Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 59765 dokumen yang sesuai dengan query
cover
"Kejadian Fukushima telah menunjukkan bahwa kecelakaan parah dapat terjadi, maka dari itu sangatlah penting untuk menganalisis tingkat keselamatan pada reaktor daya. Berdasarkan rekomendasi expert mission IAEA setelah kejadian Fukushima, perlu dilakukan upaya untuk meminimalisasi terjadinya kecelakaan parah yaitu dengan melakukan proses pendinginan yang maksimal. Dalam konsep keselamatan fasilitas nuklir, khususnya reaktor daya telah diterapkan konsep keselamatan berlapis (Defence in Depth, DiD). Konsep keselamatan tersebut terdiri atas 5 level pertahanan yang bertujuan mencegah dan mengurangi lepasan produk fisi ke masyarakat dan lingkungan pada saat reaktor daya mengalami kecelakaan. Dalam reaktor telah didesain sistem atau tindakan yang mempunyai fungsi untuk mengatasi setiap level tersebut. Tujuan dari analisis ini adalah menentukan probabilitas kecelakaan parah dengan melakukan skenario kegagalan sistem dalam proses pendinginan di reaktor. Sebagai obyek analisis adalah reaktor daya AP1000, karena jenis reaktor ini sedang banyak dibangun saat ini. Skenario dilakukan dengan mengasumsikan beberapa kombinasi kegagalan sistem yang termasuk dalam DiD level 2 dan 3. Kegagalan sistem kemudian dianalisis dengan menggunakan analisis pohon kegagalan berdasarkan perangkat lunak SAPHIRE ver. 6.76. Dari analisis didapatkan probabilitas gagal dari kelompok sistem DiD level 2 dan 3 pada AP1000 masih di bawah batas kriteria dari IAEA yaitu lebih kecil dari 10-2, serta probabilitas kecelakaan parah didapatkan sebesar 6,17 x 10-10. Berdasarkan analisis ini disimpulkan bahwa AP1000 mempunyai tingkat keselamatan yang cukup tinggi, karena melalui skenario kegagalan sistem didapatkan probabilitas kecelakaan parah yang sangat kecil."
JTRN 16:3 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
Pande Made Udiyani
"Atmosfer merupakan pathway penting pada perpindahan radionuklida yang lepas dari Pembangkit Listrik Tenaga Nuklir (PLTN) ke lingkungan dan manusia. Penerimaan dosis pada lingkungan dan manusia dipengaruhi oleh sourceterm dan kondisi tapak PLTN. Untuk mengetahui penerimaan dosis lingkungan untuk PLTN di Indonesia, maka diperlukan nilai koefisien dispersi untuk tapak potensial yang dipilih. Model perhitungan dalam penelitian ini menggunakan model yang diterapkan pada paket program pada modul ATMOS dan CONCERN dari PC-Cosyma yaitu model perhitungan segmented plume model. Perhitungan dilakukan untuk PLTN tipe PWR kapasitas 1000 MWe berbahan bakar UO2, postulasi kejadian untuk kecelakaan DBA, kondisi tapak kasar, untuk 6 tapak contoh tapak Semenanjung Muria, Pesisir Banten, dan tapak yang didominasi oleh stabilitas cuaca C,D,E, dan F. Koefisien dispersi dihitung untuk 8 kelompok nuklida produk fisi yang lepas dari PLTN yaitu: kelompok gas mulia, lantanida, logam mulia, halogen, logam alkali, tellurium, cerium, dan kelompok stronsium & barium. Perhitungan input menggunakan paket program ORIGEN-2 dan Arc View untuk penyiapan input perhitungan. Hasil pemetaan untuk parameter dispersi maksimum rerata diperoleh pada jarak radius 800 m dari sumber lepasan untuk nuklida dari kelompok logam mulia, logam alkali dan kelompok nuklida cerium. Parameter dispersi untuk Tapak Muria maksimum 1,53E-04 s/m3, Tapak Serang adalah 1,40E-03 s/m3, tapak dengan stabilitas C: 1,72E-04 s/m3, stabilitas D: 1,40E-04 s/m3, Stabilitas E: 1,07E-04 s/m3, dan tapak dengan stabilitas F : 2,14E-05 s/m3."
