Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 58004 dokumen yang sesuai dengan query
cover
Nurina Izzati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64469
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilma Qonitah
"Pada skripsi ini akan dibahas konsep ride sharing pada taksi, atau disebut juga taxi sharing, yang merupakan salah satu upaya untuk mengatasi masalah kemacetan akibat kurang seimbangnya jumlah kendaraan yang beredar dengan kapasitas jalan yang dapat menampung kendaraan. Pada taxi sharing, penumpang taksi berbagi kendaraan taksi dan biaya perjalanan dengan penumpang lain yang memiliki tempat asal-tujuan yang sama/hampir sama dalam waktu perjalanan yang hampir bersamaan. Pemanfaatan taxi sharing yang mengoptimalkan utilisasi kendaraan taksi, selain dapat mengurangi jumlah kendaraan taksi yang dibutuhkan untuk melayani konsumen dan mengurangi biaya operasional taksi, juga dapat mengurangi penggunaan bahan bakar, yang pada akhirnya mengurangi emisi gas buang kendaraan. Untuk memaksimalkan penggunaan taxi sharing, maka diperlukan pengoptimalan rute taksi dalam melayani penumpang, dimana masalah pencarian rute taxi sharing yang optimal dalam skripsi ini akan dimodelkan dalam bentuk mixed integer programming problem. Permasalahan ini diselesaikan menggunakan algoritma genetika, yang lahir dari sebuah inspirasi teori evolusi Darwin. Algoritma ini digunakan untuk mencari pasangan penumpang yang berbagi layanan taksi dan rute taksi yang optimal. Hasil percobaan dengan menggunakan ukuran populasi (popsize) 10, jumlah generasi 50 dan 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.2 menunjukkan bahwa yang sebelumnya terdapat 8 permintaan taksi dan 8 taksi, operator taksi dapat mengurangi jumlah taksi yang beroperasi sebesar satu taksi. Taksi yang menggunakan konsep taxi sharing, yaitu taksi 5 akan melayani permintaan 2 dan 8, dengan urutan menjemput permintaan 2 lalu 8, lalu mengantarkan permintaan 2 kemudian 8, dengan biaya yang dibayarkan Rp4.200,00 untuk permintaan 2 dan Rp14.700,00 untuk permintaan 8. Maka dari itu, keuntungan operator taksi menjadi lebih besar, penumpang dapat menghemat biaya perjalanan, dan penggunaan kendaraan di jalan berkurang.

This research will discuss about the implementation of taxi ride sharing system or taxi sharing as an attempt to find a solution for traffic jam problem that caused by an unequal number of public transportation units operated in the street and the lack of street capacity which supposed to facilitate it. With the present of taxi sharing system, consument can share their taxi trip with others passengers that going on to same direction at the same time. This solution can give benefit for consuments by sharing the trip cost while at the same time benefitted the public transportations provider to optimalized the utilization of the taxi units and cut off operationalization cost, benefitted society by minimalize the number of cars in the streets and reducing air polution from gasoline consumption. To make this taxi sharing system works it also needed an optimalization in taxi route for each trip service. This research will be trying to solved this challenges by examines the taxi-sharing route services through Mixed Integer Programming Problems. This process will be carried using a genetics algorythm which inspired from Darwin's theory of evolution. This algorithm is aiming to be effectively find and match pairs of passengers who use taxi sharing system and taxi routes. The experiment by using population size (popsize) of 10, number of generations 50 and 100, crossover rate (Cr) 0.7, mutation rate (Mr) 0.2 shows that from 8 taxi units to accomodate 8 taxi requests that have been received before, the taxi provider supposedly be able to effectively reduce the number of taxis into only 7 taxis to carry all of the sharing system passengers that requesting. A taxi that uses taxi sharing system will serve request number 2 and request number 8, by picking up request 2 then 8, then delivering request 2 then 8, with fees paid Rp4.200,00 for request 2 and Rp14.700,00 for request 8. Therefore, the profit of the taxi provider is greater, the passengers can save their trip costs, and the use of vehicles on the road can be decreased."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Bintang Koesalamwardi
"Desain optimal dari bangunan hemat energi menghadapi dua kebutuhan yang saling bertentangan, yaitu biaya yang seekonomis mungkin dan dampak lingkungan yang seminimal mungkin. Tingginya biaya bangunan hemat energi seperti near Zero Energy House disebabkan oleh tingginya harga peralatan dan material yang diaplikasikan seperti panel surya, insulasi dan lain-lain.
Tujuan dari penelitan ini adalah menemukan desain yang optimal dari sebuah near Zero Energy House, dengan studi kasus terhadap rumah 1 tingkat. Sasaran dari optimasi desain ini adalah kinerja biaya siklus hidup yang lebih ekonomis jika dibandingkan dengan bangunan konvensional.
Metode optimasi dengan algoritma genetika adalah metode optimasi paling sesuai untuk permasalahan optimasi desain yang memiliki banyak variabel. Sangat sulit untuk menemukan solusi tunggal, atau solusi terbaik untuk optimasi desain. Dengan menggunakan algoritma genetika, perancang bangunan dapat memilih salah satu dari solusi terbaik hasil optimasi yang sesuai dengan permintaan dan batasan-batasan yang ada.

