Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81133 dokumen yang sesuai dengan query
cover
Endah Sasmita
"Spirulina platensis berpotensi menghasilkan energi listrik. Energi listrik terbentuk pada saat mikrolaga berfotosintesis melalui kloroplas. Di dalam kloroplas, terdapat kandungan protein yang berperan sebagai jalur pertukaran elektron dari silklus terang di dalam tilakoid menuju siklus Calvin dalam stroma. Elektron yang mengalir kemudian disambungkan ke suatu perangkat elektrokimia sehingga menimbulkan energi listrik. Energi listrik yang dihasilkan terukur dalam satuan tegangan atau voltase. Metode penghasil listrik ini dikenal dengan Biological Photovoltaic Cell (BPV). Penelitian terhadap BPV menggunakan mikroorganisme golongan cyanobacteria sudah dilakukan pada penelitian terdahulu dengan meneliti material elektroda yang mampu menghasilkan listrik yang optimum. Dari variasi logam anoda uji seperti alumunium, seng dan tembaga, peneliti mendapat hasil bahwa logam seng mampu menghasilkan tegangan listrik tertinggi senilai 1217 mV. Selain itu, kandungan ion positif logam seng merupakan mikronutrien yang berperan dalam pembentukan klorofil, sebagai efeknya peningkatan elektron. Hasil ini dioptimalkan kembali dengan menguji variasi jarak elektroda dan diperoleh hasil tegangan tertinggi pada saat berjarak 2 cm senilai 1219 mV. Oleh karena tegangan yang dihasilkan masih cukup kecil, sehingga melakukan penambahan chamber yang dirangkai secara seri menggunakan 4 chamber reaktor BPV menggunakan resistor 820Ω, menghasilkan tegangan listrik sebesar 4100 mV. Potensi ini dibuktikan dengan membandingkan pengoperasian BPV yang menggunakan kultur mikroalga dengan hanya menggunakan medium dan air laut sebagai kontrol. Hasil peneelitian menujukkan bahwa tegangan listrik mengalami peningkatan sebesar 2,45% dan power density sebesar 0,81% saat kultur digunakan sebagai elektrolit dalam chamber BPV.

Spirulina platensis has potential to produce electricity. Electricity is formed by photosynthesized of microalgae in chloroplast. In chloroplasts, contains protein molecules which useful as electron exchange lines from light cycle in the thylakoid towards the Calvin cycle in the stroma. Electrons flow then connected to an electrochemical device, causing electrical energy. The electrical energy generated measured in units of voltage. Methods of producing electricity is known as Biological Cell Photovoltaic (BPV). Research on the use of microorganisms BPV group of cyanobacteria have been done on previous research by examining the electrode material capable of generating electricity that is optimum. Of the various test anode metal such as aluminum, zinc and copper, researchers got the results that the zinc metal capable of generating high voltage electricity worth 1217 mV. In addition, the zinc metal content of positive ions is a micronutrient that plays a role in the formation of chlorophyll, as the effect is an increase in electrons. This result is optimized back to test variations of the electrode spacing and the results obtained at the time of the highest voltage within 2 cm worth of 1219 mV. Therefore, the voltage generated is still quite small, so the addition chamber is connected in series using BPV 4 reactor chamber using a 820Ω resistor, producing an electrical voltage of 4100 mV. This potential is evidenced by comparing the operation of the BPV which uses microalgae culture medium and by only using sea water as a control. Peneelitian results showed that the voltage increased by 2.45% and a power density of 0.81% when the culture is used as the electrolyte in the chamber BPV."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63191
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sabrina Zahra Fitriani
"Penggunaan listrik di dunia semakin meningkat seiring dengan meningkatnya kebutuhan dan populasi manusia sehingga dibutuhkan energi berkelanjutan dan ramah lingkungan untuk menghasilkan listrik, salah satunya pemanfaatan Biological Photovoltaic Cell (BPV). Sel BPV memanfaatkan sifat fotosintetik mikroalga untuk memproduksi arus listrik. Sistem BPV akan mengambil elektron yang terbentuk pada mikroalga yang sedang berfotosintesis.
