelitian untuk meningkatkan sistem propulsi kapal sudah banyak dilakukan, salah satunya adalah wake equalizing ducts dan kort nozzle. Penelitian tersebut bertujuan untuk mengarahkan aliran air lebih banyak dari sisi bawah dan sisi samping lambung kapal menuju ke baling - baling kapal. Cara ini dimaksudkan agar dapat meningkatkan efisiensi baling - baling, yang nantinya akan meningkatkan kecepatan kapal secara langsung. Dengan tujuan yang sama dengan wake equalizing ducts dan kort nozzle, maka water tunnel dirancang dengan rancangan yang lebih sederhana. Water tunnel adalah suatu terowongan air berbentuk kotak lengkung yang terhubung dari bawah lambung kapal ke buritan menuju baling - baling. Water tunnel ini memanfaatkan aliran air bawah lambung kapal untuk mengubah energi mekanik menjadi energi kinetik setelah aliran air masuk ke baling - baling. Cara ini diharapkan dapat mengalirkan air lebih terarah menuju ke baling - baling, sehingga efisiensi baling - baling meningkat, yang dapat terukur langsung melalui kenaikan kecepatan kapal. Penelitian ini dilakukan dengan cara ekperimental dan simulasi untuk mengetahui fenomena yang terjadi akibat penggunaan water tunnel. Cara Eksperimental dilakukan untuk membandingkan kecepatan kapal yang terjadi antara penggunaan water tunnel dan tidak menggunakan water tunnel, dan cara simulai dilakukan guna mengetahui fenomena aliran yang terjadi di dalam water tunnel. Sehingga pada akhir penelitian didapatkan analisa kecepatan yang terjadi akibat penggunaan water tunnel pada kapal pelat datar. Dari hasil uji kecepatan secara eksperimen didapatkan kenaikan 19-32% dengan menggunakan water tunnel pada kapal pelat datar, dan dari hasil simulasi didapatkan kontur kecepatan aliran di dalam water tunnel dengan batasan pengujian yang dihasilkan.

Ship velocity is the important value to meet the standard of ship velocity service. Optimalization ship propulsion system is a factor that have to consider. Some studies to improving ship propulsion system has been done, one of study is wake equalizing ducts and kort nozzle. In this study aims to direct the flow more water fro the bottom and side of hull towards the propeller. This method is conducted to improve the efficiency propeller, that will increase the velocity of the ship directly. With the same purpose as wake equalizing ducts and kort nozzle, the water tunnel is designed with a simply design. Water tunnel is a duct of water that shaped is curve box and connected from bottom hull ship toward aft propeller. Water tunnel takes the water flow from under the hull to convert mechanical energy to be kinetic energy after the water flow enter propeller. This method is expected to drain the water more directed toward the propeller, so the efficiency would increase, which can be measured directly through the ship velocity increase. The research was done by experimental and simulation to know the phenomenon that occurs due to using water tunnel. Experiment test conducted to compare the velocity ship that happen between unsing water tunnel and not using water tunnel, and with simulation test conducted to know the flow phenomena in water tunnel. So at the end of study was obtained that analisys of the velocity result using water tunnel system on the flat plate ship. Result of the ship velocity test experiment, obtained 19-32% increase by using a water tunnel on a flat plate ship, and from simulation test result obtained the value of contours flow in the water tunnel with boundary of study result."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35648
UI - Tesis Membership  Universitas Indonesia Library
cover
Manullang, Corry Yanti
"Mikroplastik adalah potongan plastik kecil dengan panjang terpanjang kurang dari 5 mm yang muncul di lingkungan sebagai akibat dari polusi plastik. Ukuran mikroplastik ini sangat kecil sehingga memungkinkan polutan ini mudah tertranspor bersama arus laut. Mikroplastik memiliki ukuran, warna dan bentuk yang mirip dengan makanan alami biota laut zooplankton sehingga dapat disalahartikan sebagai makanan. Oleh karena itu, pengetahuan terkait distribusi dan nasib partikel mikroplastik dalam suatu perairan penting dilakukan untuk memahami resikonya terdapat keanekaragaman biota yang ada dalam perairan.