Optimal design of energy efficient buildings facing two conflicting requirements, namely costs as economical as possible and minimal environmental impact. The high cost of energy efficient buildings as near Zero Energy House due to the high price of equipment and materials that are applied as solar panels, insulation and others.
The purpose of this research is to find the optimal design of a near Zero Energy House, with a case study on the first level. The goal of this design is the optimization of life cycle cost performance is more economical when compared to conventional buildings.
Optimization method with genetic algorithm optimization is the most suitable method for design optimization problem that has many variables. It is very difficult to find a single solution, or the best solution for design optimization. By using genetic algorithms, building designer can choose one of the best results of the optimization solution according to the demand and constraints that exist.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42845
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhrul Hidayat
"Salah satu cara untuk mengatasi masalah kemacetan dan polusi udara akibat penggunaan kendaraan pribadi yang kurang efektif yaitu dengan menggunakan sistem berbagi tumpangan (ride sharing). Ride sharing merupakan suatu sistem dimana pelaku perjalanan berbagi (sharing) kendaraan dengan pelaku perjalanan lain yang memiliki waktu dan lokasi asaltujuan perjalanan yang sama atau hampir sama. Pada skripsi ini akan dibahas masalah optimasi penggunaan sistem berbagi tumpangan dengan kedatangan permintaan layanan baru diketahui saat akan melakukan pelayanan yang disebut juga dynamic ride sharing. Bentuk model matematis dari masalah tersebut akan menggunakan Dial-A-Ride-Problem with Money as incentive (DARP-M), yaitu suatu pengembangan dari DARP dengan menambahkan batasan dalam aspek biaya. Selanjutnya akan digunakan algoritma genetika sebagai metode penyelesaian dari masalah tersebut. Berdasarkan hasil percobaan yang dilakukan dalam skripsi ini diperoleh bahwa algoritma genetika cukup dapat memberikan solusi yang optimal untuk permasalahan tersebut dan dengan menggunakan ride sharing sebagai DARP-M akan memberikan penghematan biaya perjalanan bila dibandingkan tidak menggunakan ride sharing.

One way to overcome congestion and air pollution problems due to ineffective use of private vehicles is to use a ride sharing system. Ride sharing system itself refers to a system in which users share vehicles with other users who have the same or nearly same location of travel origin and destination as well as the same set of time. This thesis discusses the issues of optimizing the use of the ride-sharing system with the arrival of new service requests known when they are about to perform services to customers which is alson known as dynamic ride sharing. The form of a mathematical model used in this thesis to adress such issues is called Dial A Ride Problem with Money as incentives (DARP-M), which is a development of DARP by adding constrains in the aspect of costs. Furthermore, genetic algorithms is used as a method of problem-solving. Based on the results of the experiments conducted in this thesis, it is found that the genetic algorithm can provide an optimal solution to these issues and by using ride sharing, as DARP-M demonstrated, it could provide savings in travel costs when compared to not using ride sharing."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Esraminar
"Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) adalah masalah pencarian rute pengiriman barang yang optimal dengan mempertimbangkan lokasi pengiriman ke rumah pelanggan (home delivery) atau lokasi cadangan lain yang telah ditunjuk oleh pelanggan (roaming delivery). Jenis pengiriman tersebut dapat menjadi inovasi bagi pihak logistik dalam proses akhir pengiriman barang hingga sampai pada pelanggan (last mile delivery). Kerugian-kerugian seperti pencurian barang ataupun kerusakan barang karena pelanggan tidak berada di rumah dapat dihindari dan biaya operasional pengiriman dapat diminimalkan. Pada skripsi ini, digunakan metode algoritma genetika untuk mencari solusi dari VRPRDL. Data untuk simulasi percobaan terdiri dari 1 lokasi depot dan 30 pelanggan dengan masing-masing pelanggan memiliki 2 lokasi pengiriman yaitu 1 lokasi rumah dan 1 lokasi cadangan. Lokasi-lokasi pelanggan dan depot yang digunakan berada di provinsi DKI Jakarta. Hasil percobaan dengan menggunakan ukuran populasi 30, jumlah generasi 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.5 menunjukkan adanya penghematan total biaya menggunakan roaming delivery sebesar 18,90% dibandingkan dengan home delivery.

Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) is the problem of finding the optimal route for delivery of goods by considering the delivery location to the customer's house (home delivery) or other backup locations designated by the customer (roaming delivery). This type of delivery can be an innovation for logistics in delivering goods to the customer's last location or last-mile delivery. Such loss like theft of goods or damage to goods because the customer is not at home, can be avoided, and the operational shipping cost can be minimized. In this thesis, a genetic algorithm method is used to find a route solution for the problem. The data for the experimental simulation consists of 1 depot location and 30 customers with each customer having 2 delivery locations, namely one home location and one backup location. The locations of customers and depot used are in the province DKI Jakarta. The experimental result by using a population size of 30, the number of generations of 100, crossover rate (Cr) 0.7, and mutation rate (Mr) 0.5 indicates a total cost saving of using roaming delivery for 18.90% compared to home delivery."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teddy
"Proses pembuatan jadwal kuliah merupakan kegiatan yang panjang, membosankan, serta membutuhkan waktu dan pemikiran yang cukup besar jika dilakukan secara manual. Penyelesaian masalah penjadwalan kuliah secara otomatis dengan bantuan komputer dapat mengurangi waktu dan tenaga dalam membuat jadwal kuliah dan memperkecil terjadinya kesalahan yang disebabkan human error.
Genetic algorithm (GA) merupakan salah satu algoritma local search yang bekerja dengan memori yang kecil dan sering kali dapat menemukan solusi yang masuk akal dalam state space yang sangat besar yang tidak bisa ditemukan oleh algoritma yang sistematik sehingga cocok digunakan untuk menyelesaikan masalah penjadwalan kuliah. Penjadwalan kuliah adalah masalah yang multiobjective karena banyak aspek yang menentukan baik buruknya suatu jadwal kuliah. Oleh karena itu, pada tugas akhir ini digunakan algoritma multiobjective SPEA2.
Dalam tugas akhir ini, masalah penjadwalan kuliah dimodelkan sebagai constraint satisfaction problem, lalu diselesaikan dengan GA. Terdapat hard constraint dan soft constraint dalam penjadwalan kuliah. Setiap constraint dianggap sebagai satu fungsi objektif yang mempengarui nilai fitness individu. Pada eksperimen yang dilakukan, digunakan variasi: 1) ukuran test case: kecil, sedang, besar gasal, besar genap, 2) algoritma multiobjective: SPEA2 dan aggregation based, 3) 4 representasi chromosome, 4) GA parameter: populasi, archive size, crossover type, dan mutation rate, 5) constraint aktif.
Dari hasil eksperimen, GA dapat menyelesaikan penjadwalan kuliah dengan baik karena pada hampir semua test case yang dicobakan, GA dapat menghasilkan jadwal yang memenuhi semua constraint yang ada. Selain itu, mengenai parameter GA untuk masalah penjadwalan kuliah dapat disimpulkan: algoritma multiobjective SPEA2 lebih baik dari aggregation based, populasi semakin besar semakin baik, archive size yang ideal adalah 50% dari jumlah populasi, mutation rate sangat tergantung dari panjang genome.