Jakarta: Badan Tenaga Nuklir Nasional, 2012
JTRN 14:2 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Werdi Putra Daeng Beta
"Energi nuklir telah dimanfaatkan di Indonesia untuk berbagai kegiatan. Pemanfaatan energi nuklir harus memperhatikan keamanan dan keselamatan masyarakat dan lingkungan. Dampak lingkungan dari operasi reaktor adalah risiko meningkatnya gross radioaktivitas lingkungan, risiko terlepasnya radionuklida ke lingkungan, risiko pemajanan radiasi pada para pekerja dan pada masyarakat sekitar. Semua risiko tersebut harus dikendalikan pada kondisi yang tidak membahayakan pekerja, masyarakat sekitar dan lingkungan. Oleh karena itu, untuk mengendalikan risiko-risiko tersebut diperlukan sistem peringatan dini.
Tujuan umum penelitian ini adalah untuk mengetahui sistem peringatan dini reaktor nuklir dalam menjamin keamanan dan keselamatan masyarakat dan lingkungan. Selain itu ada 3 tujuan khusus, yaitu: (1) Untuk mengetahui pengaruh parameter daya reaktor terhadap kemungkinan kejadian kedaruratan nuklir; (2) Untuk mengetahui pengaruh parameter pendingin primer terhadap kemungkinan kejadian kedaruratan nuklir; dan (3) Untuk mengetahui apakah sistem peringatan dini dapat mencegah pencemaran lingkungan disebabkan oleh kecelakaan nuklir.
Adapun hipotesis claim penelitian ini adalah:
a) Terdapat hubungan yang positif antara parameter daya reaktor dengan kemungkinan terjadinya kedaruratan nuklir.
b) Terdapat hubungan yang positif antara parameter pendingin primer reaktor dengan kemungkinan terjadinya kedaruratan nuklir
c) Sistem peringatan dini reaktor nuklir bekerja secara efisien dan efektif.
d) Sistem peringatan dini reaktor dapat mencegah pencemaran lingkungan yang disebabkan oleh kecelakaan nuklir.
Jenis penelitian ini adalah penelitian eksperimental dengan pendekatan simulasi sistem reaktor nuklir. Metode penelitian dilakukan dengan pengamatan atau observasi data lapangan maupun simulasi di laboratorium dan menjalankan program perhitungan permodelan sebaran radionuklida di lingkungan. Sifat penelitian adalah kuantitatif, deskriptif analitik.
Teknik analisis data dilakukan dengan pengkajian keselamatan deterministik (deterministic safely assessment, atau disingkat DSA) berdasarkan spesifikasi teknis dan sistem dengan pengujian 2 variabel babas yang ditinjau dalam penelitian ini mempunyai nilai detenninistik terbesar yang mengakibatkan terjadi kegagalan sistem; serta dengan menerapkan dua skenario kecelakaan terparah yaitu penyumbatan kanal pendingin elemen bakar (Flow Blockage to Single Cooling Channels) dan pelelehan pelat elemen bakar (Local melting of a Few Fuel Plates) yang terjadi secara berurutan. Kemudian dilakukan perhitungan matematis dan pengkajian kecelakaan yang timbuI serta penanggulangan yang mungkin dapat dilakukan dengan berfokus pada penyelamatan manusia dan lingkungan; penetapan serta pengelolaan zona kedaruratan dan zona pendukungnya dalam rangka proteksi terhadap masyarakat dan lingkungan.
Hasil penelitian ini adalah semakin lama reaktor dioperasikan pada daya tinggi maka akan semakin besar peluang untuk terjadinya kedaruratan atau kecelakaan nuklir. Laju alir pendingin primer tetap konstan selama operasi daya tinggi dengan fluktuasi yang dapat diabaikan atau masih dalam batas aman.