Sirkulasi laut di Indonesia dipengaruhi oleh dua sistem arus utama, yaitu Arus Monsun Indonesia (ARMONDO) dan Arus Lintas Indonesia (ARLINDO). ARLINDO merupakan lintasan arus samudra yang membawa massa air dalam skala besar dari Samudra Pasifik ke Samudra Hindia dan juga memiliki peranan penting dalam iklim global. Berbeda halnya dengan ARMONDO yang merupakan pola arus permukaan yang dibangkitkan oleh angin musim (Monsun), aliran utama massa air ARLINDO terjadi pada lapisan termoklin yang disebabkan oleh perbedaan karakteristik temperatur dan salinitas lautan. Jalur utama ARLINDO adalah Selat Makasar yang mengalirkan sekitar 80% dari total ARLINDO. Massa air Samudra Pasifik bagian utara dan selatan memasuki laut Indonesia melalui ambang Sulawesi, kemudian melintasi Laut Sulawesi dan Selat Makassar. Selanjutnya, sebagian air langsung keluar ke Samudera Hindia melalui Selat Lombok dan Selat Alas, sedangkan sebagian besar mengalir ke Laut Banda dan menyatu dengan jalur ARLINDO bagian timur sebelum keluar menuju Samudera Hindia.
Sejak pertengahan tahun 1980-an, pengukuran flux massa air, suhu dan salinitas telah banyak dilakukan di jalur ARLINDO. Namun demikian, studi pencemaran laut di kawasan ini masih belum dijelajahi dan belum diketahui secara detail. Sementara itu, polutan seperti halnya mikroplastik dapat dengan mudah tertranspor bersama arus laut. Tujuan umum dari penelitian disertasi ini adalah memenuhi kesenjangan data dan informasi terkait pencemaran mikroplastik di kawasan laut dalam jalur ARLINDO. Disertasi ini terdiri dari 5 bab, meliputi Bab Pengantar Paripurna, 3 Bab mengenai penelitian inti yang dilakukan dalam disertasi ini dan Bab Diskusi paripurna yang mengelaborasi temuan-temuan dalam penelitian ini dan memuat rekomendasi penelitian di masa yang akan datang.
Bab pertama disertasi ini, berisi pendahuluan terkait latar belakang dilakukannya disertasi ini. Dalam bab ini dipaparkan terkait polusi mikroplastik, distribusi mikroplastik, penelitian-penelitian mikroplastik di kawasan laut dalam, kondisi eksisting penelitian mikroplastik di Indonesia saat ini dan kesenjangan penelitian mikroplastik di Indonesia. Dalam bab ini juga dipaparkan terkait research gaps yang dicapai melalui penelitian disertasi ini serta nilai kebaruan penelitian ini dalam bidang penelitian mikroplastik.
Bab kedua disertasi ini memuat tentang informasi distribusi vertikal mikroplastik di kolom air kawasan laut dalam jalur ARLINDO. Kajian ini membahas sebaran mikroplastik di kolom air laut dalam secara detail yang sangat penting dalam menentukan nasib dan pengangkutan mikroplastik di perairan Indonesia yang bermuara di Samudera Hindia. Sampel kolom air dikumpulkan dari 11 stasiun, meliputi sepanjang Selat Makassar, Selat Alas dan Selat Lombok. Pengambilan sampel air dari kolom air dan pengukuran profil vertikal parameter fisik dilakukan menggunakan carousel rosette water sampler yang yang dipasang dengan alat Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) hingga kedalaman 2450 m. Sampel kolom air dikumpulkan dari 8 hingga 10 kedalaman meliputi lapisan dekat permukaan (~5 m); kedalaman klorofil maksimum; lapisan termoklin (atas, tengah dan bawah); kedalaman oksigen terlarut minimum (DO-Min); dan kedalaman dekat dasar. Tingkat kedalaman pengambilan sampel bervariasi berdasarkan kondisi perairan. Untuk kedalaman perairan melebihi 1000 m pengambilan sampel tambahan dilakukan pada kedalaman 500 m, 750m, 1000 m, 1500 m, dan 2000 m. Proses ekstraksi mikroplastik dari sampel air dilakukan dengan prosedur WPO (wet peroxide oxidation) menggunakan larutan hidrogen peroksida (H2O2) 30%. Proses pengambilan sampel hingga proses ekstraksi mikroplastik dilakukan secara teliti untuk menghindari adanya kontaminasi