The process of creating a university timetable is a long and tedious work that needs much time and energy if it is done manually. Solving university timetabling problem automatically with a computer not only can reduce time and energy but also prevent human error.
Genetic algorithm (GA) is one of local search algorithm that requires little memory and can often find a reasonable solution in a very big state space search which can not be found by systematic search algorithms. Therefore, it is useful for solving timetabling problem. Timetable scheduling is a multiobjective problem because there are many aspects that determine whether a schedule is good or bad. Because of that, in this research, multiobjective algorithm SPEA2 is used.
In this reasearch, timetabling problem is represented as a constraint satisfaction problem, then solved with GA. There are hard constraints and soft constraints in university timetabling problem. Each constraint is considered as an objective function that affect fitness value of an individual. In the experiment conducted, the variation used are: 1) test case size: small, medium, large odd, large even, 2) multiobjective algorithm: SPEA2 and aggregation based, 3) four different chromosome representations, 4) GA parameters: population, archive size, crossover type, and mutation rate, 5) active constraints.
From the results of the experiment, GA can successfully solve timetabling problems because in almost all the test cases tried, GA can generate schedules that satisfy all the constraints. In addition, conclusions about the GA parameters for the timetabling problem are: multiobjective algorithm SPEA2 is better than aggregation based, the greater the population the better, the ideal archive size is 50% of the population, mutation rate is highly dependent on the length of the genome."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Faiz Faruqi Fadhillah
"Penelitian ini bertujuan untuk menghasilkan jadwal mata kuliah di perguruan tinggi yang optimal, dengan mengurangi jumlah mata kuliah yang bentrok, serta distribusi kelas yang merata untuk meringankan beban mahasiswa. Untuk mencapai tujuan tersebut, optimasi jadwal dilakukan menggunakan algoritma genetika. Algoritma ini sangat cocok untuk menyelesaikan masalah skala besar dan kompleks, seperti penjadwalan mata kuliah di perguruan tinggi yang melibatkan banyak variabel dan kendala. Teknik local search digunakan untuk membantu algoritma genetika dalam meningkatkan kinerja dan mempercepat konvergensi. Penelitian ini diharapkan menghasilkan jadwal mata kuliah yang optimal berdasarkan kriteria jumlah mata kuliah yang bentrok, serta distribusi kelas yang merata untuk meringankan beban mahasiswa. Hasil penelitian menunjukkan bahwa jadwal baru yang optimal berhasil diperoleh.

This research aims to produce an optimal college course schedule by reducing the number of conflicting courses and ensuring an even distribution of classes to ease the students' workload. To achieve this goal, schedule optimization uses a genetic algorithm. This algorithm is well-suited for solving large-scale and complex problems, such as college course scheduling that involves many variables and constraints. Local search techniques assist the genetic algorithm in improving performance and accelerating convergence. This research is expected to produce an optimal course schedule based on the criteria of minimizing course conflicts and evenly distributing classes to ease students' workload. The research results show that an optimal new schedule was successfully obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Huahaean, Eltina W.
"Penelitian ini dilakukan untuk memperoleh jadwal operasi pasien elektif pada sebuah rumah sakit dengan sejumlah ruang operasi sehingga kendala ketersediaan dokter, kapasitas ruangan, dan keterdesakan waktu operasi bisa dipenuhi sebaik mungkin. Optimasi pernjadwalan dilakukan dengan algoritma genetika.
Penelitian ini menghasilkan jadwal penggunaan kamar operasi yang cukup baik dalam memenuhi kendala. algoritma yang dihasilkan juga bisa menampung fleksibilitas data pasien, ruang operasi, rentang hari penjadwalan, ketersediaan dokter.

Thus research aims to obtain optimum surgery schedule for elective patient for a hospital having several operating rooms so as to satisfy the constraints of surgeon availability, room capacity, and the urgency of some patient. Schedule optimization is achieved by usinf genetic algorithm.
Resulting schedule is satisfactort in satisfying the constraints. the proposed alogrithm can alson accommodate flexibility in number of patients to be operated on, number of operating rooms used, the day spans of scheduling, and availability of the surgeons.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42582
UI - Skripsi Open  Universitas Indonesia Library
cover
Riska Suryani
"Penempatan posisi Access Point pada Jaringan Wifi.id yang tepat sangat diperlukan untuk mengoptimalkan kekuatan sinyal yang diterima dari transmitter ke receiver. Parameter yang paling mempengaruhi dalam menentukan performa posisi Access Point adalah nilai kekuatan sinyal, karena nilai inilah yang akan digunakan untuk menentukan coverage area (cakupan sinyal) dari sebuah transmitter (Access Point).
Pada penelitan ini telah dilakukan pengukuran terhadap kekuatan sinyal access point terhadap penerima di ruang EBIS WITEL Yogyakarta yang diukur menggunakan InSSIDER dan dihasilkan RSSI (Receive Signal Strength Indicator) dari sebuah transmitter terhadap receiver. Dalam pengukuran juga digunakan propagasi Line Of Sight (LOS) dan propagasi Non Line Of Sight (NLOS). Data yang diperoleh dari hasil pengukuran dilapangan digunakan untuk melakukan pemodelan penempatan posisi Acces Point menggunakan metode algoritma genetika. Kekuatan sinyal RSSI yang diterima oleh receiver tidak hanya bergantung pada jarak antara transmitter dan receiver, akan tetapi menunjukkan variasi yang besar terhadap fading dan shadowing pada sebuah lokasi, juga pengaruh interferensi dapat menyebabkan penurunan sinyal (RSSI) yang diterima oleh receiver.
Dari hasil penelitian yang dilakukan, diharapkan dapat menghasilkan pemodelan yang sesuai dan tepat guna dalam melakukan optimisasi penempatan posisi Access Point pada jaringan Wifi.Id menggunakan metode algoritma genetika.

