Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 14018 dokumen yang sesuai dengan query
cover
Widi Destrianda
"ABSTRAK
Meningkatnya kebutuhan mobilitas seiring perkembangan jaman, menyebabkan naiknya konsumsi minyak bumi sebagai bahan bakar dan emisi CO2 yang dikeluarkan kendaraan bermotor. Untuk itu diperlukan suatu langkah untuk mengatasi masalah tersebut, yaitu Bis Listrik Terpandu (Trolley Bus). Studi ini bertujuan untuk merancang jaringan listrik aliran atas Bis Listrik Terpandu sesuai dengan jalur khusus bus yang telah ada, yaitu jalur TransJakarta. Perancangan meliputi pemilihan sistem elektrifikasi, pemilihan level tegangan, konfigurasi sistem, penentuan jarak antar gardu listrik dan kapasitas gardu listrik, dan penentuan penggunaan gardu hubung. Penentuan aspek-aspek tersebut disesuaikan dengan kriteria susut tegangan maksimum 5%. Dari hasil perencanaan tersebut, didapatkan jaringan distribusi listrik untuk sistem Bis Listrik Terpandu, yaitu sistem arus searah dengan level tegangan 750 V, dengan konfigurasi desentralisasi, menggunakan 90 buah gardu dengan jarak minimum antar gardu 1,68 km dan jarak maksimum antar gardu 3,012 km, dengan kapasitas gardu 100-250 kVA, dan tidak memerlukan gardu hubung sebagai pengatur tegangan.

ABSTRAK
The increasing demand of mobility, causing the increasing of oil consumption as a fuel and CO2 emission issued by motor vehicle. Therefore, we need a solution to resolve the issue, Trolley Bus. This study aims to design an electric power overhead line network for Trolley Bus system according to TransJakarta route. The discussion covers the selection of electrification system, selection of voltage level, system configuration, determining the distance between Trolley Bus substation and Trolley Bus substation capacity, determining the use of junction substation. Determination of these aspects adapted to the criteria of maximum voltage drop which is 5%. From this planning, electric power distribution network that fit for Trolley Bus system is the system of 750 V direct current using decentralized configuration, using 90 substations with minimum distance between substation 1,68 km and maximum distance between substation 3,012 km with 100-250 kVA substation capacity, without the need to use junction substation as voltage regulator for system."
2016
S63647
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benni Mustafa
"Studi ini membahas tentang perencanaan motor listrik yang layak digunakan pada Bis Listrik Terpandu. Pembahasan mencakup pemilihan jenis motor yang digunakan, besar torsi, rpm, daya serta tegangan yang dibutuhkan untuk menggerakkan sebuah Bis Listrik Terpandu. Penentuan aspek-aspek tersebut disesuaikan dengan kriteria massa Bis yang digunakan 16 ton, massa penumpang maksimum 5,78 ton dan kecepatan maksimum adalah 50 km/jam. Dari perencanaan tersebut, didapat jenis motor listrik yang terbaik untuk Bis Listrik Terpandu adalah motor Brushless DC yang dapat menghasilkan torsi 1152,6 Nm dengan Daya 160 kW setara dengan 214,5 HP. Sehingga energi listrik yang digunakan Bis Listrik Terpandu lebih kecil dibanding energi dari BBG yang digunakan Transjakarta.