mikroplastik dari udara maupun peralatan penelitian. Uji polimer partikel mikroplastik dilakukan dengan Raman spectroscopy. Sebanyak 924 partikel mikroplastik dengan rata-rata kelimpahan 1,062±0,646 n/L ditemukan di kolom air laut dalam jalur ARLINDO. Mayoritas bentuk plastik yang ditemukan adalah fiber. Jenis polimer yang paling dominan ditemukan adalah polimetil vinil eter- asam ko-maleat (PVEMA) dan poliester (PES). Konsentrasi mikroplastik paling banyak ditemukan di lapisan termoklin dan lapisan di bawah termoklin. Studi ini mengungkapkan bahwa suhu air dan kepadatan air merupakan faktor parameter fisika perairan yang paling signifikan yang berkorelasi dengan konsentrasi mikroplastik di kolom perairan laut dalam jalur ARLINDO. Selain itu, massa air pada lapisan termoklin dan lapisan di bawah termoklin memiliki salinitas >33‰, hal ini berkorelasi dengan karakteristik massa air perairan Pasifik Utara yang masuk ke perairan Selat Makassar. Hal ini menguatkan hipotesis bahwa aliran massa air dari Samudera Pasifik ke Samudera Hindia melalui perairan Indonesia turut membawa mikroplastik ke wilayah ini.
Bab 3 disertasi ini memberikan temuan awal mengenai konsumsi mikroplastik oleh kopepoda di jalur ARLINDO. Sampel zooplankton dikumpulkan dari 10 stasiun dengan cara menarik jaring secara vertikal dari kedalaman 300 m ke permukaan menggunakan jaring plankton NORPAC dengan ukuran mata jaring 200 µm. Sampel diawetkan dengan larutan etanol 90%. Di laboratorium, kopepoda disortir dan diklasifikasikan ke dalam tiga kategori ukuran berbeda untuk mengetahui perbedaan penelanan mikroplastik dalam berbagai ukuran biota zooplankton. 87% partikel yang ditemukan berbentuk fiber. Tiga jenis polimer dominan yang diidentifikasi adalah polivinil butiral (PVB), polimetil vinil eter- asam ko-maleat (PVEMA) dan Poliester (PES). Tingkat penyerapan mikroplastik pada masing-masing kelompok ukuran kopepoda adalah 0,016 n/ind untuk kopepoda ukuran 200-500 µm; 0,023 n/ind untuk kopepoda ukuran 500-1000 µm dan 0,028 n/ind untuk kopepoda ukuran 1000-2000 µm. Tidak terdapat perbedaan yang signifikan antara konsentrasi ketiga kelompok kelas kopepoda sepanjang jalur ARLINDO (p>0,05). Namun konsentrasi mikroplastik ditemukan berbanding lurus secara positif dengan ukuran kopepoda. Kopepoda memiliki penting dampak mendistribusikan dan mentransfer energi dalam ekosistem dan merupakan komponen rantai makanan yang penting karena berfungsi sebagai konsumen utama bagi banyak organisme akuatik. Oleh karena itu, studi ini memberikan pengetahuan dasar yang fundamental untuk penilaian risiko ekologi mikroplastik lebih lanjut di jalur ARLINDO.
Bab 4 disertasi ini menyajikan informasi awal terkait distribusi mikroplastik di sedimen laut dalam di jalur ARLINDO, yaitu Selat Makassar. Pengambilan sedimen laut dalam dilakukan 7 stasiun yang mewakili habitat laut dalam yang berbeda dengan kedalaman mulai dari 348,2 hingga 1624 m. Tujuh stasiun yang dipilih mewakili tiga lokasi berbeda. Sampel sedimen dikumpulkan pada kedalaman yang bervariasi di setiap lokasi untuk menilai variasi akumulasi mikroplastik di berbagai kedalaman laut. Hasil penelitian ini menunjukkan bahwa polusi mikroplastik telah menyebar ke seluruh lautan di dunia hingga ke laut dalam. Jumlah mikroplastik berkisar antara antara 143 hingga 520 n/Kg sedimen kering. Meskipun penelitian ini sangat terbatas karena hanya sedikit sampel yang dapat mewakili seluruh dasar laut dalam di jalur ARLINDO, namun pengetahuan awal akumulasi mikroplastik ini sangat penting untuk memprediksi distribusi mikroplastik di laut dalam. Secara keseluruhan, jumlah mikroplastik di sedimen meningkat seiring bertambahnya kedalaman dasar laut mengindikasikan potensi laut dalam untuk mengakumulasi mikroplastik.