Positioning of access point on wifi.id?s network on the right place is needed to optimize the signal strength received from the transmitter to the receiver . The parameters that most influence in determining the performance of the position of the access point is the value of the signal strength, because the value that will be used to determine the coverage area (signal coverage) of a transmitter (access point).
In this research has been done measuring the signal strength of the access point to the receiver in the room EBIS Witels Yogyakarta measured using inSSIDer and generated RSSI (Receive Signal Strength Indicator) from a transmitter to a receiver. Measurements were also used in the propagation of Line Of Sight (LOS) and propagation Non Line Of Sight (NLOS). Data obtained from field measurements are used for modeling the placement of the access point using genetic algorithm. RSSI signal strength received by the receiver does not only depend on the distance between transmitter and receiver, but showed a large variation against fading and shadowing at a location, also influence the interference can cause a decrease in the signal (RSSI) received by the receiver.
From the research conducted, is expected to generate appropriate modeling and effective in optimizing the placement of the access point on the wifi.id?s network using genetic algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46057
UI - Tesis Membership  Universitas Indonesia Library
cover
Ervita Indah Pratiwi
"Pengiriman barang dari depot terakhir menuju ke lokasi pelanggan adalah pengiriman last mile. Pengiriman last mile sering dianggap sebagai tahap yang paling mahal dan kurang efisien. Beberapa permasalahan yang dihadapi dalam pengiriman last mile adalah biaya yang tinggi, waktu pengiriman yang lama, dan kemungkinan barang rusak. Penggunaan sistem kendaraan truck-drone dalam pengiriman last mile dapat dijadikan sebagai solusi untuk mengatasi permasalahan dalam last mile. Tujuan dari penelitian ini adalah menemukan rute pengiriman barang yang meminimalkan biaya pengiriman dengan menggunakan sistem truck-drone dalam last mile. Pendekatan yang diusulkan untuk mencari rute optimal terdiri dari dua fase yaitu fase clustering dan routing. Dalam fase clustering menggunakan mean shift clustering untuk mengelompokkan lokasi pelanggan dan mencari lokasi parkir (pusat cluster). Dalam fase routing menggunakan algoritma genetika untuk menemukan rute optimal. Implementasi pada 90 pelanggan didapatkan penggunaan metode mean shift clustering diikuti oleh algoritma genetika, dapat menghasilkan rute optimal yang meminimalkan total biaya. Hal ini ditunjukkan dari penurunan biaya pada rute mean shift clustering mencapai 3,51% dibandingkan clustering dengan metode intuitif. Selain itu, analisis hasil juga mencerminkan bahwa penerapan mean shift clustering mampu mengurangi total jarak sebesar 27,93 % dan waktu tempuh sebesar 25,83 % delivery.

Last-mile delivery is often considered the most expensive and less efficient stage. Some challenges in last-mile delivery include high costs, long delivery times, and the possibility of damaged goods. The use of a truck-drone system in last-mile delivery can be a solution to address these challenges. The objective of this research is to find delivery routes that minimize delivery costs using a truck-drone system in the last mile. The proposed approach to finding optimal routes consists of two phases: clustering and routing. In the clustering phase, mean shift clustering is used to group customer locations and identify parking locations (cluster centers). In the routing phase, a genetic algorithm is employed to find the optimal routes. The implementation on 90 customers showed that the use of mean shift clustering followed by a genetic algorithm could generate optimal routes that minimize the total cost. This is evident from the cost reduction in mean shift clustering routes by 3,51% compared to the initial clustering solution with intuitif method. Furthermore, the results analysis also reflects that the implementation of Mean Shift Clustering can reduce the total distance by 27.93% and travel time by 25.83%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>