The focus of study is about the planning of the electric power distribution network fit for Trolley Bus system. The discussion includes the selection of the type of motor is used, the value of torque, the rpm, the power and voltage required to move a Trolley Bus. Determining these aspects adapted to mass of the Bus criteria used is 16 tons, 5.78 tons passenger mass, and maximum speeds 50 km / h. From these plans, obtained the best type of electric motor for the Trolley Bus is Brushless DC motors which can produce 1152,6 Nm of torque with Power 160 kW equivalent to 214,5 HP. So that the electrical energy used Trolley Bus smaller than the energy of the BBG used Transjakarta."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63673
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghany Heryana
"Efek rumah kaca adalah salah satu penyebab perubahan iklim dunia. Penggunaan kendaraan bermotor dengan bahan bakar fosil menjadi salah satu penyumbang polusi dan pemanasan global. Alasan lain mengapa ketergantungan akan bahan bakar minyak harus dikurangi adalah kecilnya cadangan minyak bumi Indonesia dibandingkan dengan negara OPEC lainnya. Cadangan tersebut pun kini cenderung terus menipis tiap tahunnya.Para peneliti berusaha mengantisipasi hal ini dengan mengembangkan kendaraan tenaga listrik yang mampu beroperasi tanpa menimbulkan polusi. Penerapan kendaraan listrik telah dimulai dengan adanya kereta listrik, trem, bis listrik, dan lain-lain. Kendaraan dengan rel mendapatkan pasokan listrik dari jala-jala listrik sepanjang rel, namun jenis kendaraan yang bergerak bebas tanpa rel memerlukan cara lain untuk mendapatkan pasokan listrik. Hasil riset secara sosial menyatakan bahwa pegembangan bis listrik adalah strategis untuk Indonesia.Kendaraan listrik dengan penyimpan daya battery memiliki keunggulan dalam area jelajahnya jika didukung dengan teknik pengisian ulang yang baik. Pada kendaraan listrik, battery diisi ulang dengan proses charging atau ditukar dengan battery lainnya yang telah diisi ulang swapping . Jika kendaraan memiliki mobilitas tinggi, misalnya angkutan umum bis maka lama waktu pengisian sesingkat mungkin sangatlah penting. Semakin cepat process charging maka semakin menguntungkan.

The increase of greenhouse gasses effect is one of the causes of climate change. The use of vehicles with fossil fuels is one of the contributors to pollution and global warming. Another reason why dependence on it should be reduced is the lack of Indonesia 39 s petroleum reserves compared to other OPEC countries. The reserves are now likely to continue to deplete every year.Researchers are trying to anticipate this by developing electric vehicles capable of operating without pollution. Implementation of electric vehicles has begun with the electric train, tram, electric bus, and others. Vehicles with rails get electricity supplies from the grid along the tracks, but the type of freely moving vehicle without a rail requires another way to get electricity supplies. Electric vehicles with power storage battery have an advantage in the roaming area if supported by proper recharging techniques. In electric vehicles, the battery is recharged by the direct charging process or swapped with other one swapping . If the vehicle has high mobility, such as public transport bus then the shortest charging time may be very important. This study and trial aims to determine the pattern of power consumption on the electric bus and the reliability of the system. Thus the data obtained for further study related to the way of recharging the battery and improvement bus work system."
Universitas Indonesia, 2017
T48476
UI - Tesis Membership  Universitas Indonesia Library
cover
Dava Kamlasi
"Bus listrik adalah kendaraan umum yang beroperasi dengan menggunakan tenaga listrik sebagai sumber energi. Bus listrik memiliki alat yang dapat bekerja sama untuk memastikan kendaraan dapat beroperasi dengan baik. Salah satu alat tersebut adalah Power Distribution Unit atau disingkat PDU. Alat ini memiliki fungsi untuk memproteksi alat listrik didalam bus dan membagikan daya pada tiap-tiap komponen listrik supaya mendapatkan daya yang sesuai. Penelitian ini dilakukan untuk mengetahui bentuk bangun PDU yang cocok untuk bus listrik, menganalisis fungsi kerja PDU untuk bus listrik, dan menganalis komunikasi antara PDU dengan VCU.Metode penelitian yang dipakai terbagi atas beberapa proses dan dibantu beberapa aplikasi seperti Solidwork, Kicad 6.0, dan Arduino IDE.                

Electric bus is a public vehicle that operates using electric power as a power source. Electric bus has electric components that work together to ensure the vehicle can operate properly. One of that component is the Power Distribution Unit (PDU). This device functions to protect the electric component inside the bus and distribute power to each electrical component to receive the appropriate power. This research is conducted to determine the form of PDU building that is suitable for electric bus, and analyze communication between PDU and VCU. The research methodology consists of several processes and assisted by several applications such as Solidwork, Kicad 6.0, and Arduino IDE.  "
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Miftahul Haq
"Penelitian ini membahas tentang pemilihan rasio gigi pada bus listrik konversi menenggunakan simulasi Simulink MATLAB berdasarkan driving cycle Braunchweig dan profil kecepatan bus kampus UI. Simulasi yang dilakukan terdiri dari simulasi simulasi kemampuan menanjak, simulasi kemampuan kecepatan dan simulasi performa kendaraan. Hasil dari simulasi menunjukkan bahwa untuk referensi Braunchweig menggunakan dual-speed rasio gigi pertama dan ketiga dengan efisiensi rata-rata motor listrik 82,22% dan konsumsi daya baterai sebesar 13,9%. Sementara untuk referensi rute bus kampus UI menggunakan dual-speed rasio gigi kedua dan ketiga dengan efisiensi rata-rata motor listrik 81,3% dan konsumsi daya baterai sebesar 12,6%.