Penerapan reaktor BPV tanpa membran dan tanpa biofilm pada bioanoda meskipun memiliki laju transfer elektron yang relatif kecil dapat tetap dilakukan dan produksi listrik masih dapat ditingkatkan, diantaranya dengan meningkatkan densitas sel dan mengatur intensitas cahaya pada reaktor BPV. Oleh karena itu, pada penelitian kali ini telah dilakukan variasi intensitas cahaya dan densitas sel mikroalga pada BPV tanpa mediator. Mikroalga yang akan digunakan adalah Spirulina platensis.
Pada penelitian ini, Open Circuit Voltage terbesar yang dihasilkan adalah 320 mV pada saat kondisi Optical Density sel S. platensis bernilai 0,9 dengan intensitas cahaya 1700 lux. Densitas daya yang dihasilkan 1,5 mW/m2 masih relatif kecil dibandingkan penelitian-penelitian yang dilakukan sebelumnya.
Dari penelitian ini dapat disimpulkan bahwa peningkatan densitas sel dan pengaturan konfigurasi intensitas cahaya dapat meningkatkan listrik yang dihasilkan dan perlu dilakukan hal-hal lain untuk meningkatkan produksi listrik seperti menambah permukaan elektroda dan membuat biofilm mikroalga agar BPV nantinya dapat digunakan digunakan secara komersial sebagai sumber energi listrik terbarukan yang ekonomis dan ramah lingkungan.

Electricity consumption in the world is increasing along with the increasing needs and the human population, then we need sustainable and environmentally friendly energy to produce electricity, one of the application is Biological Photovoltaic Cell (BPV). BPV cells utilizing the properties of photosynthetic microalgae to produce electric current. BPV system will take the electrons that produced by photosynthetic microalgae.
The application of BPV reactor without membrane and without biofilm on bioanoda yielding a low rate of electron transfer, but still can be done and electricity production can be improved, such as by increasing the cell density and adjust the light intensity at the reactor BPV. Therefore, the present study has been done variations of light intensity and density of microalgae cells in BPV without mediators. Microalgae to be used is Spirulina platensis.
In this study, the Open Circuit Voltage generated the largest is 320 mV when the condition Optical Density S. platensis cells is about 0.9 with 1700 lux light intensity. The resulting power density of 1.5 mW/m2 is still relatively small compared to studies conducted earlier.
From this study it can be concluded that the increase in cell density and configuration settings light intensity can improve the electricity is generated and the other things needs to be done to increase electricity production, such as increasing the electrode surface and makes biofilm microalgae so that BPV later can be used in commercial use as a source of electrical renewable energy that economically and environmentally friendly.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62410
UI - Skripsi Membership  Universitas Indonesia Library
cover
Devita Enggar Fiasti
"Ketersediaan energi menjadi kebutuhan esensial bagi kehidupan manusia, namun saat ini produksi energi masih bergantung pada konsumsi bahan bakar fosil. Meningkatnya permintaan energi yang disertai dengan menipisnya cadangan bahan bakar fosil, menyebabkan ketertarikan untuk mencari sumber energi terbarukan yang berkelanjutan dan ramah lingkungan. Salah satunya melalui penggunaan sistem berbasis biologis, yaitu Microalgae-Microbial fuel cell (MmFC). Microalgae-microbial Fuel Cell (MmFC) merupakan perangkat biokimia yang memanfaatkan,proses fotosintesis mikroalga untuk mengubah energi matahari menjadi listrik melalui reaksi metabolisme simultan dengan bakteri. Bakteri yang digunakan pada sistem ini dapat berupa kultur murni ataupun kultur campuran yang