Penelitian ini juga berhasil menghitung nilai dosis efektif kolektif pada simulasi kecelakaan pelelehan 6 elemen bakar reaktor (beyond design basic accident, BDBA) dengan asumsi-asumsi yang ketat diperoleh nilai 0,0288 man Sievert. Hal ini berarti bahwa setiap orang yang berada pada radius 0-5 km dari reaktor pada saat kecelakaan akan menerima dosis rata-rata 0,0288 Sy atau 28,8 mSv atau berarti hampir 6 kali dari dosis tahunan untuk masyarakat umum yaitu 5 mSvlth. Berdasarkan grafik standar efek probabilistik risiko kematian karena kanker pada dosis 28,8 mSv ini diketahui bahwa angka risiko kematian adalah sekitar 2 x 10-3 atau 2 kasus pada setiap 1000 penduduk setiap tahunnya atau 20 kasus per 10.000 penduduk per tahun (Camber, 1992). Artinya jika jumlah penduduk yang terpajan radiasi 176224 orang (sampai dengan radius 5 km) maka ada kebolehjadian sekitar 176 kasus kematian karena kanker setiap tahunnya. Sistem peringatan dini dalam hat ini adalah benteng pertama (first barrier) yang harus diperkuat dalam rangka pengelolaan lingkungan hidup guna mempertahankan kualitas lingkungan menuju pemanfaatan tenaga nuklir yang aman dan selamat.
Menurut rekomendasi IAEA jika skenario terburuk terjadi maka masyarakat disekitar reaktor pada radius 0.5 - 5 km harus diungsikan sementara (selama 2 hari - 1 minggu) untuk menghindari pemajanan radiasi (1AEA, 2003). Pembatasan atau pengendalian bahan makanan (food restriction zone) karena diduga tercemar oleh auen kecelakaan nuklir yang melalui rantai makanan (produk daging temak, produk susu, vegetasi atau sayuran dan buah-buahan) direkomendasikan dilakukan pada radius 5 - 50 km dari lokasi kecelakaan (IAEA, 2003).
Kesimpulan penelitian ini adalah:
1. Sistem Peringatan Dini adalah bagian yang tidak dapat dipisahkan dari Sistem Kesiapsiagaan Nuklir Nasional. Oleh karena itu, Sistem Peringatan Dini reaktor nuklir dapat bekerja menjamin keamanan dan keselamatan masyarakat dan lingkungan jika didukung oleh sarana dan prasarana pendukungnya termasuk manusia (sumberdaya manusia) sebagai pelaksana penanggulangan keadaan darurat.
2. Parameter laju alir pendingin primer konstan selama operasi daya tinggi, sehingga lebih kecil peluangnya bagi kemungkinan kecelakaan nuklir. Pada kondisi kecelakaan, laju alir pendingin primer menurun hingga melampaui batas aman.
3. Daya reaktor lebih peka bagi kemungkinan kecelakaan nuklir. Semakin lama reaktor dioperasikan pada daya tinggi maka semakin besar peluang untuk terjadinya kedaruratan nuklir.
4. Efektivitas dan efisiensi sistem peringatan dini bergantung pada skenario yang ada dan tim-tim penanggulangan kedaruratan dalam mengurangi risiko dampak yang timbul, mencegah eskalasi tingkat kecelakaan yang tidak diinginkan serta mencegah penyebaran dampak pencemaran dan kerusakan lingkungan karena kecelakaan nuklir.
Berdasarkan kendala dan keterbatasan penelitian dan pembahasan maka dapat dikemukakan saran sebagai berikut:
1. Mengingat belum ada data baik dalam laporan keselamatan reaktor maupun dokumen-dokumen lainnya maka sebaiknya kecelakaan BDBA dimasukkan ke dalam dokumen keselamatan agar dapat diantisipasi secara dini penanggulangannya.
2. Efektivitas dan efisiensi sistem peringatan dini sebaiknya diukur lebih hati-hati dan dilaksanakan dengan cara latihan penanggulangan kedaruratan secara rutin dengan melibatkan instansi atau lembaga terkait dan mengevaluasinya dengan seksama.
3. Perlu dilaksanakan studi parameter-parameter lainnya selain parameter yang telah diteliti dalam penelitian ini untuk mengetahui untuk kerja sistem peringatan dini secara menyeluruh.