Bab 5 disertasi ini merupakan diskusi paripurna keseluruhan penelitian yang dilakukan dalam disertasi ini. Dalam bab 2, 3 dan 4 telah disajikan masing-masing komponen penelitian disertasi secara rinci. Maka bab 5 ini bertujuan untuk mengelaborasi temuan-temuan dalam penelitian disertasi ini dan menyoroti penelitian di masa yang akan datang di kawasan laut dalam, secara khusus di kawasan laut dalam jalur ARLINDO. Dalam bab ini diungkapkan kebaruan disertasi sebagai penelitian pertama yang mengungkapkan distribusi vertikal mikroplastik secara detail di kawasan jalur utama ARLINDO. Konsentrasi mikroplastik di kolom perairan di sepanjang jalur ARLINDO ditemukan paling tinggi di lapisan termoklin dan lapisan di bawah termoklin. Parameter fisika perairan meliputi suhu dan densitas air memiliki pengaruh yang signifikan terdapat distribusi vertikal mikroplastik di dalam kolom air. Penelitian ini juga melaporkan untuk pertama kalinya informasi penelanan mikroplastik oleh plantonik kopepoda di Indonesia. Meskipun secara statistik tidak signifikan, penelitian ini juga melaporkan bahwa konsentrasi mikroplastik berbanding lurus dengan ukuran biota zooplankton. Penelitian ini juga menjadi studi pertama yang melaporkan akumulasi mikroplastik sedimen laut dalam dari Selat Makassar. Penelitian disertasi ini mengungkapkan adanya kecenderungan akumulasi mikroplastik yang lebih tinggi seiring dengan meningkatnya kedalaman perairan.

Microplastics are tiny fragments of plastic, measuring less than 5 mm in length, that are found in the environment due to the presence of plastic pollution. The minuscule dimensions of these microplastics facilitate their effortless transportation across ocean currents. Microplastics possess sizes, colors, and shapes that closely resemble those of the indigenous sustenance of zooplankton marine organisms, which can lead to potential misidentification as food. Hence, it is crucial to acquire information on the distribution and fate of microplastic particles in aquatic environments to comprehend the potential threat they pose to the variety of organisms inhabiting these waters.
The circulation of sea water in Indonesian waters is mostly controlled by two primary current systems, namely the Monsoon Current or Arus Monsun Indonesia (ARMONDO) in Bahasa and the Indonesian Throughflow (ITF). The ITF is a major ocean current that carries large volumes of water from the Pacific Ocean to the Indian Ocean. It plays an important role in the global ocean circulation system and climate system. In contrast to ARMONDO, which is a surface current generated by seasonal winds (monsoons), the main flow of ITF water masses occurs in the thermocline layer. This is caused by differences in the characteristics of ocean temperature and salinity. The primary route of the ITF is the Makassar Strait, which transports approximately 80% of the entire volume of the ITF. The water volume from the western Pacific Ocean flows into the Indonesian Sea by passing through the Sulawesi threshold, subsequently traversing the Sulawesi Sea and the Makassar Strait. Afterward, a portion of the water is channeled straight into the Indian Ocean via the Lombok and Alas Strait. Still, most of it is sent into the Banda Sea and merges with the eastern ITF route before eventually entering the Indian Ocean.