berasal dari limbah. Berangkat dari kondisi tersebut maka terdapat 2 optimasi yang dilakukan pada penelitian ini, yaitu optimasi jenis bakteri (bakteri indigenous limbah tempe dan bakteri Acetobacter aceti) dan optimasi waktu inkubasi limbah tempe (0 hari, 3 hari, 7 hari, dan 14 hari). Kinerja MmFC pada optimasi jenis bakteri ditinjau berdasarkan power density, sedangkan pada optimasi waktu inkubasi limbah tempe ditinjau berdasarkan power density dan bioremediasi limbah (%penurunan BOD dan COD). Hasil optimasi jenis bakteri, menunjukkan bahwa bakteri indigenous limbah tempe memberikan nilai power density lebih besar daripada bakteri A. aceti (PDmaks = 812,746 mW/m2; PDrata-rata = 438,310 mW/m2). Sementara itu, hasil optimasi waktu inkubasi limbah tempe, menunjukkan bahwa inkubasi limbah tempe selama 14 hari merupakan waktu inkubasi yang paling optimal ( PDmaks = 1146,876 mW/m2; PDrata-rata = 583,491 mW/m2; %penurunan COD = 46,011%; %penurunan BOD = 47,172%)

The availability of energy is an essential need for human life, but currently, energy production still depends on the consumption of fossil fuels. The increasing energy demand, accompanied by the decrease of fossil fuel reserves, has caused interest in finding sustainable and environmentally friendly renewable energy sources. One of them is through the use of a biological-based system, namely Microalgae-Microbial fuel cell (MmFC).Microalgae-microbial Fuel Cell (MmFC) is a biochemical device that utilizes the photosynthetic process of microalgae to convert solar energy into electricity through simultaneous metabolic reactions with bacteria. The bacteria used in this system can be pure cultures or mixed cultures from waste. Based on these conditions, there are 2 optimizations carried out in this research, namely optimization of the type of bacteria (indigenous bacteria of tempeh waste and Acetobacter aceti bacteria) and optimization of incubation time of tempeh waste (0 days, 3 days, 7 days, and 14 days). The performance of MmFC on the optimization of bacterial species was reviewed based on the power density, while the optimization of incubation time for tempeh waste was reviewed based on the power density and waste bioremediation (% decrease in BOD and COD). The results of the optimization of the type of bacteria showed that the indigenous bacteria of tempeh waste showed a power density value greater than that of A. aceti bacteria (PDmax = 812.746 mW/m2; PDaverage = 438.310 mW/m2). Meanwhile, the optimization results of tempeh waste incubation time showed that incubation of tempeh waste for 14 days was the most optimal incubation time (PDmax = 1146.876 mW/m2; PD average = 583,491 mW/m2; % decrease in BOD = 46.011%; % decrease in COD = 47.172%)"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Claudia Maya Indraputri
"Peningkatan jumlah penduduk dunia berdampak terhadap peningkatan kebutuhan di berbagai aspek seperti makanan bergizi dan obat-obatan.Untuk memenuhi peningkatan kebutuhan tersebut, salah satu sumber daya yang dapat digunakan adalah mikroalga.Mikroalga mampu menghasilkan berbagai jenis senyawa fungsional.Salah satu mikroalga yang banyak dibudidayakan adalah Spirulina platensiskarena kemampuannya untuk bertumbuh dengan cepat serta kegunaan dari senyawa yang dikandungnya.
Fikosianin adalah salah satu senyawa yang terkandung dalam Spirulina sp dan banyak digunakan dalam aspek kesehatan, salah satunya sebagai antioksidan.Walaupun demikian, metode ekstraksi fikosianin yangumum diterapkan masih belum berkerja secara optimum.Oleh karena itu, penelitian ini bertujuan untuk menentukan metode ekstraksi, waktu ekstraksi dan jenis pelarut yang sesuai agar dapat mengoptimalkan hasil ekstraksi.