4. Untuk penelitian selanjutnya, perlu dilakukan validasi atau verifikasi model dan studi evaluasi pada rasio percabangan (branching ratio) pemajanan radioaktif ke lingkungan dan bagaimana kerugian ekonomi jika sistem peringatan dini tidak berfungsi dengan balk.
5. Perlu ada sosialisasi tentang penerapan sistem peringatan dini dan potensi bahaya kecelakaan reaktor nuklir kepada masyarakat agar mereka tetap waspada dan bersiap siaga jika potensi bahaya tersebut berkembang dan benar-benar terjadi. Sosialisasi dapat dilaksanakan dengan penyuluhan masyarakat tentang nuklir serta aspek keselamatan masyarakat dan lingkungan; penyebaran brosur-brosur tentang keselamatan nuklir, kedaruratan nuklir dan menyelenggarakan latihan-latihan kedaruratan nuklir yang melibatkan peranserta masyarakat. Sosialisasi ini harus dilaksanakan oleh BATAN, BAPETEN, PEMDA setempat, Badan Koordinasi Penanggulangan Bencana dan Pengungsi (BAKORNAS PBP), Kepolisian, dan instansi terkait lainnya.

Nuclear energy has been utilized for much kind of activities in Indonesia, included nuclear reactor operation. Environmental impacts of its operation are increasing of gross environmental radioactivity, radionuclide release to the environment, and radiation exposure risks to workers and public. All of those risks should be controlled and monitored properly to ensure security and safety of the public and environment. To control and monitor of that risks, early warning system is needed.
General purpose of this research is to recognize the role of early warning system in ensuring security and safety of the public and environment. There are three specific purposes of research, namely: (1) to recognize power reactor parameter influence to probability of nuclear emergency; (2) to recognize influence of primary cooling system parameter to probability of nuclear emergency; and (3) to recognize whether early warning system is able to prevent environmental pollution caused by nuclear accident.
Hypothesis of the research are:
a) There is a positive relationship between power reactor parameter and probability of nuclear emergency;
b) There is a positive relationship between primary cooling system parameter and probability of nuclear emergency;
c) Early warning system works effectively and efficiently.
d) Early warning system of nuclear reactor can prevent environmental pollution caused by nuclear accident.
The type of the research is experimental research laboratory scale, with nuclear reactor simulation system approach. Research methods are observation field data then laboratory simulation and running computer modeling calculation program of radionuclide distribution and release to the environment. The nature of this research are quantitative and analitical descriptive.
Data analitical technique is deterministic safety assessment based on technical specification of the system by testing two independent variables reviewed have big deterministic values which cause system failed. By applying two scenarios of fatal accidents, namely Flow Blockage to Single Cooling Channels and Local melting of a Few Fuel Plates sequentially. Then, mathematical calculation, accident assessment and its anticipation have to be done by focused on saving people and environment; emergency and supporting zones establishment and management in purpose of public and environmental protection. Research results are the longer reactor operation in high power, the bigger probability of nuclear emergency would be happened. In the history of nuclear accident, namely Chernobyl accident, Uni Sovyet, was caused by graphite moderation failure then fuel temperature increased dramatically to initiate power transient leads to core damaged and fuel elements melt down and then widespread of contamination of radionuclide substances to the environment. In this experiment, flow rate of coolant in primay system was constant during high power operation with slightly fluctuation in safety margin, except when accident happened.
This research was successful to calculate collective effective dose of radiation in accident simulation of six fuel elements meltdown (BDBA) with stringent assumptions. Collective effective dose is 0,0288 man Sievert, meaning, everyone within radius of 0-5 km receives average radiation dose of 0,0288 Sv or 28,8 mSv. This means almost six times of yearly radiation dose of the public (5 mSvlyear). Based on standard graph (Cember, 1992) of probabilistic death of cancer at dose of 28,8 mSv is 2 x 10-3 or 2 cases per 1000 population per year. It means that there are more than 176 cases per 176224 people (within 0-5 km radius of accident) will die every year. Early Warning System is the first barrier that should be strengthened in purpose of environmental management for maintaining quality of environment on safe and secure utilization of nuclear energy.