This research discuss about the selection of gear ratio combination for the electric convertion bus using simulation by Simulink MATLAB based on Braunchweig and UI bus driving cycle. The simulation is consisted of hill climbing test simulation, desired velocity test simulation, and perfromance simulation. The result shows that for the Braunchweig driving cycle using dual-speed of first and third gear with the electric motor?s average efficiency of 82.22% and battery power consumption of 13.9%. While the UI?s bus driving cycle using dual-speed of second and third gear with the electric motor?s average efficiency of 81.3% and battery power consumption of 12.6%.
"
Depok: Universitas Indonesia, 2015
S59429
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clarissa Stellavania
"Mengikuti perkembangan industri kendaraan listrik di Indonesia, PT Transportasi Jakarta (Transjakarta) telah menyediakan 52 unit bus listrik untuk beroperasi dengan suplai listrik yang disediakan oleh PLN seluruhnya. Sayangnya, 86,95% dari total produksi listrik di Indonesia pada tahun 2020 berasal dari bahan bakar fosil. Untuk mengatasi permasalahan emisi gas rumah kaca dan cadangan energi fosil yang menipis, Kementerian ESDM mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan pencapaian EBT sebesar 23% pada tahun 2025. Sayangnya, pemenuhan target tersebut masih cukup jauh dengan pemanfaatan energi surya sebagai PLTS di Indonesia masih sangat kecil, yaitu sekitar 0,2 GW dari potensi yang mencapai lebih dari 200 GW. Implementasi yang minim ini disebabkan oleh beberapa faktor seperti kebutuhan lahan dan kebutuhan modal. Salah satu solusi terhadap permasalahan ini adalah pemasangan PLTS pada kendaraan listrik. Hasil analisis teknis didukung oleh hasil perhitungan ekonomi dan analisis risiko dengan metode Monte Carlo menunjukkan bahwa pemasangan PLTS pada bus listrik Transjakarta dengan modul monocrystalline layak untuk dilaksanakan. Kelayakan investasi menghasilkan Net Present Value sebesar Rp54.777.292, Internal Rate of Return sebesar 13,02%, Payback Period sebesar 6,41 tahun, dan Profitability Index sebesar 1,47 untuk menghasilkan daya 12,275 MWh/tahun dengan derajat keyakinan parameter NPV, IRR, PBP, dan PI > 50%.

As Indonesia's electric vehicle market grew, PT Transportasi Jakarta (Transjakarta) provided 52 electric bus units that run solely on PLN power. However, fossil fuels contributed to 86.95% of Indonesia's entire electricity output in 2020. In fact, 2.3% of the world's total greenhouse gas emissions came from Indonesia, where 1.24 gigatons of carbon dioxide were emitted. The Ministry of Energy and Mineral Resources proposed the National Energy Policy (KEN), which aims to reach a 23% share of renewable energy by 2025, in order to address the issues of greenhouse gas emissions and the dwindling amount of fossil fuel reserves. Unfortunately, this objective is still a long way off. One example is the relatively low adoption of solar energy as solar power plant in Indonesia, which currently at about 0.2 GW out of a potential of over 200 GW. There are a few reasons for this minimum implementation, including capital and land requirements. A potential solution to solve this issue is to install rooftop solar power systems on top of electric buses. The results of the technical analysis supported by the results of economic calculations and risk analysis with the Monte Carlo method show that the installation of PLTS on Transjakarta electric buses with monocrystalline modules is feasible to implement. The investment feasibility resulted in a Net Present Value of IDR 54,777,292, an Internal Rate of Return of 13.02%, a Payback Period of 6.41 years, and a Profitability Index of 1.47 to produce 12.275 MWh/year of power with a degree of confidence in the NPV, IRR, PBP, and PI parameters > 50%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Clarissa Stellavania
