Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 53250 dokumen yang sesuai dengan query
cover
Riska Suryani
"Penempatan posisi Access Point pada Jaringan Wifi.id yang tepat sangat diperlukan untuk mengoptimalkan kekuatan sinyal yang diterima dari transmitter ke receiver. Parameter yang paling mempengaruhi dalam menentukan performa posisi Access Point adalah nilai kekuatan sinyal, karena nilai inilah yang akan digunakan untuk menentukan coverage area (cakupan sinyal) dari sebuah transmitter (Access Point).
Pada penelitan ini telah dilakukan pengukuran terhadap kekuatan sinyal access point terhadap penerima di ruang EBIS WITEL Yogyakarta yang diukur menggunakan InSSIDER dan dihasilkan RSSI (Receive Signal Strength Indicator) dari sebuah transmitter terhadap receiver. Dalam pengukuran juga digunakan propagasi Line Of Sight (LOS) dan propagasi Non Line Of Sight (NLOS). Data yang diperoleh dari hasil pengukuran dilapangan digunakan untuk melakukan pemodelan penempatan posisi Acces Point menggunakan metode algoritma genetika. Kekuatan sinyal RSSI yang diterima oleh receiver tidak hanya bergantung pada jarak antara transmitter dan receiver, akan tetapi menunjukkan variasi yang besar terhadap fading dan shadowing pada sebuah lokasi, juga pengaruh interferensi dapat menyebabkan penurunan sinyal (RSSI) yang diterima oleh receiver.
Dari hasil penelitian yang dilakukan, diharapkan dapat menghasilkan pemodelan yang sesuai dan tepat guna dalam melakukan optimisasi penempatan posisi Access Point pada jaringan Wifi.Id menggunakan metode algoritma genetika.

Positioning of access point on wifi.id?s network on the right place is needed to optimize the signal strength received from the transmitter to the receiver . The parameters that most influence in determining the performance of the position of the access point is the value of the signal strength, because the value that will be used to determine the coverage area (signal coverage) of a transmitter (access point).
In this research has been done measuring the signal strength of the access point to the receiver in the room EBIS Witels Yogyakarta measured using inSSIDer and generated RSSI (Receive Signal Strength Indicator) from a transmitter to a receiver. Measurements were also used in the propagation of Line Of Sight (LOS) and propagation Non Line Of Sight (NLOS). Data obtained from field measurements are used for modeling the placement of the access point using genetic algorithm. RSSI signal strength received by the receiver does not only depend on the distance between transmitter and receiver, but showed a large variation against fading and shadowing at a location, also influence the interference can cause a decrease in the signal (RSSI) received by the receiver.
From the research conducted, is expected to generate appropriate modeling and effective in optimizing the placement of the access point on the wifi.id?s network using genetic algorithm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46057
UI - Tesis Membership  Universitas Indonesia Library
cover
Ervita Indah Pratiwi
"Pengiriman barang dari depot terakhir menuju ke lokasi pelanggan adalah pengiriman last mile. Pengiriman last mile sering dianggap sebagai tahap yang paling mahal dan kurang efisien. Beberapa permasalahan yang dihadapi dalam pengiriman last mile adalah biaya yang tinggi, waktu pengiriman yang lama, dan kemungkinan barang rusak. Penggunaan sistem kendaraan truck-drone dalam pengiriman last mile dapat dijadikan sebagai solusi untuk mengatasi permasalahan dalam last mile. Tujuan dari penelitian ini adalah menemukan rute pengiriman barang yang meminimalkan biaya pengiriman dengan menggunakan sistem truck-drone dalam last mile. Pendekatan yang diusulkan untuk mencari rute optimal terdiri dari dua fase yaitu fase clustering dan routing. Dalam fase clustering menggunakan mean shift clustering untuk mengelompokkan lokasi pelanggan dan mencari lokasi parkir (pusat cluster). Dalam fase routing menggunakan algoritma genetika untuk menemukan rute optimal. Implementasi pada 90 pelanggan didapatkan penggunaan metode mean shift clustering diikuti oleh algoritma genetika, dapat menghasilkan rute optimal yang meminimalkan total biaya. Hal ini ditunjukkan dari penurunan biaya pada rute mean shift clustering mencapai 3,51% dibandingkan clustering dengan metode intuitif. Selain itu, analisis hasil juga mencerminkan bahwa penerapan mean shift clustering mampu mengurangi total jarak sebesar 27,93 % dan waktu tempuh sebesar 25,83 % delivery.