According to IAEA's (International Atomic Energy Agency) recommendation, if worse scenario of accident happened, people within radius of 0.5 - 5 km of accident location should be temporary sheltered or evacuated ( 2 days - 1 week) to avoid radiation exposure (IAEA, 2003). While food restriction zone should be applied, within radius 5 - 50 km from the location (IAEA, 2003).
Based on research results and discussion, it can be concluded as follows:
1. Early Warning System is an integrated part of National Nuclear Emergency Preparedness System. So that, it would be working to ensure security and safety of the public and environment if and only if it is supported by strong management and infrastructures, manpower included as emergency response teams to relieve the situation.
2. Reactor power is more sensitive toward probability of nuclear emergency. So, the longer reactor operated in high power, the bigger probability of nuclear emergency would be happened.
3. Primary coolant flow rate is constant during high power operation, so it has smaller probability of nuclear emergency than the power parameter itself. While in accident, the primary coolant flow rate is dropped exceeding safety margin.
4. Effectively and efficiency of Early Warning System are depending upon applied emergency scenario and alertness of the team personnel to reduce accident's risk and impact, to prevent escalation of the accident and to prevent propagation of environmental pollution and damage because of nuclear accident.
Based on constraints and limitations of the research and the discussion, it can be given some suggestions as follows:
1. Because there is no BDBA data available in safety analysis report and other documents, it would be a wise step to include BDBA accident analysis in the documents. So that people are more prepared in early anticipating the accident if it actually happens. This is to be discussed by BATAN and BAPETEN.
2. Effectively and efficiency of early warning system should be judged cautiously and to be done by emergency response exercises regularly, and to involve other institutions and to evaluate it carefully.
3. It needs to be done the study of other parameters to recognize total performance early warning system.
4. It needs to be done model verification and study of branching ratio of radioactivity exposure to the environment and economic loss identification if early warning system does not function properly.
5. There should be socializations of early warning system application and potential danger of nuclear accident to the public. This is to ensure that the people alert and prepared of the actual danger. Socialization can be done by public counseling of nuclear and its safety aspects; dissemination of information via nuclear safety and emergency brochures; and to arrange nuclear emergency exercises with public involvement. These activities have to be done by BATAN, BAPETEN, local governments, BAKORNAS PBP, Police Department, and other institutions.
"
Jakarta: Program Pascasarjana Universitas Indonesia, 2005
T15213
UI - Tesis Membership  Universitas Indonesia Library
cover
Putera Anindita
"Dalam skripsi ini dilakukan pemodelan dan simulasi reaktor unggun tetap non-isotemal, non-adibalik untuk reaksi reformasi uap air dengan model heterogen dua dimensi (arah aksial dan radial) dengan mempertimbangkan faktor-faktor hidrodinamika yang ada pada reaktor juga perpindahan massa dan energi antar fasa (fasa ruah dan fasa partikel katalis), serta reaksi pennukaan. Mekanisme reaksi mengacu pada korelasi kinetika yang dikemukakan oleh Akers dan Camp. Model yang telah dikembangkan dibagi dalam dua sistem, yaitu skala reaktor dan skala pelet katalis. Penyelesaian persamaan skala partikel katalis dilakukan dengan metode kolokasi ortogonal enam titik. Sedangkan persamaan-persamaan diferensial parsial orde dua skala reaktor diselesalkan dcngan menggunakan metode beda hingga (finite difference) dengan formula central finite difference unluk penyelesaian arah radial, dan backward finite difference untuk arah aksial.