Penelitian ini menggunakan 2 metode ekstraksi yaitu sonikasi pada 37 kHz serta vortex dengan kecepatan 2000 rpm.Masing-masing metode dilakukan sebanyak 2 kali.Variabel bebasyang diamati dalam setiap metodeadalah jenis pelarut dan durasi ekstraksi.Fikosianin tertinggi dihasilkan dengan metode vortex selama 25 menit menggunakan pelarut buffer fosfat.Ekstrak tersebut menghasilkanyield sebesar 9,62 mg/g alga kering dengan kemurnian sebesar 0,74.

Increasing growth of world population will affect in increasing the needs in several aspects such as nutritious foods and drugs. In order to fulfill the increased needs, one of the prominent source is microalgae. Microalgae can produce various functional compounds. One of the commonly cultivated microalgae is Spirulina platensis because of its ability to grow fast and its compound product's functionality.
Phycocyanin is one of the essential compound that is produced by Spirulina sp.and has been widely used in health aspect, for example as an antioxidant. Unfortunately, the current phycocyanin extraction methods still need to be improved. Hence, this research aims to determine extraction method and its suitable operating condition such as extraction time and solvent type that will yield the optimum result.
This research use the extraction method of sonication at 37 kHz and vortex at 2000 rpm.Each method is done twice. The independent variables are process duration and solvent type. The highest phycocyanin content is produced by vortex at 25 minutes with solvent phosphate buffer. The yield and purity of the extract are 9,62 mg g dry algae and 0,74, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67034
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Ketut Indra Prabawa
"Mikroalga telah dikenal memiliki kemampuan untuk melakukan fiksasi CO2 melalui proses fotosintesis dan mengubah CO2 secara langsung menjadi senyawa karbon atau biomassa seperti polisakarida, protein, atau lipid yang bernilai cukup ekonomis. Penelitian mengenai proses fiksasi CO2 dengan memanfaatkan kemampuan fotosintesis mikroalga Spirulina platensis merupakan salah satu aternatif yang diusulkan untuk mengatasi permasalahan gas rumah kaca, yang telah menjadi permasalahan yang serius akhir-akhir ini. Proses fiksasi CO2 dan produksi biomassa menggunakan Spirulina platensis ini dilakukan dengan menggunakan medium Conwy dalam sebuah fotobioreaktor dengan perlakuan alterasi pencahayaan dan pencahayaan konstan. Fotobioreaktor yang digunakan tersusun secara seri dan tunggal dengan volume masing-masing 500 ml dan 1.500 ml. Proses tersebut berlangsung pada kondisi : suhu 29_C, kecepatan superfisial gas sebesar 1,2 m/jam, kandungan CO2 3% volume dalam aliran udara dan intensitas cahaya berkisar antara 1,48 Watt/m2 ?5,76 Watt/m2. Secara umum hasil yang diperoleh dalam penelitian ini adalah dengan semakin banyak konfigurasi reaktor dan semakin tingginya intensitas cahaya yang diterima oleh sel dalam medium, peningkatan jumlah sel yang terjadi juga semakin tinggi. Besarnya peningkatan jumlah sel ini berbanding terbalik dengan kemampuan fiksasi CO2. Laju fiksasi CO2 dan laju pertumbuhan sel yang tertinggi dicapai dengan menggunakan reaktor susun seri melalui perlakuan alterasi pencahayaan. Peningkatan fiksasi CO2 ditandai dengan meningkatnya nilai rata CTR dan qCO2 hingga mencapai 5,53 g/dm3 h-1 dan 41,77 h-1. Model pendekatan secara empiris terhadap laju fiksasi CO2 mengikuti persamaan Haldane dan persamaan Ierusalemsky.