Last-mile delivery is often considered the most expensive and less efficient stage. Some challenges in last-mile delivery include high costs, long delivery times, and the possibility of damaged goods. The use of a truck-drone system in last-mile delivery can be a solution to address these challenges. The objective of this research is to find delivery routes that minimize delivery costs using a truck-drone system in the last mile. The proposed approach to finding optimal routes consists of two phases: clustering and routing. In the clustering phase, mean shift clustering is used to group customer locations and identify parking locations (cluster centers). In the routing phase, a genetic algorithm is employed to find the optimal routes. The implementation on 90 customers showed that the use of mean shift clustering followed by a genetic algorithm could generate optimal routes that minimize the total cost. This is evident from the cost reduction in mean shift clustering routes by 3,51% compared to the initial clustering solution with intuitif method. Furthermore, the results analysis also reflects that the implementation of Mean Shift Clustering can reduce the total distance by 27.93% and travel time by 25.83%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Bintang Koesalamwardi
"Desain optimal dari bangunan hemat energi menghadapi dua kebutuhan yang saling bertentangan, yaitu biaya yang seekonomis mungkin dan dampak lingkungan yang seminimal mungkin. Tingginya biaya bangunan hemat energi seperti near Zero Energy House disebabkan oleh tingginya harga peralatan dan material yang diaplikasikan seperti panel surya, insulasi dan lain-lain.
Tujuan dari penelitan ini adalah menemukan desain yang optimal dari sebuah near Zero Energy House, dengan studi kasus terhadap rumah 1 tingkat. Sasaran dari optimasi desain ini adalah kinerja biaya siklus hidup yang lebih ekonomis jika dibandingkan dengan bangunan konvensional.
Metode optimasi dengan algoritma genetika adalah metode optimasi paling sesuai untuk permasalahan optimasi desain yang memiliki banyak variabel. Sangat sulit untuk menemukan solusi tunggal, atau solusi terbaik untuk optimasi desain. Dengan menggunakan algoritma genetika, perancang bangunan dapat memilih salah satu dari solusi terbaik hasil optimasi yang sesuai dengan permintaan dan batasan-batasan yang ada.

Optimal design of energy efficient buildings facing two conflicting requirements, namely costs as economical as possible and minimal environmental impact. The high cost of energy efficient buildings as near Zero Energy House due to the high price of equipment and materials that are applied as solar panels, insulation and others.
The purpose of this research is to find the optimal design of a near Zero Energy House, with a case study on the first level. The goal of this design is the optimization of life cycle cost performance is more economical when compared to conventional buildings.
Optimization method with genetic algorithm optimization is the most suitable method for design optimization problem that has many variables. It is very difficult to find a single solution, or the best solution for design optimization. By using genetic algorithms, building designer can choose one of the best results of the optimization solution according to the demand and constraints that exist.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42845
UI - Tesis Membership  Universitas Indonesia Library
cover
Nurina Izzati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64469
UI - Skripsi Membership  Universitas Indonesia Library
cover
M. Nabil Arta
"Di Desain awal ruang mesin kapal biasanya dilakukan berdasarkan referensi desain sebelumnya seperti data rancangan, solusi teoretis optimal, alat-alat yang dibutuhkan dan batasan pada desain. Kemudian, data yang telah dirancang digunakan untuk fase desain berikutnya. Berikutnya perancang akan memodifikasi tata letak berdasarkan pertimbangan peralatan, analisis kinerja, dan evaluasi akhir. Akhirnya, tata letak yang optimal dipilih setelah dipertimbangkan berdasarkan pada pengetahuan dan pengalaman desainer.
Pada zaman sekarang, perdagangan pembuatan kapal dunia sangatlah ketat. Untuk bersaing di pasar perdagangan dunia, galangan kapal harus membuat inovasi terbaru yang dapat meningkatkan perusahaan mereka. Salah satu terobosan yang paling populer adalah membuat desain kapal lebih efisien.
Saat ini, berbagai konsep yang terkait erat dengan manajemen efisiensi sedang dieksplorasi secara terus-menerus. Di sisi lain, ruang mesin kapal adalah bagian paling rumit dari kapal sehingga strategi optimasi masih dikembangkan secara bertahap.