Dari hasil simulasi diperoleh bahwa unluk reaksi reformasi uap air, kenaikan temperatur Fluida masuk reaktor dari 673 K menjadi 823 K akan menaikkan harga konversi 10,8 % dari harga awal. Sebaliknya kenaikan tekanan fluida masuk reaktor dari 26 bar menjadi 32 bar akan menurunkan konversi sebesar 4,2 %. Jika dihubungkan dengan dimensi reaklor, maka pada harga konversi yang kecil, kenaikan harga yield yang besar hanya membutuhkan pertambahan volume reaktor yang kecil. Sebaliknya pada harga konversi yang besar, maka kenaikan harga konvcrsi yang kecil akan membutuhkan pcrtambahan volume reaktor yang besar. Dengan mengubah mol CH4 umpan maka pertambahan jumlah rasio umpan H2OCH4 dari 2 hingga 4 akan mengubah konvcrsi CH4 dari 0,634 menjadi 0,713. Perubahan ukuran diameter kalalis dari 0,002 m menjadi 0,02 m akan menurunkan konversi total sebesar 57,3 % dari konversi mula-mula."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49169
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrie Hariyanto
"Makalah ini membahas tentang pemodelan dan simulasi reaktor unggun tetap (fixed bed reacror) heterogen nonisotemlal nonadiabatik dua dimensi pada keadaan tunak (steady srare). Model heterogen ini membedakan kedua fasa yang terlibat yaitu fasa gas dan fasa padatan, untuk masing-masing pada skala reaktor dai! skala partikel katalis. Pola aliran fasa gas di skala reaktor dimodelkan dengan menggunakan konsep dispersi aksial dan radial. Untuk skala partikel diperhitungkan faletor difusi dengan menggunakan pendekatan difusi efektif, dimana bersama-sama dengan suku reaksi membentuk model untuk skala partikel katalis. Reaksi yang dipilih sebagai contoh reaksi adalah reaksi reformasi kukus (steam rdorming) dengan kinetika yang dikembangkan oleh Froment dan Xu. Data- data hasil pengembangan Froment dan Xu tersebut digunakan sebagai data validasi model.
Penyelesaian skala realctor untuk arah aksial dan radial dilakukan masing-masing dengan menggunakan metode kolokasi ortogonal delapan titik seperti yang dikembangkan oleh Finlayson. Persamaan aljabar dalam bentuk matriks yang diperoleh kemudian diselesaikan dengan menggunakan metode Newton-Raphson. Unruk skala partikel katalis juga digunakan metode kolokasi ortogonal delapan titik untuk geometri sferis. Persamaan-persamaan skala reaktor dan skala partikel tersebut diselesaikan secara serentak (simultan) sampai tingkat konvergensi yang diinginkan.
Dari hasil simulasi, reaktor unggun tetap dengan kinetika Froment dan Xu dapat dimodelkan dengan baik melalui model heterogen dua dimensi tersebut. Hasil yang didapatkan berupa profil konsentrasi dan temperatur di skala partikel dan skala reakton Variasi berbagai parameter dilakukan untuk mengetahui perilaku model tersebut pada berbagai kondisi.
Hasil simulasi menunjukkan bahwa baik konversi CH4 maupun H20 meningkat dengan naiknya temperatur umpan sedangkan peningkatan tekanan umpan menyebabkan konversi keduanya menurun. Hasil simulasi juga menunjukkan bahwa meningkatnya rasio umpan H2O/CH4 menyebabkan konversi CH4 meningkat sedangkan konversi H20 menurun."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49168
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Panas gamma merupakan faktor yang sangat diperlukan untuk analisis keselamatan pada setiap fasilitas eksperimen yang akan dilakukan di teras reaktor nuklir. Panas gamma merupakan sumber panas internal yang harus dihitung dengan tepat, karena berkaitan dengan masalah keselamatan. Nilai panas gamma sangat bergantung pada karakteristik teras reaktor secara keseluruhan, sehingga setiap desain teras baru harus dilengkapi dengan penentuan nilai distribusi panas gammanya. Reaktor Riset Inovatif (RRI) merupakan reaktor riset desain baru yang harus dilengkapi dengan data keselamatannya, termasuk dalam hal ini nilai dan distribusi panas gammanya. Untuk keperluan tersebut, telah dilakukan perhitungan dan analisis distribusi panas gamma teras dan fasilitas iradiasi refletortor RRI dengan menggunakan program Gamset yang telah dimodifikasi dan divalidasi untuk model teras RRI. Diperoleh hasil bahwa di pusat teras reaktor memiliki nilai panas gamma yang cukup tinggi (11,75 W/g), jauh lebih besar dari reaktor RSG-GAS Akan tetapi penempatan semua fasilitas iradiasi di reflektor menunjukkan bahwa desain RRI jauh lebih aman untuk iradiasi dibanding dengan di RSG-GAS, karena memiliki panas gamma di reflektor yang sangat rendah. Disimpulkan bahwa berdasarkan nilai panas gamma di reflektor yang sangat rendah, desain teras reaktor RRI lebih aman untuk penggunaan berbagai jenis iradiasi."
