Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143850 dokumen yang sesuai dengan query
cover
Nurcahyo Adyota Prabhaswara
"ABSTRAK
Rasio elektrifikasi Indonesia hingga kini baru mencapai 81,5%. Angka tersebut masih jauh dari target rasio elektrifikasi 100% pada tahun 2020. Pada tahun 2013, rasio elektrifikasi tersebut mencakup 94% perkotaan dan 32% pedesaan. Selain listrik, masyarakat pedesaan membutuhkan energi untuk memasak. Hingga kini, kebutuhan tersebut masih dipenuhi dengan menggunakan kayu bakar. Ketidakrataan persebaran energi tersebut menimbulkan urgensi untuk melakukan pengadaan pembangkit energi mandiri di daerah pedesaan. Penelitian ini mengkaji pembangkitan listrik hibrid fotovoltaik dan biogas dari aspek teknis dan pendanaan mikro dengan studi kasus di daerah Nusa Tenggara Barat. Nusa Tenggara Barat dipilih karena rasio elektrifikasinya yang masih tergolong rendah, potensi pengembangan daerah, dan potensi energi terbarukan yang menjanjikan. Penelitian dilakukan dengan meninjau skenario teknis serta memvariasikan skenario pendanaan mikro. Penelitian ini dilakukan untuk mendapatkan skema pendanaan yang layak secara finansial, sehingga memungkinkan untuk pengembangan berkesinambungan pedesaan. Hasil penelitian menunjukkan bahwa permintaan energi RPZ untuk Skenario Dasar adalah 770,26 kWh/hari dengan suplai energi mencapai 1091,11 kWh/hari. Dari 16 skenario skema pembiayaan, skema yang layak secara finansial adalah SP-16 dengan NPV sebesar USD 4.133.050,33, IRR sebesar 10,04%, dan PBP selama 13 tahun. Sementara itu, Skenario Alternatif memiliki 3 skema pembiayaan yang layak secara finansial, yaitu SP-12, SP-13, dan SP-16 dengan IRR 9,42%, 11,96%, dan 15,21% secara berturut-turut.

ABSTRACT
Indonesia?s current electrification ratio is only 81,5%. The number indicates that Indonesia is still far from its electrification ratio target in 2020, which is 100%. On 2013, the electrification ratio consists of 94% municipal and 32% rural. Aside from electricity, rural area citizen also needs energy for cooking. Until now, that need is still being fulfilled by using firewood. This energy inequality rises the urgency to develop independent power plant in rural areas. This research will be focusing on mini grid photovoltaic and biogas hybrid power generation from both technical and microfinancing aspect in West Nusa Tenggara. West Nusa Tenggara is chosen because of its low electrification ratio, potential area development, and promising renewable energy potential. This research is done by exercising the technical scenarios and varying microfinancing scheme. This research aims to find the financially viable microfinancing scheme, thus creating sustainable rural development. The result shows that the RPZ energy demand for Basic Scenario is 770,26 kWh/day and the energy supply is up to 1.091,11 kWh/day. Of 16 microfinancing scenarios, the financially viable scheme is SP-16 with NPV value of USD 4.133.050,33, IRR value of 10,04%, and PBP of 13 years. Meanwhile, Alternative Scenario has 3 viable microfinancing scheme, which are SP-12, SP-13, and SP-16 with IRR value of 9,42%, 11,96%, and 15,21% respectively."
2016
S63741
UI - Skripsi Membership  Universitas Indonesia Library
cover
Didit Waskito
"Penelitian ini dilakukan untuk mengetahui pemanfaatan potensi kotoran ternak sapi perah di Kawasan Usaha Peternakan Sapi sebagai bahan baku biogas, menentukan teknologi konversi, menghitung kapasitas energi listrik dari Pembangkit listrik tenaga Biogas yang dapat dibangkitkan dan mengkaji nilai pengurangan Satuan jumlah emisi CO2 yang bisa diturunkan.
Berdasarkan potensi harian Kotoran ternak sapi di Kawasan Usaha Peternakan Sapi Perah yang dimanfaatkan sebagai bahan baku biogas dilakukan analisis perhitungan teknis maupun ekonomis dari pembangkit listrik tenaga biogas yang akan diimplementasikan. Hasil tersebut akan diuji sensitivitas untuk tingkat pengembalian dan jangka waktu pengembalian modal investasi terhadap dampak kenaikan harga lahan, tarif listrik dan Biaya operasi dan pemeliharaan pembangkit biogas.

This research was conducted to determine the potential utilization of dairy cow manure in the Area of Business Cattle Farming as a raw material for biogas, determine conversion technology, to calculate the capacity of electrical energy from power plants Biogas can be generated and assess the value of the amount of CO2 emission reduction units which can be lowered.