Microalgae has known for its ability to fix CO2 with photosynthesize and convert into biomass product such as polysacharide, protein, or lipid. The research of CO2 fixation using Spirulina platensis has become a promising alternative to reduce green house effect. CO2 fixation process and biomass production with Spirulina platensis was cultivated in photobioreactor with fixed and alteration of light illumination with Conwy as a medium. Two configuration of photobioreactors are arranged in single and three stages serial photobioreactor with reactor volume of photobioreactors are 1.500 mL and 500 mL/reactor, orderly. The fixation experiment were carried out in : Temperatur 29_C , gas supervicial velocity 1,2 m/hour, CO2 concentration : 3 % volume and range of light intensity 1,48 Watt/m2 ? 5,76 Watt/m2. The experimental findings for this system show that the increasing of reactor number and accepted light intensity in medium will be rise the number of cell in reactor. The rate of cell growth was oppposite to CO2 fixation rate. The highest of CO2 fixation and cell growth rate was reached in three stages serial photobioreactor with alteration light of illumination. The highest mean value of CTR and qCO2 could reach 5,53 g/dm3 h-1 dan 41,77 h-1. The empirical equation models of CO2 fixation rate follow Haldane and Ierusalemsky equation."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S49716
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wisnu Ardiyanto
"BPV Biological Photovoltaic merupakan suatu perangkat yang dapat menghasilkan energi listrik melalui proses fotosintesis mikroalga. Mikroalga akan memecah molekul air menjadi proton, elektron, dan oksigen saat terkena cahaya. Arus yang mengalir pada sirkuit eksternal dapat digunakan sebagai penggerak perangkat elektronik. Studi mengenai BPV telah banyak dilakukan peneliti sebelumnya dengan melakukan berbagai konfigurasi seperti variasi jenis elektroda, variasi jarak elektroda, dan sebagainya. Akan tetapi, tegangan dan arus yang dihasilkan masih relatif kecil. Oleh karena itu diperlukan penelitian lebih lanjut untuk mengoptimalkan produksi listrik perangkat BPV.
Penelitian yang dilakukan yakni variasi jumlah inokulum mikroalga C. vulgaris dengan metode pembentukan biofilm pada open-air single chamber BPV. Jumlah inokulum yang divariasikan yakni sel dengan berat kering: 0,301 g/L, 0,912 g/L, dan 1,531 g/L. Reaktor BPV dengan jumlah inokulum 1,531 g/L menunjukkan adanya kenaikan voltase sebesar 14,89 voltase terukur 58,006 mV dan kenaikan power density sebesar 27,91 ketika dibandingkan dengan reaktor tanpa kultur. Power density tertinggi yang dihasilkan pada variasi jumlah inokulum tertinggi bernilai 0,000472 mW/m2.

BPV Bio Photovoltaic is an electricity producing device which harness photosynthetic reaction from microalgae. Microalgae will breakdown water molecule into proton, electron and oxygen when exposed by light. The current then passes through external circuit and could be used as energy source for electric device. Many studies related to BPV have been conducted by some researchers before by applying some configuration such as various metal of electrode , various electrode distance, etc. However, the measured voltage and current are small yet. Thus, later research is needed to optimize electricity production in BPV device.
This research was done by varying C. vulgaris inoculum concentration by method of biofilm formation in open air single chamber BPV. The inoculum concentration will be based on dry biomass 0,301 g L, 0,912 g L, dan 1,531 g . BPV reactor with inoculum 1,531 g L shows increase 14,89 measured 58,006 mV in voltage and increase 27,91 in power density when compared to reactor containing no culture. Highest power density produced by highest inoculum concentration results 0,000472 mW m2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68013
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Weediyanti
"Kanker merupakan penyebab kematian terbanyak urutan ketiga di Indonesia. Kanker adalah penyakit yang disebabkan oleh pertumbuhan abnormal dari sel tubuh. Salah satu dari penyebab kanker adalah adanya radikal bebas reactive oxygen species (ROS) pada tubuh. Radikal bebas merupakan senyawa yang memiliki elektron tidak berpasangan, sehingga bersifat reaktif. Radikal bebas dapat distabilkan dengan antioksidan. Fikosianin adalah salah satu zat yang memiliki aktivitas antioksidan dan dengan begitu memiliki potensi untuk mencegah kanker. Spirulina platensis adalah penghasil fikosianin yang paling dikenal. Kandungan dari fikosianin pada Spirulina dapat dioptimalkan melalui jenis dan kandungan nitrogen pada media kultivasi. Penelitian ini akan mengkaji hal tersebut dengan memvariasikan sumber nitrogen pada medium Zarrouk, yaitu NaNO3 dan NH4NO3, dan konsentrasinya untuk kultur Spirulina platensis. Kultivasi dilakukan pada fotobioreaktor 250 mL dengan aerasi 250 mL/min, pencahayaan kontinyu 2200 lux, dan suhu 27 – 30 °C, selama 165 jam periode kultivasi. Fikosianin kemudian diekstrak dengan metode sonikasi dan diuji aktivitas antioksidannya dengan metode DPPH. Profil pertumbuhan, yield fikosianin, dan aktivitas antioksidan terbaik didapat dari kultur dengan NaNO3 0,03 M sebagai sumber nitrogen. Yield fikosianin yang didapat adalah sebesar 22,996 ± 0,072 mg/g dengan nilai IC50 sebesar 1.438,681 ± 50,274 ppm.