JTRN 16:3 (2014)
Artikel Jurnal  Universitas Indonesia Library
cover
"AP1000 adalah reaktor daya PWR maju dengan daya listrik 1154 MW yang didesain berdasarkan kinerja teruji dari desain PWR lain oleh Westinghouse. Untuk mempersiapkan peran Pusat Teknologi Reaktor dan Keselamatan Nuklir sebagai suatu Technical Support Organization (TSO) dalam hal verifikasi keselamatan, telah dilakukan kegiatan verifikasi keselamatan untuk AP1000 yang dimulai dengan verifikasi kecelakaan kegagalan pendingin sekunder. Kegiatan dimulai dengan pemodelan fitur keselamatan teknis yaitu sistem pendinginan teras pasif yang terdiri dari sistem Passive Residual Heat Removal (PRHR), tangki core makeup tank (CMT), dan tangki In-containment Refueling Water Storage Tank (IRWST). Kecelakaan kegagalan pendingin sekunder yang dipilih adalah hilangnya aliran air umpan ke salah satu pembangkit uap yang disimulasikan menggunakan program perhitungan RELAP5/SCDAP/Mod3.4. Tujuan analisis adalah untuk memperoleh sekuensi perubahan parameter termohidraulika reaktor akibat kecelakaan dimana hasil analisis yang diperoleh divalidasi dan dibandingkan dengan hasil analisis menggunakan program perhitungan LOFTRAN di dalam dokumen desain keselamatan AP1000. Hasil verifikasi menunjukkan bahwa kejadian hilangnya suplai air umpan tidak berdampak pada kerusakan teras, sistem pendingin reaktor, maupun sistem sekunder. Penukar kalor PRHR telah terverifikasi kemampuannya dalam membuang kalor peluruhan teras setelah trip reaktor. Hasil validasi dengan dokumen pembanding menunjukkan kesesuaian pada sebagian besar parameter termohidraulika. Secara umum, model PWR maju yang dilengkapi dengan sistem pendinginan teras ciri pasif yang telah dikembangkan tetap selamat ketika terjadi kecelakaan kehilangan aliran pendingin sekunder."
Jakarta: Badan Tenaga Nuklir Nasional, 2012
JTRN 14:2 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Sembiring, Tagor M.
"Setelah kejadian Fukushima, penggunaan sistem keselamatan pasif menjadi persyaratan yang penting untuk PLTN. PLTN jenis PWR maju kelas 1000 yang didesain oleh Westinghouse, AP1000, memiliki fitur keselamatan pasif disamping sederhana dan modular. Sebelum memilih suatu PLTN, maka perlu dilakukan suatu evaluasi terhadap parameter desainnya. Salah satu parameter yang penting dalam keselamatan adalah kritikalitas teras. Permasalahan pokok dalam mengevaluasi parameter kritikalitas teras AP1000 tidak adanya data komposisi material SS304 dan H2O di daerah reflektor dan diameter penyerap SS304. Dengan demikian tujuan penelitian ini adalah mendapatkan model teras 3-dimensi AP1000 dan siap diaplikasikan dalam evaluasi parameter kritikalitas teras. Hasil perhitungan menunjukkan bahwa komposisi terbaik SS304 dan H2O di reflektor teras bagian atas dan bawah masing-masing 50 vol%, sedangkan diameter penyerap SS304 adalah 0,960 cm. Evaluasi konsentrasi boron kritis menunjukkan perbedaan yang signifikan dengan nilai desain. Meskipun penyebab utama dari perbedaan ini belum diketahui, akan tetapi dapat dibuktikan bahwa konsentrasi boron kritis sangat sensitif dengan densitas UO2. Untuk reaktivitas padam, reaktor AP1000 memiliki margin subkritikalitas teras yang besar untuk satu siklus operasi. Dengan demikian teras yang diusulkan dapat digunakan sebagai acuan untuk evaluasi parameter teras lainnya atau perangkat analitis lainnya dalam rangka mengevaluasi desain reaktor AP1000."