Based on the daily potential of cattle dung in Dairy Cattle Farming Business Area which is used as raw material for biogas to analyze technical and economical calculation of biogas power plant that will be implemented. These results will be tested sensitivity to rate of return and payback period of investment to the impact of rising land prices, electricity tariff and cost of operation and maintenance of biogas plants.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29708
UI - Tesis Open  Universitas Indonesia Library
cover
Wisnu Wahyu Wibowo
"ABSTRAK
Rasio elektrifikasi di Indonesia masih belum mencapai 100%, ini menandakan masih banyak daerah di Indonesia tanpa akses listrik. Sebagai kunci utama dalam fungsinya sebagai penggerak di negara berkembang, listrik memiliki dampak yang signifikan terhadap pertumbuhan industri telekomunikasi. Dalam situasi seperti itu, sulit untuk menjamin keandalan jaringan telekomunikasi, khususnya, pasokan listrik untuk base transceiver station (BTS). Untuk mengatasi kekurangan ini, sumber energi terbarukan yang tersedia di wilayah tersebut harus bisa digunakan untuk mengoperasikan BTS. Studi ini mengusulkan penggunaan sistem hibrid fotovoltaik (PV) sebagai sumber daya untuk BTS di daerah terpencil di mana listrik dari PLN sebagai pemasok utama tidak tersedia. Hasilnya menunjukkan bahwa penggunaan sistem PV mampu memasok kebutuhan beban listrik BTS dan sangat layak dianalisis dari sisi finansial. Keluaran daya sistem PV yang dirancang dapat menghasilkan 1,16 kW, sementara beban BTS adalah 1,15 kW. Kami menemukan bahwa sistem hibrid fotovoltaik mampu menangani beban BTS. Dalam perspektif ekonomi, biaya investasi untuk pembangunan sistem PV jauh lebih terjangkau, mudah dipelihara dan dioperasikan.

ABSTRACT
The electrification ratio in Indonesia has not yet achieved 100%, meaning there are still many areas without electricity access. As a key driven country development, electricity has a significant impact to the growth of telecommunication industries. In such situations, it is therefore difficult to guarantee the reliability of the telecommunication network, in particular, the electricity supply for the base transceiver station (BTS). To overcome this shortage, locally available renewable energy sources can be a solution as a power supply for a BTS. This study proposes the use of the integrated photovoltaic (PV) hybrid system as a power sources for BTS in the remote and isolated areas that have not yet supply electricity. The results show that the use of PV hybrid system is capable of supplying the electrical load requirement of BTS and is very feasible in financial analysis. The designed PV system output can produce 1.16 kW, while BTS load is 1.15 kW. We found that the integrated PV system is capable of handling BTS load. In economic perspective, the investment cost to deploy PV system is affordable due to the advantage of PV system, which is easy to maintain and operate."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50069
UI - Tesis Membership  Universitas Indonesia Library
cover
Nadjib Aulawy
"Tesis ini meneliti POME (Palm Oil Mill Effluent) sebagai basis biogas untuk sumber energi listrik. Untuk mendapatkan biogas, POME diproses secara anaerobic digestion menggunakan digester. Berdasar kelebihan dan kelemahan yang ada dipilih digester tipe kolam anaerobic sebagai acuan pengembangan. Pengembangan dilakukan dengan merinci setiap tahapan proses. Model pembangkit listrik biogas dengan proses anaerobic digestion yang rinci dibangun menggunakan perangkat lunak SuperPro Designer 9.0. Hasil simulasi untuk pabrik kelapa sawit dengan kapasitas 30 ton tandan buah segar (TBS)/jam diperoleh biogas dengan perbandingan CH4 : CO2 sebesar 59,8 : 41,2. Sedangkan dari perhitungan analisis keekonomian menunjukkan bahwa pembangunan pembangkit listrik biogas berbasis POME layak namun belum terlalu menarik untuk investasi di bidang energi secara keekonomian.