Cancer is the third leading cause of death in Indonesia. Cancer is a disease caused by abnormal growth of body cells. One of the causes of cancer is the presence of free radicals reactive oxygen species (ROS) in the body. Free radicals are compounds that have unpaired electrons, this condition will make them reactive. Free radicals can be stabilized by antioxidants. Spirulina platensis is the best known producer of phycocyanin. The content of phycocyanin in Spirulina can be optimized through the type and concentration of the nitrogen in the cultivation medium. This study will examine this matter by varying the nitrogen sources in Zarrouk medium, namely NaNO3 and NH4NO3, and their concentrations for Spirulina platensis culture. Cultivation was carried out in a 250 mL photobioreactor with aeration of 250 mL/minute, continous lighting of 2200 lux, and temperature of 27 – 30 °C for 165 hours of cultivation. Phycocyanin then was extracted by ultrasonication method and tested for its antioxidant activity by DPPH method. The best growth profile, phycocyanin yield, and antioxidant activity were obtained from culture that used NaNO3 0.03 M as nitrogen source. The yield of phycocyanin obtained was 22,996 ± 0,072 mg/g with an IC50 value of 1.438,681 ± 50,274 ppm."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luluk Habibah
"Spirulina platensis memiliki kemampuan adaptabilitas yang tinggi terhadap berbagai lingkungan sehingga spesies ini memiliki potensi untuk dikembangkan dalam skala besar. Selain itu Spirulina platensis memiliki kandungan protein yang besar yaitu, 65,7%. Salah satu protein yang bernilai tinggi, memiliki sifat antioksidan dan antiinflamasi yang berpotensi dikembangkan untuk industri farmasi. Proses produksi biomassa pada mikroalga dibutuhkan sistem kultivasi yang sesuai untuk mendukung pertumbuhan sel dengan proses fotosintesis. Pada proses ini, mikroalga Spirulina platensis memanfaatkan energi cahaya menjadi energi ATP untuk pertumbuhan dan pembentukan senyawa karbon dengan proses fiksasi CO2. Cahaya merupakan parameter operasi penting dalam sistem kultivasi mikroalga. Pada penelitian sebelumnya yang telah ada mengenai kultivasi mikroalga Spirulina platensis menggunakan lampu biru meningkatkan produksi pigmen protein fikosianin dan klorofil-a. Namun, peninjauan terhadap ukuran inokulum yang sesuai dengan intensitas lampu untuk meningkatkan produktivitas dan efisiensi energi belum banyak diteliti. Pada penelitian ini ukuran inokulum menjadi variabel yang ditinjau untuk mendapatkan intensitas cahaya optimum. Hasil biomassa yang diproduksi dengan pencahayaan alterasi akan diuji kandungan karbon, fikosianin, klorofil. Laju pertumbuhan spesifik mikroalga Spirulina platensis diolah dengan menggunakan pendekatan Monod. Laju pertumbuhan maksimum didapatkan oleh Laju pertumbuhan maksimum yang paling tinggi didapatkan oleh kultur dengan pencahayaan lampu putih pada 5000 lux dengan laju spesifik maksimum 0,0196/jam. Konsentrasi fikosianin dan klorofil tertinggi didapatkan pada lampu biru dengan konsentrasi masing-masing 0,236 dan 0,183 mg/mg alga