Jakarta: Badan Tenaga Nuklir Nasional, 2011
JTRN 13:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
"Pengganti Bahan bakar UO2, yang tergolong uranium pengkayaan rendah, adalah bahan bakar MOX yang mempunyai pengkayaan yang lebih tinggi. Bahan bakar MOX mempunyai kandungan plutonium dan nuklida dari golongan aktinida yang lebih tinggi dibandingkan bahan bakar UO2, yang akan menghasilkan karakteristik radionuklida yang berbeda untuk setiap sub-sistem reaktor daya. Analisis radionuklida untuk setiap sub-sistem keselamatan pada reaktor daya berbahan bakar MOX dilakukan untuk mengetahui karakteristik radionuklida khususnya plutonium dan aktinida yang akan menimbulkan dampak radiasi dari lepasan radionuklida tersebut. Analisis dilakukan dengan cara menghitung dan mengamati radionuklida untuk setiap sub-sistem keselamatan pada operasi normal dan kecelakaan (small LOCA, large LOCA, severe accident) untuk reaktor PWR berkapasitas 1000 MWe. Disimpulkan bahwa penggunaan bahan bakar MOX dapat menambah konsekuensi radiologis ke lingkungan dan masyarakat, terutama karena inventori yang lebih besar termasuk dari radionuklida transuranic dan dari golongan aktinida, antara lain: Pu-239, Am-241, Cm-242, Pu-240, Pu-241 dan Pu-242."
JTRN 13:2 (2011)
Artikel Jurnal  Universitas Indonesia Library
cover
"Desain teras Fixed Bed Nuclear Reactor (FBNR) yang modular memungkinkan pengendalian daya dapat dilakukan dengan mengatur ketinggian suspended core dan laju aliran massa pendingin. Tujuan penelitian ini adalah mempelajari perubahan daya termal teras sebagai akibat perubahan laju aliran massa pendingin yang masuk ke teras reaktor dan perubahan ketinggian suspended core serta mempelajari karakteristik keselamatan melekat yang dimiliki FBNR saat terjadi kegagalan pelepasan kalor (loss of heat sink). Keadaan neutronik teras dimodelkan pada kondisi tunak dengan menggunakan paket program Standard Reactor Analysis Code (SRAC) untuk memperoleh data fluks neutron, konstanta grup, fraksi neutron kasip, konstanta peluruhan prekursor neutron kasip, dan beberapa parameter teras penting lainnya. Selanjutnya data tersebut digunakan pada perhitungan transien sebagai syarat awal. Analisis transien dilakukan pada tiga kondisi, yaitu saat terjadi penurunan laju aliran massa pendingin, saat terjadi penurunan ketinggian suspended core, dan saat terjadi kegagalan sistem pelepasan kalor. Hasil yang diperoleh dari penelitian ini menunjukkan bahwa penurunan laju aliran massa pendingin sebesar 50%, dari kondisi normal, menyebabkan daya termal teras turun 28% dibanding daya sebelumnya. Penurunan ketinggian suspended core sebesar 30% dari ketinggian normal menyebabkan daya termal teras turun 17% dibanding daya sebelumnya. Sementara untuk kondisi kegagalan sistem pelepasan kalor, daya termal teras mengalami penurunan sebesar 76%. Dengan demikian, pengendalian daya pada FBNR dapat dilakukan dengan mengatur laju aliran massa pendingin dan ketinggian suspended core, serta keselamatan melekat yang handal pada kondisi kegagalan sistem pelepasan kalor."
JTRN 13:3 (2011)
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>