This thesis examines POME (Palm Oil Mill Effluent) as a biogas basis for a source of electrical energy. The digester is using to processed POME with anaerobic digestion obtain biogas. Anaerobic pond digester is selected as a reference to develop based on the existing strengths and weaknesses of many anaerobic digester types. Development is done by detailing every stage of the process. The biogas power plant model with detailed anaerobic digestion process was built using SuperPro Designer 9.0 software. The simulation results for palm oil mill with a capacity of 30 tonnes of fresh fruit bunches (FFB)/h produced biogas with a ratio of CH4 : CO2 of 59.8 : 41.2. While the calculation of the economic analysis indicates that the construction of biogas power plants base on POME viable but not attractive for investment in the field of energy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43715
UI - Tesis Membership  Universitas Indonesia Library
cover
Errie Kusriadie
"Air limbah industri tapioka diketahui masih memiliki kandungan bahan organik yang masih cukup tinggi, sehingga sangat berpotensi menimbulkan pencemaran lingkungan apabila tidak ditangani secara baik. Padahal air limbah tersebut sangat potensial diolah menjadi bahan baku biogas untuk dikonversi menjadi energi listrik, melalui proses fermentasi anaerobik.
Penelitian ini dilakukan untuk menganalisis pemanfaatan potensi limbah cair tapioka untuk pembangkit listrik tenaga biogas, dengan menentukan teknologi konversi yang digunakan, menghitung kapasitas energi listrik yang dapat dibangkitkan, serta menganalisa kelayakan ekonomi penerapan teknologi konversi gas engine sebagai teknologi konversi pembangkit listrik tenaga biogas.
Berdasarkan hasil perhitungan dan analisis, potensi limbah cair tapioka dapat dimanfaatkan sebagai bahan baku biogas, dengan produksi metan yang dihasilkan sebesar 95.475 m3 per tahun, dengan penerapan teknologi konversi pembangkit menggunakan gas engine dapat memproduksi energi listrik sebesar 358.604,1 kWh/tahun, dengan net present value sebesar Rp. 833.220.569,-, IRR 19,2% dan payback period 8,7 tahun.

Tapioca industrial waste water is known to still contain organic material that is still quite high, so it is potentially cause environmental pollution if not handled properly. Whereas the very potential of wastewater processed into raw material for biogas is converted into electric power, through a process of anaerobic fermentation.
This research was conducted to analyze the utilization potential of tapioca liquid waste to biogas power plant, by specifying the conversion technology used, calculating the capacity of electrical energy that can be raised, as well as analyze the economic feasibility of the application of gas engine conversion technology as conversion technology is biogas power plant.
Based on the calculation and analysis, potential tapioca liquid waste can be used as raw material for biogas, methane generated by the production of 95 475 m3 per year, with the application of the conversion technology uses a gas engine generator to produce electrical energy by 358,604.1 kWh / year, with a net the present value of Rp. 833 220 569, -, IRR of 19.2% and a payback period of 8.7 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45341
UI - Tesis Membership  Universitas Indonesia Library
cover
Danang Jarot Sukoco
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2006
TA466
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Gillfran Samual
"Energi surya semakin dikenal sebagai sumber energi masa depan yang penting karena ketersediaannya yang melimpah dan sifatnya yang terbarukan. Namun, sifat energi surya yang intermiten dapat menyebabkan fluktuasi listrik yang dihasilkan, sehingga sulit menjamin pasokan listrik yang stabil dan andal. Salah satu solusi yang dapat diterapkan adalah dengan menggunakan baterai pada sistem Pembangkit Listrik Tenaga Surya (PLTS) fotovoltaik dengan algoritma pengendalian Simple Moving Average, yang dapat membantu menghaluskan dan meredakan fluktuasi daya keluaran tenaga surya. Parameter yang dapat disesuaikan pada algoritma Simple Moving Average adalah window size atau lebar waktu rerata aritmetika daya keluaran PLTS fotovoltaik. Penelitian ini mengevaluasi pengaruh perubahan parameter window size pada algoritma Simple Moving Average terhadap penghalusan daya keluaran PLTS fotovoltaik yang dihasilkan, dan efek teknis pada baterai yang ditimbulkan. Berdasarkan hasil evaluasi yang dilakukan, peningkatan parameter window size akan memperlambat respons PLTS fotovoltaik terhadap perubahan iradiasi, dan meningkatkan tingkat penghalusan dari daya keluaran PLTS fotovoltaik yang intermiten. Selain itu, meningkatnya window size akan mengurangi daya maksimum yang diterima di sisi beban, dan jumlah energi yang digunakan baterai selama proses penghalusan daya akan meningkat, sehingga kapasitas baterai yang dibutuhkan akan semakin besar.