Measurements of water mass flux, temperature, and salinity along the ITF route have been extensively conducted since the mid-1980s. However, marine pollution in this region remains unexplored and requires comprehensive understanding. Meanwhile, sea currents can easily transport pollutants such as microplastics to this area. The primary aim of this research dissertation is to address the lack of data and knowledge on microplastic pollution from deep-sea areas along the ITF pathway. This dissertation comprises five chapters, namely an introduction, three chapters dedicated to the primary research in this dissertation, and a discussion chapter that presents the elaborate study findings and provides recommendations for future research.
The initial chapter of this dissertation comprises an introductory section that provided the contextual background for the dissertation. This chapter provided an overview of the microplastic, the distribution of microplastic, the overview of microplastic studies in deep-sea areas, the current state of microplastic research in Indonesia and the research gaps in microplastic study in Indonesia. This chapter also elucidates the research gaps that will be addressed by the studies conducted in this dissertation and the novelty of this dissertation on the microplastic study.
The second chapter of this dissertation provides detailed information regarding the vertical distribution of microplastics in the water column of the deep-sea area along the ITF pathway. This study provides a comprehensive analysis of the distribution of microplastics in the deep-sea water column that could be highly significant in determining the fate and transport of microplastic within Indonesian waters that exits into the Indian Ocean. The water column samples were obtained from 11 locations, including the Makassar Strait, Alas Strait, and Lombok Strait. The collection of water samples from different depths and the measurement of physical parameters were conducted using a carousel rosette water sampler equipped with a Sea-Bird SBE 911+ conductivity-temperature-depth (CTD) instrument, reaching a depth of 2450 m. Water column samples were obtained from various depths, including near-surface layers at approximately 5 m, the maximum depth with high chlorophyll concentration, several layers of the thermocline (top, middle, and bottom), the depth with low dissolved oxygen and depths on to the bottom. Additional sampling is conducted at 500 m, 750 m, 1000 m, 1500 m, and 2000 m when the water depth exceeds 1000 m up. The extracting of microplastics from samples is carried out using the WPO (wet peroxide oxidation) procedure using a 30% hydrogen peroxide (H2O2) solution. The sample-collecting and microplastic extraction procedures in the laboratory were carefully conducted to prevent any potential contamination. Raman spectroscopy analysis was carried out for polymer identification of particle. A total of 924 microplastic particles with an average abundance of 1.062±0.646 n/L were found in the water column. The majority of shape of plastic found are fibers. The predominant polymer types identified are polymethyl vinyl ether maleic acid (PVEMA) and polyester (PES). The most concentrated amount of microplastics located in the thermocline layer and the layer after the thermocline. Our findings indicate that water temperature and water density are the most significant physical water parameters correlated to the microplastic concentration. In addition, the water mass in the thermocline layer and the layer below the thermocline that had a salinity of >33‰, which correlated with the characteristics of the North Pacific water that enters the waters of the Makassar Strait. These findings provide further evidence to support the hypothesis that the water flow from the Pacific Ocean to the Indian Ocean through Indonesian waters transports microplastics to this region.
Chapter 3 of this dissertation provided the initial findings on the consumption of microplastics by copepods in the ITF pathway. The zooplankton samples were collected from 10 stations by vertically towing nets from a depth of 300 m to the surface using a NORPAC plankton net with a mesh size of 200 µm. The zooplankton samples were preserved in a solution of 90% ethanol. In the laboratory, the copepods were sorted and classified into three different size categories to determine differences in microplastic ingestion in various sizes. The majority, precisely 87%, of the particles discovered were in the form of fibers. The three primary polymer types found were polyvinyl butyral (PVB), polyvinyl ether maleic anhydride (PVEMA), and polyester (PES). The rate of ingestion of microplastics in each size group of copepods was 0.016 n/ind for copepods measuring 200-500 µm; 0.023 n/ind for copepods measuring 500-1000 µm and 0.028 n/ind for copepods measuring 1000-2000 µm. The concentrations of the three copepod class groupings along the ITF route did not show statistically significant changes (p>0,05). Nevertheless, it was revealed that the amount of microplastics increased in direct correlation with the size of the organisms. Copepods have an important impact on distributing and transferring energy in ecosystems and are important components of the food chain because they serve as primary consumers for many aquatic organisms. Therefore, this study offers essential foundational knowledge for future ecological risk assessment of microplastics in the ITF pathway.