Sehubungan dengan semua itu, skripsi ini ditujukan untuk menunjukkan langkah baru yang dapat digunakan untuk mengoptimalkan ruang mesin yaitu dengan menggunakan metode algoritma genetika.
Metode ini akan digunakan dengan perincian: 1) Algoritma genetika yang digunakan untuk persiapan ruang mesin akan meningkatkan efisiensi perawatan kapal dan meminimalkan panjang pipa di ruang mesin. Dua hal tersebut secara tidak langsung berkaitan dengan penghematan biaya produksi. 2) Kapal cargo panamax digunakan sebagai sampel utama.

The initial design of the ships engine room is usually carried out based on previous design references such as design data, optimal theoretical solutions, tools needed and limitations on the design. Then, the data that has been designed is used for the next design phase. Next the designer will modify the layout based on equipment considerations, performance analysis, and final evaluation. Finally, the optimal layout chosen after consideration is based on the knowledge and experience of the designer.
Today, the worlds shipbuilding trade is very strict. To compete in the world trade market, shipyards must make the latest innovations that can improve their companies. One of the most popular breakthroughs is making ship design more efficient.
At present, various concepts that are closely related to efficiency management are being explored continuously. On the other hand, the engine room of the ship is the most complicated part of the ship so the optimization strategy is still being developed in stages.
In connection with all that, this thesis is intended to show a new step that can be used to optimize machine space by using the genetic algorithm method.
This method will be used with details: 1) The genetic algorithm used to prepare the engine room will improve the efficiency of ship maintenance and minimize the length of the pipe in the engine room. These two things are indirectly related to saving production costs. 2) Panamax cargo ships are used as the main sample.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hilma Qonitah
"Pada skripsi ini akan dibahas konsep ride sharing pada taksi, atau disebut juga taxi sharing, yang merupakan salah satu upaya untuk mengatasi masalah kemacetan akibat kurang seimbangnya jumlah kendaraan yang beredar dengan kapasitas jalan yang dapat menampung kendaraan. Pada taxi sharing, penumpang taksi berbagi kendaraan taksi dan biaya perjalanan dengan penumpang lain yang memiliki tempat asal-tujuan yang sama/hampir sama dalam waktu perjalanan yang hampir bersamaan. Pemanfaatan taxi sharing yang mengoptimalkan utilisasi kendaraan taksi, selain dapat mengurangi jumlah kendaraan taksi yang dibutuhkan untuk melayani konsumen dan mengurangi biaya operasional taksi, juga dapat mengurangi penggunaan bahan bakar, yang pada akhirnya mengurangi emisi gas buang kendaraan. Untuk memaksimalkan penggunaan taxi sharing, maka diperlukan pengoptimalan rute taksi dalam melayani penumpang, dimana masalah pencarian rute taxi sharing yang optimal dalam skripsi ini akan dimodelkan dalam bentuk mixed integer programming problem. Permasalahan ini diselesaikan menggunakan algoritma genetika, yang lahir dari sebuah inspirasi teori evolusi Darwin. Algoritma ini digunakan untuk mencari pasangan penumpang yang berbagi layanan taksi dan rute taksi yang optimal. Hasil percobaan dengan menggunakan ukuran populasi (popsize) 10, jumlah generasi 50 dan 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.2 menunjukkan bahwa yang sebelumnya terdapat 8 permintaan taksi dan 8 taksi, operator taksi dapat mengurangi jumlah taksi yang beroperasi sebesar satu taksi. Taksi yang menggunakan konsep taxi sharing, yaitu taksi 5 akan melayani permintaan 2 dan 8, dengan urutan menjemput permintaan 2 lalu 8, lalu mengantarkan permintaan 2 kemudian 8, dengan biaya yang dibayarkan Rp4.200,00 untuk permintaan 2 dan Rp14.700,00 untuk permintaan 8. Maka dari itu, keuntungan operator taksi menjadi lebih besar, penumpang dapat menghemat biaya perjalanan, dan penggunaan kendaraan di jalan berkurang.