Solar energy is increasingly recognized as an important future energy source due to its abundant availability and renewable nature. However, the intermittent nature of solar energy can cause fluctuations in the electricity produced, making it difficult to guarantee a stable and reliable electricity supply. One solution that can be implemented is to use batteries in a photovoltaic solar power plant system with a Simple Moving Average control algorithm, which can help smooth and reduce fluctuations in solar power output power. The parameter that can be adjusted in the Simple Moving Average algorithm is the window size or the arithmetic average width of the photovoltaic output power over time. This research evaluates the effect of change of window size parameter in the Simple Moving Average algorithm on the resulting smoothed photovoltaic output power, and the technical effects on batteries. Based on the results of evaluation, the increase of window size parameter will slow down the response of photovoltaic output power to changes in irradiation and increase the smoothing quality of the intermittent photovoltaic output power. In addition, increasing the window size will reduce the maximum power received on the load side, and the amount of energy used by the battery during the power smoothing process will increase, resulting in the increase of required battery capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agung Sulistyo
"Penelitian ini dilakukan untuk mengetahui pemanfaatan potensi sampah organik di Pasar Induk Kramat Jati sebagai bahan baku biogas, menentukan teknologi konversi, menghitung kapasitas energi listrik dari PLT Biogas yang dapat dibangkitkan dan menganalisa kelayakan ekonomi penerapan teknologi konversi gas engine dan gas turbin engine sebagai teknologi konversi pembangkit listrik tenaga biogas. Berdasarkan hasil perhitungan dan analisis, potensi harian sampah organik di Pasar Induk Kramat Jati yang dapat dimanfaatkan sebagai bahan baku biogas sebesar 111,7 ton/hari, produksi metan yang dihasilkan sebesar 9.299,3 m3/hari, hasil analisa penerapan teknologi konversi pembangkit menggunakan gas engine menghasilkan produksi listrik sebesar 11.728.986,5 kWh/tahun, net present value sebesar Rp. 1.493.811.495, IRR 11,81 % dan payback period 8,24 tahun, sedangkan dengan gas turbin engine menghasilkan produksi listrik sebesar 9.648.000 kWh/tahun, net present value sebesar Rp. 2.357.612.207, IRR 12,13 % dan payback period 8,04 tahun.

This research was conducted to determine the potential utilization of organic waste in the Pasar Induk Kramat Jati biogas as a raw material, determine the conversion technology, to calculate the capacity of electricity from DG Biogas can be generated and analyzed the economic feasibility of conversion technology application of gas turbine engines and gas engines as power conversion technology biogas power plant. Based on the calculation and analysis, the potential of organic waste daily in the Market Master Jati Kramat that can be utilized as raw material for biogas amounted to 111.7 tons / day, the production of methane generated at 9299.3 m3/day, application analysis of power conversion technologies using gas engines generate electricity production amounted to 11.728.986,5 kWh/year, net present value of Rp. 1.493.811.495, IRR 11,81 % and the payback period is 8,24 years, while the gas turbine engine produce electricity amounted to 9.648.000 kWh/year, net present value of Rp. 2.357.612.207, IRR 12,13 % and the payback period is 8,04 years."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27867
UI - Tesis Open  Universitas Indonesia Library
cover
Jason Jimmy Amadeus Palenewen
"Dalam era peningkatan minat terhadap energi terbarukan, pembangkit listrik tenaga biogas (PLTBg) telah menjadi alternatif yang menarik untuk menggantikan pembangkit listrik berbasis sumber non-terbarukan, seperti batu bara. PLTBg menggunakan biomassa sebagai bahan baku, seperti limbah pertanian, limbah daun, dan limbah makanan, yang kemudian dikonversi menjadi biogas melalui metode anaerobic digestion. Namun, penerapan PLTBg pada skala yang lebih kecil, seperti lingkungan universitas, masih belum banyak dilakukan. Penelitian ini bertujuan untuk menganalisis kelayakan pembangunan PLTBg di lingkungan Universitas Indonesia. Melalui simulasi di Aspen Plus menggunakan skema model pembangkit semi-kontinu dengan reaktor batch, penelitian ini menunjukkan bahwa PLTBg di lingkungan universitas dapat menghasilkan biogas sebanyak 1097,24 kg per hari dengan tingkat yield 50,4% dari 2177,18 Kg biomassa yang diumpankan. Listrik net yang dihasilkan mencapai 322,27 kWh per hari dengan jumlah total investasi sebesar $185.963. Selanjutnya, dengan metode blended financing antara green sukuk dan pinjaman bank yang dipilih, analisis keuangan menunjukkan hasil positif, dengan nilai Net Present Value (NPV) sebesar $112.137, Internal Rate of Return (IRR) sebesar 12,50%, dan Payback Period (PBP) sebesar 9 tahun. Namun, untuk menjaga keseimbangan antara Levelized Cost of Electricity (LCOE) dan harga listrik yang ditetapkan pemerintah, diperlukan skema subsidi dari pemerintah atau rektorat Universitas Indonesia. Analisis risiko menggunakan metode Monte Carlo menunjukkan tingkat keyakinan yang tinggi terhadap 10,000 variasi skenario jumlah produksi listrik tahunan (AEP) dan LCOE, dengan persentase 85,95% untuk nilai NPV positif dan 86,97% untuk IRR di atas 8%. Hasil ini menunjukkan bahwa pembangunan PLTBg ini memiliki potensi investasi yang menguntungkan berdasarkan hasil analisis finansial dan analisis risiko.

