Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 23067 dokumen yang sesuai dengan query
cover
Simarmata, Desy Magdalena
"Runtun waktu bernilai bilangan bulat nonnegatif berkembang pada banyak penerapan. Model runtun waktu Integer-valued Autoregressive dengan order 1 (INAR(1)) dikonstruksi menggunakan binomial thinning operator untuk memodelkan runtun waktu bernilai bilangan bulat nonnegatif. Model runtun waktu INAR(1) bergantung satu periode dari proses sebelumnya. Parameter model dapat diestimasi menggunakan conditional least squares (CLS). INAR(1) memiliki spesifikasi mengikuti model Autoregressive dengan order 1 (AR(1)). Peramalan INAR(1) menggunakan metode peramalan nilai tengah atau dengan metode peramalan Bayes. Metode peramalan nilai tengah menghitung secara langsung bilangan bulat yang membuat fungsi kepadatan kumulatif lebih besar sama dengan 0.5. Metode peramalan Bayes meramalkan nilai untuk h periode ke depan dengan membangkitkan barisan parameter model dan parameter suku pembaharuan menggunakan Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), kemudian dengan mengambil sampel u pada distribusi Uniform(0,1), akan dicari bilangan bulat terkecil yang membuat fungsi kepadatan kumulatif melebihi u. Model runtun waktu INAR(1) diaplikasikan pada jumlah kasus polio di Amerika Serikat mulai Januari 1970 sampai Desember 1983 per bulan.

Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued Autoregressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR(1) is depend on one period from the process before. Parameter of the model can be estimated by conditional least squares (CLS). Specification of INAR(1) is following the specification of AR(1). Forecasting in INAR(1) uses forecasting methodology or Bayes forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (cdf) until s is more than or equal to 0.5. Bayes forecasting methodology forecasts h step ahead by generate the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer where is more than or equal than u. u is a value taken from the Uniform (0,1) distribution. INAR(1) is applied on polio case in United States from January 1970 until December 1983 monthly.
"
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S65058
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sebastian Tricahya
"ABSTRAK
Peramalan jumlah pasien pneumonia dapat membantu subjek medis untuk mempersiapkan keperluan obat, pekerja, atau dalam pencegahan dengan melakukan penyuluhan pada orang tua, lansia, dan perokok. Permasalahan ini menyangkut kehidupan banyak orang, maka dari itu akurasi yang baik diperlukan dalam proses peramalan. Fuzzy Time Series (FTS) merupakan salah satu metode alternative dalam melakukan peramalan. Dengan metode yang umum digunakan seperti ARIMA dan Exponential Smoothing, terdapat kesulitan dalam mendapatkan model terbaik. FTS pada penelitian ini, memodifikasi algoritma yang digunakan Cheng (2008), dengan menggunakan OrdeTinggi (dua atau lebih data historis) untuk meningkatkan akurasi peramalan dan dilihat dari nilai Mean Absolute Percentage Error (MAPE). Data diambil dari jumlah pasien pneumonia di Jakarta tahun 2008 hingga 2018. Penelitian ini menggunakan bantuan aplikasi R dan Microsoft Excel untuk perhitungan sederhana. Akurasi peramalan akan semakin berkurang apabila dilakukan untuk meramalkan periode yang jauh. Maka, penelitian ini hanya akan meramalkan 5 periode kedepan. Hasil yang diperoleh FTS dengan membandingkan 2 metode yang pada umumnya digunakan (ARIMA dan Exponential Smoothing) adalah nilai MAPE secara terurut, 9.70%, 16.85%, dan 18.55%.

ABSTRACT
Forecasting the amount of Pneumonia patients could help medical practitioners to prepare the required medicines, aid-workers, or even prevent it by sharing knowledge to parents, elders, and smokers. This problem poses great concerns on the lives of many people, therefore, adequate accuracy is required in forecasting. Fuzzy Time Series (FTS) is an alternative way to forecast data. By using ARIMA and Holts Exponential Smoothing, there are some problems that are difficult to obtain the best model. Using our FTS method, we modified the Cheng algorithm by using higher order (using two or more historical data) to make the accuracy better by seeing the Mean Absolute Percentage Error (MAPE). Data was selected from the amount of Pneumonia Patients in Jakarta from 2008 to 2018. We use R to carryout ARIMA and Holts Exponential Smoothing. Forecastings accuracy will decrease if theti meframe between these occurrences is lengthy. As a result of this, we made use of 5 periods which are January until May 2019. The result obtained was compared against ARIMA and Holts Exponential Smoothing, as well as the MAPE are 9.70%, 16.85%, and 18.55% respectively. "
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gusti Ngurah Agung
New Jersey: John Wiley & Sons, 2009
519.55 IGU t
Buku Teks SO  Universitas Indonesia Library
cover
I Gusti Ngurah Agung
New Jersey: John Wiley & Sons, 2009
519.55 IGU t
Buku Teks SO  Universitas Indonesia Library
cover
Otnes, Robert K.
New York: John Wiley & Sons, 1978
519.232 OTN a
Buku Teks  Universitas Indonesia Library
cover
Dian Nurhayati
"ABSTRAK
Analisis runtun waktu dapat digunakan dalam peramalan nilai tukar mata uang. Model yang biasa digunakan adalah ARIMA (Autoregressive Integrated Moving Average). Namun tidak semua data nilai tukar mata uang dapat dimodelkan dengan ARIMA, karena ARIMA hanya dapat digunakan untuk memodelkan data secara linier sedangkan pola data nilai tukar mata uang biasanya memiliki komponen linier dan nonlinier. Pemodelan nonliner dapat dilakukan antara lain dengan menggunakan model ANN (Artificial Neural Network). Pada skripsi ini dibahas model hybrid ARIMA-ANN dalam peramalan nilai tukar dolar AS terhadap rupiah dimana dilakukan filter Moving Average (MA) terhadap data sebelum proses pemodelan. Penggunaan filter MA bertujuan untuk memisahkan data menjadi dua komponen yaitu komponen linier yang memiliki volatilitas rendah dan komponen nonlinier yang memiliki volatilitas tinggi. Penentuan panjang filter yang sesuai dibutuhkan dalam proses filter Moving Average. Data historis yang digunakan adalah data kurs jual dolar AS terhadap rupiah mulai dari 31 Maret 2015 hingga 17 Maret 2016 yang dapat diunduh dari http://m.kontan.co.id/data/kurs_bi. Terkait dengan data yang digunakan, model hybrid ARIMA (2,2,2) dan ANN (4,1,1) menghasilkan MAPE sebesar 0,2955% dan MAE 39,02916 (dalam rupiah) dalam peramalan nilai tukar dolar AS terhadap rupiah pada 3 hari ke depan.