This research will discuss about the implementation of taxi ride sharing system or taxi sharing as an attempt to find a solution for traffic jam problem that caused by an unequal number of public transportation units operated in the street and the lack of street capacity which supposed to facilitate it. With the present of taxi sharing system, consument can share their taxi trip with others passengers that going on to same direction at the same time. This solution can give benefit for consuments by sharing the trip cost while at the same time benefitted the public transportations provider to optimalized the utilization of the taxi units and cut off operationalization cost, benefitted society by minimalize the number of cars in the streets and reducing air polution from gasoline consumption. To make this taxi sharing system works it also needed an optimalization in taxi route for each trip service. This research will be trying to solved this challenges by examines the taxi-sharing route services through Mixed Integer Programming Problems. This process will be carried using a genetics algorythm which inspired from Darwin's theory of evolution. This algorithm is aiming to be effectively find and match pairs of passengers who use taxi sharing system and taxi routes. The experiment by using population size (popsize) of 10, number of generations 50 and 100, crossover rate (Cr) 0.7, mutation rate (Mr) 0.2 shows that from 8 taxi units to accomodate 8 taxi requests that have been received before, the taxi provider supposedly be able to effectively reduce the number of taxis into only 7 taxis to carry all of the sharing system passengers that requesting. A taxi that uses taxi sharing system will serve request number 2 and request number 8, by picking up request 2 then 8, then delivering request 2 then 8, with fees paid Rp4.200,00 for request 2 and Rp14.700,00 for request 8. Therefore, the profit of the taxi provider is greater, the passengers can save their trip costs, and the use of vehicles on the road can be decreased."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adila Alfa Krisnadhi
"Principal Componen Analysis (PCA) merupakan sebuah metode transformasi yang sangat berguna dalam sistem pengenalan wajah tiga dimensi. PCA berperan sangat baik sebagai alat pengekstraksi ciri yang sangat dibutuhkan dalam proses klasifikasi objek tiga dimensi yang diwakili oleh sekumpulan citra wajah dua dimensi. Dalam proses ekstraksi ciri dilakkan transformasi yang sekaligus melibatkan proses reduksi dimensi untuk mendapatkan ciri-ciri optimal sebagai basis ortogonal ruang wajah. Namun pada setiap himpunan citra wajah yang berbeda proses ini harus dilakukan berulang-ulang karena tingkat reduksi dimensi tersebut ditentukan oleh suatu parameter proporsi kumulatif nilai eigen yang harus ditentukan secara manual dari luar sistem. Akibatnya, proses untuk mendapatkan tingkat reduksi dimensi yang terbaik menjadi terhambat karena adanya proses trial and error tersebut. Disini akan dijelaskan sebuah metode untuk mengotomatisasi dan mengoptimasi proses di atas dengan menunjukkkan kinerja yang tidak kalah bahkan mampu memperbaiki kinerj PCA tanpa dikombinasikan dengan alogritma genetika, sehingga disini proses otomasi dan optimasi yang diharapkan dapat dinyatakan berhasil."
2003
JIKT-3-2-Okt2003-84
Artikel Jurnal  Universitas Indonesia Library
cover
Shafa Maghfira Auliarahim
"Saat ini persaingan antara maskapai penerbangan sangat ketat sehingga masing-masing maskapai penerbangan selalu mencari cara untuk meningkatkan kualitas dan mengoptimalkan operasional perusahaan. Masalah yang menjadi salah satu faktor terbesar dalam pengeluaran operasional adalah bagian penjadwalan. Makalah ini menawarkan model optimasi untuk rotasi penugasaan awak pesawat di industri penerbengan untuk menyusun strategi dan pola untuk menemukan rute yang optimal dengan mempertimbangkan biaya penugasan para awak pesawat untuk salah satu jenis pesawat di suatu maskpai penerbangan. Metode yang digunakan dalam penelitian ini adalah Algoritma Breadth First Search untuk pencarian pairing dan Algoritma Genetika untuk mendapatkan biaya penugasan yang paling minimum. Hasil dari penelitian ini adalah terdapat 147 rangkaian pairing dengan diperoleh total biaya penugasan sebanyak 186.062 dan terjadi penghematan sebesar 50.478 dari kondisi awal.