"Mengikuti perkembangan industri kendaraan listrik di Indonesia, PT Transportasi Jakarta (Transjakarta) telah menyediakan 52 unit bus listrik untuk beroperasi dengan suplai listrik yang disediakan oleh PLN seluruhnya. Sayangnya, 86,95% dari total produksi listrik di Indonesia pada tahun 2020 berasal dari bahan bakar fosil. Untuk mengatasi permasalahan emisi gas rumah kaca dan cadangan energi fosil yang menipis, Kementerian ESDM mencanangkan Kebijakan Energi Nasional (KEN) yang menargetkan pencapaian EBT sebesar 23% pada tahun 2025. Sayangnya, pemenuhan target tersebut masih cukup jauh dengan pemanfaatan energi surya sebagai PLTS di Indonesia masih sangat kecil, yaitu sekitar 0,2 GW dari potensi yang mencapai lebih dari 200 GW. Implementasi yang minim ini disebabkan oleh beberapa faktor seperti kebutuhan lahan dan kebutuhan modal. Salah satu solusi terhadap permasalahan ini adalah pemasangan PLTS pada kendaraan listrik. Hasil analisis teknis didukung oleh hasil perhitungan ekonomi dan analisis risiko dengan metode Monte Carlo menunjukkan bahwa pemasangan PLTS pada bus listrik Transjakarta dengan modul monocrystalline layak untuk dilaksanakan. Kelayakan investasi menghasilkan Net Present Value sebesar Rp54.777.292, Internal Rate of Return sebesar 13,02%, Payback Period sebesar 6,41 tahun, dan Profitability Index sebesar 1,47 untuk menghasilkan daya 12,275 MWh/tahun dengan derajat keyakinan parameter NPV, IRR, PBP, dan PI > 50%.

As Indonesia's electric vehicle market grew, PT Transportasi Jakarta (Transjakarta) provided 52 electric bus units that run solely on PLN power. However, fossil fuels contributed to 86.95% of Indonesia's entire electricity output in 2020. In fact, 2.3% of the world's total greenhouse gas emissions came from Indonesia, where 1.24 gigatons of carbon dioxide were emitted. The Ministry of Energy and Mineral Resources proposed the National Energy Policy (KEN), which aims to reach a 23% share of renewable energy by 2025, in order to address the issues of greenhouse gas emissions and the dwindling amount of fossil fuel reserves. Unfortunately, this objective is still a long way off. One example is the relatively low adoption of solar energy as solar power plant in Indonesia, which currently at about 0.2 GW out of a potential of over 200 GW. There are a few reasons for this minimum implementation, including capital and land requirements. A potential solution to solve this issue is to install rooftop solar power systems on top of electric buses. The results of the technical analysis supported by the results of economic calculations and risk analysis with the Monte Carlo method show that the installation of PLTS on Transjakarta electric buses with monocrystalline modules is feasible to implement. The investment feasibility resulted in a Net Present Value of IDR 54,777,292, an Internal Rate of Return of 13.02%, a Payback Period of 6.41 years, and a Profitability Index of 1.47 to produce 12.275 MWh/year of power with a degree of confidence in the NPV, IRR, PBP, and PI parameters > 50%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadly Achmad Alfikri
"Bis berbahan bakar listrik diharapkan mampu untuk menggantikan bis berbahan bakar fosil dimasa depan. Salah satu jenis motor penggerak bis listrik yang banyak digunakan adalah motor BLDC. Dengan demikian penelitian diperlukan untuk merancang motor BLDC yang optimal untuk bis listrik. Oleh karena itu, dirancang suatu desain motor BLDC menggunakan metode simulasi dengan perangkat lunak berbasis finite element analysis. Dalam skripsi ini, dirancang sebuah motor BLDC 3 fasa. Jumlah slot dan kutub yang digunakan adalah 60 slot dan 16 kutub. Rancangan desain motor BLDC digambar di perangkat lunak SolidWorks dan disimulasikan di perangkat lunak Infolytica Motorsolve. Perubahan yang dilakukan adalah variasi lebar magnet, variasi posisi magnet terhadap diameter luar rotor, variasi lebar tooth, variasi pemberian lubang dan variasi ukuran stator dan ukuran rotor.