ABSTRAK
Time series analysis can be used for forecasting since exchange rate. The ARIMA (Autoregressive Integrated Moving Average) is the model usually used. But, all data is not modeling by ARIMA, ARIMA is only modeling for linear data, however the data usually has linear and nonlinear component. The nonlinear modeling can be investigated by ANN (Artificial Neural Network) model. This skripsi discusses the hybrid model of ARIMA-ANN for forecasting exchange rate of USD to Rupiah, where the Moving Average (MA) filter will be applied previously on the data. The MA filter separates the data into two component, that is linear components which has a low volatile and nonlinear component which has a high volatile. The choosen length of MA filter is needed in MA filter processing. The historical data is selling exchange rate of USD to Rupiah, dated from March 31, 2015 to March 17, 2016, which can be downloaded from http://m.kontan.co.id/data/kurs_bi. Based on historical data, the hybrid ARIMA model (2,2,2) and the ANN model (4,1,1) give MAPE 0,2955% and MAE 39,02916 (in Rupiah) for forecasting exchange rate USD to Rupiah for the next 3 days."
2016
S64263
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bella Belinda
"

Model runtun waktu yang paling umum digunakan adalah runtun waktu diskrit yang mengasumsikan peubah yang diuji bersifat kontinu dan menghasilkan nilai kontinu. Padahal dalam banyak penerapan, diperlukan model runtun waktu diskrit yang dapat menangani peubah diskrit dan menghasilkan nilai diskrit juga. Salah satu model runtun waktu yang menangani data count atau bilangan bulat nonnegatif adalah model runtun waktu Integer-valued Autoregressive dengan order p yaitu INAR(p). Model ini dibangun dengan binomial thinning operator yang menerapkan operasi probabilistik dengan distribusi diskrit yang cocok memodelkan data count seperti Poisson dan Binomial. Parameter model akan diestimasi dengan metode Yule-Walker. Dalam penelitian ini, akan dibahas dan dijabarkan karakteristik dari model INAR(p) menggunakan operator binomial thinning. Spesifikasi INAR(p) mengikuti model Autoregressive dengan order p, AR(p). Peramalan INAR(p) menggunakan metode peramalan nilai tengah dengan menghitung probabilitas bersyarat dari setiap bilangan bulat nonnegatif yang mungkin menjadi nilai ramalan, lalu memilih nilai ramalan yang memiliki probabilitas bersyarat kumulatif lebih besar sama dengan 0,5. Model runtun waktu INAR(p) akan diaplikasikan pada data simulasi berjumlah 120 data yang bernilai bilangan bulat nonnegatif.


The most commonly used time series model is the discrete time series which assumes the variables being tested are continuous and produces continuous values. Whereas in many applications, a discrete time series model is needed to handle discrete variables and produce discrete values as well. Time series model that handles count or non-negative integer data is the Integer-valued Autoregressive model with the pth-order or INAR(p). This model is built with binomial thinning operator which implements probabilistic operations with discrete distribution that are suitable to model count data such as Poisson and Binomial. Model parameters will be estimated using the Yule-Walker method. In this research, we will discuss and describe the characteristics of the INAR(p) model using the binomial thinning operator. The INAR(p) specification follows the Autoregressive model with the p-th order, AR(p). Forecasting in INAR(p) uses median forecasting by calculating the conditional probability of each possible nonnegative integer value, then selecting a forecast value with a cumulative conditional probability greater than 0.5. The INAR(p) time series model will be applied to the 120 simulated data with nonnegative integer values.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Northampton : Elgar Reference Collection, 2003
330.015 REC
Buku Teks  Universitas Indonesia Library
cover
Brockwell, Peter J.
New York: Springer-Verlag, 1991
519.55 BRO t
Buku Teks  Universitas Indonesia Library
cover
Hannan, Edwar James
London: Science Paprbacks and Methuen, 1960
519 HAN t
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>