Currently the competition between airlines is so intense. Each airline is always looking for ways to improve their quality and optimize their operating costs. The problem that has become one of the biggest factors in operational rsquo s cost is the scheduling. This paper offers an optimization model for the rotation of aircraft crew assignments in the aircraft industry to devise strategies and patterns to find the optimal route to obtain the minimum total cost. The method used in this research is Breadth First Search algorithm for pairing search and Genetic Algorithm to get the minimum total hotel cost. The result of this research is there are 147 series of pairing with obtained the total hotel cost as much as 186.062 and there is savings of 50,478 from the initial conditions."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faiz Faruqi Fadhillah
"Penelitian ini bertujuan untuk menghasilkan jadwal mata kuliah di perguruan tinggi yang optimal, dengan mengurangi jumlah mata kuliah yang bentrok, serta distribusi kelas yang merata untuk meringankan beban mahasiswa. Untuk mencapai tujuan tersebut, optimasi jadwal dilakukan menggunakan algoritma genetika. Algoritma ini sangat cocok untuk menyelesaikan masalah skala besar dan kompleks, seperti penjadwalan mata kuliah di perguruan tinggi yang melibatkan banyak variabel dan kendala. Teknik local search digunakan untuk membantu algoritma genetika dalam meningkatkan kinerja dan mempercepat konvergensi. Penelitian ini diharapkan menghasilkan jadwal mata kuliah yang optimal berdasarkan kriteria jumlah mata kuliah yang bentrok, serta distribusi kelas yang merata untuk meringankan beban mahasiswa. Hasil penelitian menunjukkan bahwa jadwal baru yang optimal berhasil diperoleh.

This research aims to produce an optimal college course schedule by reducing the number of conflicting courses and ensuring an even distribution of classes to ease the students' workload. To achieve this goal, schedule optimization uses a genetic algorithm. This algorithm is well-suited for solving large-scale and complex problems, such as college course scheduling that involves many variables and constraints. Local search techniques assist the genetic algorithm in improving performance and accelerating convergence. This research is expected to produce an optimal course schedule based on the criteria of minimizing course conflicts and evenly distributing classes to ease students' workload. The research results show that an optimal new schedule was successfully obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Niyar Nurfarikhah
"Pendistribusian BBM di Region Ambon memiliki tantangan berupa terbatasnya akses transportasi melalui jalur darat dikarenakan kondisi geografis yang terdiri dari pulau-pulau sehingga pendistribusain menjadi rumit dan mengalami keterlambatan penyaluran BBM. Sehingga diperlukakn rute distribusi yang optimal untuk memastikan penyaluran BBM tidak terlambat dan tidak ada kelangkaan BBM. Penelitian ini mengimplementasikan metode optimasi dengan mempergunakan algoritma Genetika dan Particle Swarm Optimization untuk pemilihan rute distribusi dengan tujuan meminimalisir jarak tempuh. Data jarak mil laut antar pelabuhan, kecepatan kapal pada tiap pelabuhan diolah menjadi sebuah model Asymmetric Travelling Salesman Problem (ATSP). Penerapan dua algoritma yaitu : Algorima Genetika dan particle swarm optimization dipergunakan untuk menyelesaikan model ATSP yang dibuat dengan fungsi objektif jarak tempuh yang seminimum mungkin. Variasi pada destinasi awal/akhir dari pemilihan rute juga dilakukan sebagai parameter uji tambahan dari setiap algoritma. Hasil penelitian menunjukkan bahwa algoritma genetika memberikan rute terpendek dan efisien dibandingkan particle swarm optimization pada setiap pemilihan rute yang dilakukan. Hal ini membuktikan bahwa algoritma genetika lebih efektif dalam menentukan rute pendistribusian BBM yang lebih pendek dan efisien.

The distribution of BBM in the Ambon Region has challenges in the form of limited access to transportation via land routes due to geographical conditions consisting of islands so that distribution becomes complicated and delays fuel distribution. So that an optimal distribution route is needed to ensure the distribution of fuel is not late and there is no shortage of fuel. This study implements an optimization method using the Genetic Algorithm and Particle Swarm Optimization for the selection of distribution routes with the aim of minimizing the distance traveled. Nautical mile distance data between ports, ship speed at each port is processed into an Asymmetric Traveling Salesman Problem (ATSP) model. The application of two algorithms, namely: Genetic Algorithm and particle swarm optimization is used to solve the ATSP model which is made with the objective function of the distance traveled as minimal as possible. Variations in the initial/final destination of the route selection are also performed as additional test parameters of each algorithm. The results showed that the genetic algorithm provides the shortest and most efficient route compared to particle swarm optimization for each route selection made. This proves that the genetic algorithm is more effective in determining the shorter and more efficient fuel distribution route."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>