Analisis yang dilakukan pada setiap desain adalah analisa torsi dari motor. Hasil dari penambahan lebar magnet akan menaikan torsi. Torsi terbesar terjadi pada lebar magnet desain E yang memiliki torsi lebih besar 2,818 dari desain dasar A. Hasil dari penambahan jarak antara magnet dengan diameter luar motor akan menurunkan torsi. Torsi terbesar terjadi pada posisi magnet desain AA yang memiliki torsi lebih besar 8,058 dari desain dasar CC. Hasil dari penambahan lebar tooth akan menaikan torsi. Torsi terbesar terjadi pada lebar tooth desain EEE yang memiliki torsi lebih besar 4,376 dari desain dasar AAA.
Hasil dari pemberian lubang pada motor tidak terlalu berpengaruh pada torsi tapi lebih baik dilakukan untuk memudahkan proses fabrikasi. Torsi pada desain tanpa lubang memiliki torsi lebih besar 0,46 dari desain berlubang. Hasil dari penambahan ukuran rotor dan pengurangan ukuran stator akan menaikan torsi. Torsi pada desain ukuran stator kecil dan rotor besar memiliki torsi lebih besar 9,016 dari desain ukuran stator besar dan rotor kecil.

Electric buses are expected to be able to replace future fossil fueled buses. One type of electric bus motor that is widely used is the BLDC motor. Thus, research is needed to design an optimal BLDC motor for electric buses. Therefore, a BLDC motor is designed using a simulation method with finite element analysis based software. In this thesis, a 3 phase BLDC motor is designed. The number of slots and poles used is 60 slots and 16 poles. The design of the BLDC motor design was drawn on SolidWorks software and simulated in Infolytica Motorsolve software. Changes made are variations in the width of the magnet, variations in the position of the magnet to the outer diameter of the rotor, variations in tooth width, variations in hole delivery and variations in stator size and rotor size.
The analysis performed on each design is the analysis of torque from the motor. The result of increasing the width of the magnet will increase torque. The largest torque occurs in the magnet width of the E design which has a greater torque of 2.818 than the basic design A. The result of increasing the distance between the magnet and the outer diameter of the motor decreases torque. The largest torque occurs in the AA design magnet position which has a greater torque of 8.058 than the basic design CC.
The result of increasing tooth width will increase torque. The largest torque occurs in the EEE tooth width design which has a greater torque of 4.376 than the basic design AAA. The result of giving a hole in the motor is not too influential on torque but it is better done to facilitate the fabrication process. Torque in the design without holes has greater torque of 0.46 than the design with holes. The result of increasing rotor size and reducing stator size will increase torque. Torque in the small stator size and large rotor designs has a torque greater than 9.016 of the large stator and small rotor size designs.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hawraul Insiyyah Sembodo Putri
"Penelitian ini bertujuan untuk menganalisis penerapan konsep Open Innovation dalam kolaborasi Penta Helix pada proyek bus listrik di Fakultas Teknik Universitas Indonesia. Model Penta Helix melibatkan lima aktor utama: Akademisi, Industri, Pemerintah, Media Massa, dan Masyarakat. Penelitian ini menggunakan pendekatan studi kasus yang berfokus pada Fakultas Teknik Universitas Indonesia sebagai objek penelitian. Data dikumpulkan melalui wawancara mendalam, studi literatur, dan analisis dokumen terkait. Hasil penelitian menunjukkan bahwa kolaborasi antara universitas dan industri berhasil mengembangkan teknologi bus listrik yang inovatif dan berkelanjutan, sesuai dengan standar pemerintah. Akademisi berperan dalam penelitian dan pengembangan teknologi, industri mendukung dengan sumber daya finansial dan akses ke pasar, pemerintah menyediakan regulasi dan dukungan kebijakan, media massa berperan dalam diseminasi informasi, dan masyarakat memberikan umpan balik serta adopsi teknologi. Tantangan utama yang dihadapi dalam kolaborasi ini meliputi koordinasi antar pemangku kepentingan dan penyelarasan tujuan masing-masing aktor. Selain itu, adanya perbedaan budaya organisasi dan ekspektasi antara universitas dan industri juga menjadi hambatan. Meskipun demikian, penelitian ini menemukan bahwa sinergi yang efektif antara kelima aktor dapat meningkatkan kecepatan inovasi dan memberikan manfaat ekonomi serta sosial yang signifikan.