Spirulina platensis has high adaptability to various environments so this species has the potential to be developed on a large scale. Apart from that, Spirulina platensis has a large protein content, namely 65.7%. One of the high-value proteins, it has antioxidant and anti-inflammatory properties that have the potential to be developed for the pharmaceutical industry. The biomass production process in microalgae requires a suitable cultivation system to support cell growth through the photosynthesis process. In this process, the microalgae Spirulina platensis utilizes light energy into ATP energy for growth and the formation of carbon compounds using the CO2 fixation process. Light is an important operating parameter in microalgae cultivation systems. In previous research, the cultivation of the microalga Spirulina platensis using blue light increased the production of the protein pigments phycocyanin and chlorophyll-a. However, reviewing the appropriate inoculum size for light intensity to increase productivity and energy efficiency has not been widely studied. In this study, inoculum size was the variable considered to obtain optimum light intensity. The biomass produced by alternating lighting will be tested for carbon, phycocyanin and chlorophyll content. The specific growth rate of the microalga Spirulina platensis was processed using the Monod approach. The maximum growth rate was obtained by The highest maximum growth rate was obtained by culturing with white light lighting at 5000 lux with a maximum specific rate of 0.0196/hour. The highest concentrations of phycocyanin and chlorophyll were obtained in blue light with concentrations of 0.236 and 0.183 mg/mg algae respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Prayoga Byantara
"Buah merupakan salah satu unsur penting dari makanan sehari-hari tetapi penurunan kualitasnya sangat cepat karena memiliki aktivitas metabolik yang tinggi. Salah satu buah yang memiliki sifat mudah rusak (perishable) dan memiliki umur simpan yang sangat singkat yaitu buah stroberi. Pelapis yang dapat dimakan (edible coating) pada buah merupakan salah satu alternatif yang dapat digunakan untuk meningkatkan kualitas dan memperpanjang masa penyimpanan buah. Edible coating dapat diproduksi dari mikroalga dengan kandungan protein yang tinggi, seperti Chlorella vulgaris dan Spirulina platensis. Bahan lain yang dibutuhkan yaitu gliserol sebagai plasticizer untuk meningkatkan fleksibilitas dan elastisitas serta surfaktan yaitu carboxymethyl cellulose (CMC) sebagai pengental, stabilisator, dan pengemulsi. Buah yang dijadikan sampel untuk penelitian ini yaitu buah stroberi (Fragaria sp.). Penelitian ini bertujuan untuk menganalisis pengaruh jenis dan konsentrasi mikroalga pada edible coating yang sesuai serta suhu penyimpanan yang optimum untuk menjaga kualitas buah stroberi. Dalam penelitian ini, hal yang divariasikan adalah konsentrasi mikroalga Chlorella vulgaris, yaitu 0,5%, 0,75%, dan 1% (b/v); konsentrasi mikroalga Spirulina platensis, yaitu 0,5%, 0,75%, dan 1% (b/v); dan suhu, yaitu suhu kulkas (± 4-7oC) dan suhu ruang (± 25-27oC). Pengujian yang dilakukan yaitu kuantifikasi protein pada larutan edible coating serta sifat fisik (uji organoleptik; warna, bau & tekstur, dan susut bobot) dan sifat kimiawi (pH dan vitamin C) pada buah.