The fourth chapter of this dissertation contained provides initial information regarding the distribution of microplastics in marine sediments in the Makassar Strait. Deep sea sediment samples were carried out at 7 stations representing different deep-sea habitats with depths ranging from 348.2 to 1624 m. The seven stations selected represent three different sites. Sediment samples were collected at varied depths at each site to assess variations of microplastic accumulation across various ocean depths. The results of this research show that microplastic pollution has spread throughout the world's oceans and into the deep sea. The amount of microplastics ranged from 143 to 520 n/Kg. Despite the limited scope of this research, as it only examines a small number of samples from the ITF pathway, the findings provide valuable insight into the accumulation of microplastics. This knowledge is crucial for forecasting the dispersion of microplastics in the deep sea. In general, the quantity of microplastics found in sediments rises as the depth of the seabed increases, suggesting that the deep sea can accumulate the microplastics.
Chapter 5 of this dissertation contained a comprehensive explanation of the research gaps addressed in this study and research recommendation in the future research. This chapter described the novelty of the dissertation as the first research to reveal the vertical distribution of microplastics in the main pathway of the ITF. The concentration of microplastics in the water column along the ITF pathway was highest in the thermocline layer and the layer after the thermocline. The vertical distribution of microplastics in the air column is significantly influenced by the physical properties of water, particularly temperature and water density. This study presents novel findings about the ingestion of microplastics in the three sizes of planktonic copepods. While lacking statistical significance, this study reveals a direct correlation between the concentration of microplastics and the size of the zooplankton biota. This study is the first to document the accumulation of microplastic sediment in the deep-sea region of Makassar Strait. The research findings indicate that there is a tendency for microplastic accumulation to increase with increasing water depth.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ragil Tri Indrawati
"Kapal merupakan salah satu armada angkutan yang memiliki peranan vital. Perdagangan, ekspor-impor, dan industri tidak dapat terlepas dari sarana angkutan berupa kapal. Dalam pengoperasiannya, kapal membutuhkan daya mesin yang sesuai sehingga kecepatan kapal tercapai. Penggunaan bahan bakar yang sehemat mungkin menjadi hal yang sangat penting. Penghematan bahan bakar erat kaitannya dengan hambatan kapal yang terjadi.Penghematan pemakaian energi pada pengoperasian kapal menjadi topik yang menarik dan sangat penting untuk dikaji.
Tujuan penelitian ini untuk mencari konfigurasi S/L optimum untuk mendapatkan nilai hambatan terendah sehingga akan mengurangi konsumsi bahan bakar pada saat kapal beroperasi dan membandingkan nilai hambatan yang terjadi pada kapal katamaran dan monohull. Dua buah model kapal catamaran dengan lambung simetris dan variasi rasio jarak lambung S/L 0,2 , 0,3 dan 0,4 digunakan dalam penelitian ini. Metode eksperimen (towing tank) dan numerik (HullSpeed- MaxsurfPro 11.12) dilakukan dalam penelitian denganvariasi kecepatan pada angka Froude 0.2 -1.0.
Hasil menunjukkan bahwa hambatan total kapal katamaran terbesar dengan rasio jarak lambung S/L 0,4 terjadi pada Fr < 0,3 dan Fr 0,4 - 1,0. Sedangkan untuk Fn 0,3 - 0,4 nilai koefisien hambatan terbesar dimiliki oleh rasio S/L 0,2 yang ditunjukkan dengan puncak hambatan gelombang paling tinggi (hump resistance). Dari hasil kedua metode menunjukkan bahwa monohull menghasilkan nilai hambatan yang lebih besar daripada katamaran khususnya pada 0.4 ≤ Fn ≤ 0.8.

Ship is one of the transportion that has a vital role. Trade, exports - imports and industry can't be separated from means of transportation of ship. In operation, the vessel requires engine power accordingly so that the ship's speed is reached. The use of fuel efficient as possible becomes very important. Fuel savings is closely related to resistance vessels occurs. Saving energy consumption on the operation of the ship became an interesting topic and very important to assess.