In an era of increasing interest in renewable energy, biogas power plants (PLTBg) have become an attractive alternative to power generation based on non-renewable sources, such as coal. PLTBg uses biomass as a raw material, such as agricultural waste, leaf waste, and food waste, which is then converted into biogas through the anaerobic digestion method. However, the application of PLTBg on a smaller scale, such as in university settings, has not been widely implemented. This study aims to analyze the feasibility of PLTBg development within the University of Indonesia. Through simulations at Aspen Plus using a semi-continuous generator model scheme with a batch reactor, this research shows that PLTBg in a university environment can produce as much as 1097.24 kg of biogas per day with a yield rate of 50.4% from 2177.18 Kg of biomass feed. The electricity generated reaches 322.27 kWh per day with a total capital investment of $185,963. Furthermore, using the blended-financing method between green sukuk and selected bank loans, financial analysis shows positive results, with a Net Present Value (NPV) of $112,137, Internal Rate of Return (IRR) of 12.50%, and Payback Period (PBP) of 9 years. However, to maintain a balance between the Levelized Cost of Electricity (LCOE) and the set electricity price from the government, a subsidy scheme from the government or the University of Indonesia rectorate is needed. Risk analysis using the Monte Carlo method shows a high degree of certainty in the variability of scenarios of changes in the amount of annual electricity production (AEP) and LCOE by 10,000 times, with a percentage of 85.95% for positive NPV values and 86.97% for IRR above 8%. These results indicate that the construction of PLTBg has a profiTabel investment potential based on the results of financial analysis and risk analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Syariifi Muflih
"Energi matahari dapat dikonversi menjadi energi listrik menggunakan sel surya photovoltaic (solar PV). Rentang spektrum matahari dalam jumlah yang signifikan tidak digunakan dalam konversi photovoltaic dan terdisipasi sebagai panas selama pengoperasian sel surya. Teknologi inovatif untuk meningkatkan kinerja sistem photovoltaic adalah menggabungkan panel PV dengan modul termoelektrik untuk lebih meningkatkan efisiensi konversi daya. Modul termoelektrik mampu mengubah energi panas dalam bentuk perbedaan temperatur menjadi energi listrik melalui efek Seebeck. Sel photovoltaic dan generator termoelektrik (thermoelectric generator/TEG) memiliki tujuan yang sama untuk menghasilkan tenaga listrik. Konfigurasi hibrida photovoltaic-thermoelectric (PV-TE) gabungan bisa menjadi sistem potensial yang menghasilkan lebih banyak listrik daripada desain PV saja. Teknologi yang menggabungkan sel PV dan TEG untuk memperbanyak pembangkitan daya listrik dari radiasi matahari dapat dilakukan dengan menambahkan TEG ke sisi belakang panel surya. Energi panas yang terdisipasi oleh sel PV dapat digunakan oleh TEG untuk pembangkit tenaga listrik tambahan. TEG memanfaatkan energi panas yang terdisipasi oleh sel PV untuk bagian hot side, dan menggunakan heat sink untuk bagian cold side. Terjadinya perbedaan temperatur membuat TEG menghasilkan energi listrik tambahan
Solar energy can be converted into electrical energy using photovoltaic solar cells (solar PV). A significant amount of the solar spectrum is not used in photovoltaic conversion and is dissipated as heat during the operation of the solar cell. An innovative technology to improve the performance of photovoltaic systems is to combine PV cells with thermoelectric modules to further improve power conversion efficiency. The thermoelectric module is able to convert heat energy into electrical energy through the Seebeck effect. Photovoltaic cells and thermoelectric generators have the same purpose of generating electric power. A combined photovoltaic-thermoelectric (PV-TE) hybrid configuration could be a potential system that generates more electricity than a PV design alone. The technology that combines PV cells and thermoelectric generator/TEG to increase the generation of electrical power from solar radiation can be done by adding TEG to the back side of the solar panel. The heat energy dissipated by the PV cells can be used by the TEG for additional electric power generation. TEG utilizes heat energy dissipated by PV cells for the hot side, and uses a heat exchanger for the cold side. The occurrence of a temperature difference makes the TEG generate additional electrical energy."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>