This research aims to analyze the application of the Open Innovation concept in the Penta Helix collaboration on the electric bus project at the Faculty of Engineering, Universitas Indonesia. The Penta Helix model involves five main actors: Academia, Industry, Government, Mass Media, and Society. This research employs a case study approach focusing on the Faculty of Engineering, Universitas Indonesia as the research object. Data was collected through in-depth interviews, literature reviews, and document analysis. The results indicate that the collaboration between the university and industry successfully developed an innovative and sustainable electric bus technology, complying with government standards. Academia plays a role in research and technology development, industry supports with financial resources and market access, government provides regulations and policy support, mass media disseminates information, and society offers feedback and technology adoption. The main challenges faced in this collaboration include stakeholder coordination and aligning the objectives of each actor. Additionally, cultural differences and expectations between the university and industry also pose barriers. Nevertheless, this research finds that effective synergy among the five actors can accelerate innovation and provide significant economic and social benefits. This research is expected to contribute to the development of university-industry collaboration in Indonesia and enrich the literature on Open Innovation."
Depok: Fakultas Ilmu Administrasi Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sunarwoko
"Jakarta dihadapkan pada masalah transportasi yang berkaitan dengan kemacetan, jumlah kendaraan pribadi yang terus bertambah, polusi udara yang semakin parah, dampak negatif polusi udara bagi kesehatan, kerugian finansial dan waktu akibat kemacetan, serta pemborosan bahan bakar. Salah satu alternatif dalam menyelesaikan masalah kemacetan sekaligus polusi perkotaan adalah dengan elektrifikasi armada bus pada sistem Bus Rapid Transit (BRT) Transjakarta dengan mengganti armada bus existing yaitu bus diesel dan CNG dengan bus listrik. Keuntungan menggunakan bus listrik dibandingkan dengan mesin konvensional atau Internal Combustion Engine antara lain tidak bising, lebih efisien, bisa mengurangi pemakaian bahan bakar minyak sehingga secara langsung mengurangi emisi Gas Rumah Kaca. Studi ini bertujuan untuk menganalisis kelayakan ekonomi penerapan bus listrik pada sistem BRT Transjakarta berdasarkan profil rute bus yaitu kecepatan, elevasi jalan, jarak dan waktu perjalanan untuk mendapatkan estimasi konsumsi energi dengan model matematis. Data profil rute diperoleh dengan memanfaatkan sensor Global Positioning System (GPS) pada smartphone dan software GPS logger berbasis android. Penilaian kelayakan investasi menggunakan perhitungan Total Cost of Ownership (TCO), Net Present Value (NPV), Internal Rate of Return (IRR) dan Payback Period. Hasil analisis berdasarkan asumsi siklus hidup 15 tahun, MARR 10% dan bunga 6% menunjukkan bahwa bus listrik masih memenuhi kelayakan ekonomi dengan NPV 292 milyar rupiah, IRR 14% dan payback period selama 8 tahun.

Jakarta is facing transportation problems related to congestion, the increasing number of private vehicles, severe air pollution, negative impact of air pollution, waste of fuel, financial losses and time because of congestion. One alternative to solve the problem of congestion, as well as urban pollution, is by electrification of the bus fleet on the TransJakarta Bus Rapid Transit (BRT) system by replacing the existing fleet of buses i.e. diesel buses and CNG with electric buses. The advantage of using an electric bus compared to a conventional engine or Internal Combustion Engine, are, less noise, more efficient, can reduce the use of fuel oil so that it directly reduces greenhouse gas emissions. This study aims to analyze the economic feasibility of applying electric buses on the TransJakarta BRT system based on bus route profiles, namely speed, road elevation, distance, and travel time to obtain estimations of energy consumption with a mathematical model. Route profile data is obtained by utilizing the Global Positioning System (GPS) sensors on smartphones and Android-based GPS logger software. The assessment of investment feasibility uses the calculation of Total Cost of Ownership (TCO), Net Present Value (NPV), Internal Rate of Return (IRR) and Payback Period. The analysis results are based on the assumption of a 15-year life cycle, 10% MARR and 6% interest indicating that the electric bus still meets economic feasibility with NPV 292 billion rupiahs, 14% IRR and an 8-year payback period."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54153
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>