The purpose of this study to look for the configuration S / L optimum to obtain the lowest resistance values so that will reduce fuel consumption when the vessel to operate and compare the value of resistance that occurs in catamaran and monohull.Two models of catamaran with symmetrical and variation of unstagerred demi hulls configuration(S/L) 0.2, 0.3 and 0.4 used in this study. Experimental method (towing tank) and numerical (HullSpeed-MaxsurfPro 11:12) conducted the study with the velocity variations in the Froude number 0.1 -1.0.
The results showed that the total resistance of the largest catamaran with unstagerred demihulls configurationS/L 0.4 occurred at Fr <0.3 and Fr 0.4 to 1.0. As for the Fn from 0.3 up to 0.4 the value of the total resistance coefficient of the biggest obstacles is owned by the ratio S/L 0.2 as indicated by the highest peak of the wave resistance (Hump resistance). From the results of both methods showed that the monohull produces greater resistance value than catamaran partially 0.4 ≤ Fn ≤ 0.8.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1385
UI - Skripsi Open  Universitas Indonesia Library
cover
Jakarta: Badan Pembinaan Hukum Nasional, Kementerian Hukum dan HAM Republik Indonesia, 1999
341.44 PEN
Buku Teks SO  Universitas Indonesia Library
cover
Juajir Sumardi
"Perkembangan ilmu pengetahuan dan teknologi, khususnya teknologi kelautan telah memungkinkan neningkatnya aktivitas dan kemampuan manusia di laut. Peningkatan kegiatan manusia di laut dalam mengeksplorasi dan mengeksploitasi sumberdaya laut pada analisis akhir justru dapat menjadi faktor penyebab terjadinya dan meningkatnya pencemaran lingkungan laut.
Pencemaran lingkungan laut, karena sifat laut dan bentuk geografi kawasan lingkungan laut serta arus dan cuaca yang ada, dapat mengakibatkan dua atau lebih negara merasakan dampaknya. Oleh karena itu, pencemaran lingkungan laut yang terjadi pada suatu negara tertentu dapat mempunyai dampak yang bersifat transnasional.
Menyadari bahaya yang dapat timbul akibat terjadinya pencemaran lingkungan laut yang bersifat transnasional, masyarakat bangsa-bangsa perlu mengantisipasinya dengan berbagai bentuk pendekatan. Penciptaan ketentuan hukum baik yang berskala global, regional maupun nasional adalah satu dari beberapa pendekatan yang dilakukan oleh bangsa-bangsa.
Hasil penelitian menunjukkan adanya faktor-faktor yang turut mempengaruhi bentuk pencemaran laut yang bersifat transnasional yaitu : (1) lingkungan laut alami, (2) musim dan ciri-ciri oceanografi, (3) Kegiatan perminyakan di lepas pantai, dan (4) perkembangan ilmu pengetahuan dan teknologi.
Oleh karena kondisi geografi Selat Malaka dan Singapura cukup rawan untuk terjadinya kecelakaan bagi kapal-kapal melintasi selat ini, maka usaha yang telah dilakukan oleh negara-negara pesisir Selat Malaka yaitu dengan menbentuk "Traffic Speration Scheme" dalam rangka menciptakan tertib dan keselanatan lintas kapal-kapal di Selat Malaka dan Singapura yang tentunya merupakan upaya pencegahan terjadinya pencemaran laut oleh alat yang bersumber dari kapal.
Dalam rangka pencegahan dan penanggulangan pencemaran laut oleh minyak yang bersumber dari kapal, khususnya di Selat Malaka dan Singapura, maka Direktorat Jenderal Perhubungan Laut dan Direktorat Jenderal Hinyak dan Gas telah mengeluarkan Surat Keputusan Bersama (SAB) dengan No. DAP 49/1/2 dan No. 27/APTS/DM/HIGAS/81 tentang Prosedur Tetap Selat Halaka dan Singapura, yang isinya mengatur masalah pencegahan dan penanggulangan pencemaran laut di Selat Malaka dan Singapura."
Depok: Fakultas Hukum Universitas Indonesia, 1995
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Universitas Indonesia, 1987
TA3894
UI - Tugas Akhir  Universitas Indonesia Library
cover
cover
Rudy Setiabudy
1996
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>