ABSTRACT
Fruit is one of the important elements of daily food, but undergo rapid deterioration due to their high metabolic activity. One of fruit that has perishable properties and has a very short shelf life is strawberry. Edible coating on fruit is one of alternative that can be used to improve quality and prolong shelf life of fruit. Edible coating can be produced from microalgae with high protein content, such as Chlorella vulgaris and Spirulina platensis. Other materials needed are glycerol as a plasticizer to increase flexibility and elasticity as well as surfactant which is carboxymethyl cellulose (CMC) as a thickener, stabilizer, and emulsifier. Strawberry (Fragaria sp.) is being used as a sample in this study. This study aims to analyze the influence on the type and concentration of microalgae on the appropriate edible coating and the optimum storage temperature to maintain the quality of strawberries. In this study, what varied are the concentration of Chlorella vulgaris microalgae, which are 0,5%, 0,75%, and 1% (w/v); concentration of Spirulina platensis microalgae, which are 0,5%, 0,75%, and 1% (w/v); and temperature, which are fridge temperature (± 4-7oC) and room temperature (± 25-27oC). There are three tests carried out, which are protein quantification on edible coating solution, physical properties (organoleptic test; color, odor & texture, and weight loss) and chemical properties (pH and vitamin C) on fruit.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulina Aini Hafidzah
"Fikosianin merupakan salah satu senyawa pigment yang dapat diperoleh dari mikroalga Spirulina platensis. Senyawa tersebut telah banyak dimanfaatkan sebagai pewarna makanan, pewarna kosmetik dan juga reagen fluoresens untuk diagnosa klinis. Selain itu fikosianin memiliki potensi dalam bidang kesehatan karena memiliki sifat antioksidan dan anti inflamasi. Namun aplikasi dari fikosianin di berbagai bidang terhalang oleh proses ekstraksi yang cukup sulit. Maka dari itu dibutuhkan metode ekstraksi yang optimum untuk memperoleh fikosianin. Penelitian ini mempelajari metode ekstraksi fikosianin dengan menggunakan metode sonikasi dan juga freeze thawing serta variasi pelarut dengan buffer sodium fosfat dan natrium klorida, variasi rasio biomassa pelarut, dan juga variasi waktu ekstraksi sonikasi. Parameter yang digunakan dalam ekstraksi ini adalah yield fikosianin YPC dan kemurnian fikosianin. Penggunaan buffer fosfat menghasilkan YPC sebesar 35,69 mg/g dengan kemurnian 2,2, dan penggunaan pelarut CaCl2 menghasilkan YPC sebesar 27,7 mg/g dengan kemurnian 2,53. YPC optimum pada pelarut CaCl2 diperoleh pada rasio biomassa pelarut 1:200 dengan hasil YPC sebesar 34,83 mg/g, dan peningkatan waktu sonikasi dari 30 menit ke 60 menit menghasilkan kenaikan YPC sebesar 9% pada biomassa 0,05 gram, dan 4,6% pada variasi biomassa 0,1 gram.

Phycocyanin is a pigment compound that can be found from Spirulina platensis microalgae. It has been used for food colorant, cosmetic dye and fluorescence reagent for clinical diagnosis. Furthermore, phycocyanin has the potential in healthcare because of its anti inflammatory and antioxidant properties. However, its application in various fields is hindered by its difficult extraction process. The optimum extraction method are needed to overcome that problem. This research will study the method of phycocyanin extraction using sonication method and freeze thawing method, also with the variation of solvent using sodium phosphate buffer and calcium chloride, variation of biomass solvent ratio, and also variation of sonication duration. Parameters that will be observed in this extraction are phycocyanin yield YPC and phycocyanin purity. The usage of phosphate buffer solvent obtains YPC of 35,69 mg/g with 2,2 of purity, and the usage of CaCl2 solvent obtains YPC of 27,7 mg/g with 2,53 of purity. The optimum YPC on CaCl2 solvent obtained at 1:200 ratio, with the YPC of 34,83 mg/g, and the increase of the duration of sonication from 30 minutes to 60 minutes generate the increase of YPC of 9% in biomass variation of 0,05 gram, and 4,6% in biomass variation of 0,1 gram."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>