Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 168760 dokumen yang sesuai dengan query
cover
Kms Novranza
"ABSTRAK
Telah dilakukan penelitian guna mendelineasi karakteristik dan geometri
reservoar pada lapangan geothermal ?A? berdasarkan interpretasi data 3G.
Penelitian ini menggunakan metode remote sensing untuk memetakan struktur
dan alterasi di permukaaan. Analisis geokimia digunakan untuk mengetahui
karakteristik sistem geothermal dan analisis geofisika digunakan untuk
memetakan kondisi sistem geothermal di bawah permukaan. Berdasarkan analisis
remote sensing dengan menggunakan teknik band combination secara
pengamatan manual diketahui bahwa arah utama dari kelurusan-kelurusan yang
berkembang di daerah penelitian A adalah Barat laut-Tenggara. Kelurusan ini
berkorelasi dengan kemunculan manifestasi permukaan. Analisis remote sensing
juga menemukan 4 lokasi yang diduga terdapat alterasi di permukaan. Analisis
data geokimia menunjukkan bahwa manifestasi SE dan KB merupakan
manifestasi tipe upflow dan manifestasi yang muncul di BB, SU, TR dan SJ
merupakan tipe manifestasi outflow. Geothermometer gas menunjukkan
temperatur reservoar adalah sekitar 250 °C. Analisis data geofisika menggunakan
37 data titik ukur magnetotellurik dan 286 titik ukur gravitasi. Berdasarkan inversi
3D data MT dan pemodelan gravitasi, diketahui bahwa lapisan clay cap dengan
nilai resistivitas rendah (≤ 10 Ωm) dan densitas 2,3 gr/cc tersebar di sekitar
manifestasi SE mulai di dekat permukaan dan melebar ke arah MAP BB dengan
ketebalan 1500 meter sampai 2000 meter. Batuan clay cap diduga terdiri dari
satuan batuan Lava KB Muda yang mengalami alterasi hidrothermal. Lapisan
reservoar terletak di bawah clay cap dengan nilai resistivitas >10 ? 65 Ωm dan
densitas 2,4 gr/cc yang diduga merupakan satuan batuan KB Tua 2. Base of
Conductor (BOC) diperkirakan berada pada kedalaman 1500 m dengan updome
berada di bawah manifestasi SE. Luas area prospek pada lapangan geothermal A
berdasarkan peta BOC adalah sekitar 18 km2.

ABSTRACT
The research had been conducted to delineate characteristic and reservoir
geometry in ?A? geothermal field based on 3G data interpretation. This research
used remote sensing method to map the structure and alteration on the surface.
Geochemical and geophysical analysis are used to identify the geothermal system
characteristic and map geothermal system condition in the subsurface. Based on
the remote sensing analysis by using band combination in manual observation, the
main direction of lineaments developed in area ?A? is North West-South East.
This lineaments is corelated to the appearance of surface manifestation. The
remote sensing analysis also found four locations which are inferred as alteration
on the surface. The geochemical data analysis shows that SE and KB
manifestations are the upflow type manifestation and manifestations which appear
in BB, SU, TR, and SJ are the outflow type manifestations. Gas geothermometer
shows that the reservoir temperature is about 250 °C. The analysis of geophysics
data uses 37 magnetotelluric points and 286 gravity points. Based on 3D inversion
and gravity modelling, it is found that the clay cap layer which has low resistivity
value (≤ 10 Ωm) and density 2.3 g/cc scatters around the SE manifestation, from
the nearby surface and widen to MAP BB direction with thickness of 1500 meters
to 2000 meters. Clay cap rock is interpreted as Lava KB Muda rock which
undergoes hydrothermal alteration. Reservoir layer is located underneath clay cap
with resistivity value >10 ? 65 Ωm and density 2.4 g/cc which is interpreted as
KB Tua 2 rock. Base of Conductor (BOC) is estimated to be within in the depth of
1500 m with the updome is beneath SE manifestation. The prospect area in ?A?
geothermal field based on the BOC map is calculated about 18 km2."
2016
T46434
UI - Tesis Membership  Universitas Indonesia Library
cover
Gabriella Eka Putri
"Sebagian besar reservoir berisikan sand body tebal dan tipis pada interval yang sama, sedangkan nilai amplitudo data seismik umumnya menyoroti sand body pada ketebalan ¼ panjang gelombang untuk fenomena tuning. Metode ini menggunakan machine learning untuk menghubungkan interpretasi well-log dan multiple-frequency seismic attributes untuk prediksi kuantitatif sand thickness. Implementasi dekomposisi spektral seismik dengan menggunakan transformasi wavelet kontinu (CWT) dan ekstraksi seismic spectral attributes (SSAs) dari target reservoir yang diinginkan dilakukan. Untuk mengurangi waktu komputasi dan ruang penyimpanan untuk analisis dan visualisasi SSA maka digunakan analisis data multi-dimensi dengan principal component analysis (PCA). Dengan menggunakan red-green-blue (RGB) blending technique, dibuat peta fasies pengendapan bawah permukaan beresolusi tinggi dari komponen utama tereduksi dari SSA multi-dimensi asli. Unsupervised classification melalui clustering SSA untuk menghasilkan klasifikasi fasies seismik reservoir dan kombinasi gradient boosting classifier (GBC) dan metode clustering dilakukan untuk menghasilkan prediksi ketebalan kuantitatif dari reservoir. Maka dapat disimpulkan bahwa analisis SSA multi-dimensi dengan machine learning ini dapat berguna untuk klasifikasi fasies dan delineasi reservoir.

Most reservoirs contain thick and thin sand bodies at the same intervals, while the amplitude values of seismic data usually highlight sand bodies near the ¼ wavelength for the tuning phenomena. This method uses machine learning to link well-log interpretation and multiple-frequency seismic attributes for the quantitative prediction of sand thickness. Extraction of Seismic Spectral Attributes (SSAs) of the target reservoir of interest is done. To reduce the computational time and storage space for SSAs analysis and visualization, the multi-dimensional data analysis using principal component analysis (PCA) is proposed. By using red-green-blue (RGB) blending technique, a high-resolution subsurface depositional facies map from the reduced principal components from the original multi-dimensional SSAs is created. Unsupervised classification via clustering of SSAs to generate a seismic facies classification of the reservoir and combination of gradient boosting classifier (GBC) and the clustering methods are done to provide a quantitative prediction of the reservoir thickness. Then it can be concluded that our machine-aided multi-dimensional SSAs analysis can be useful for facies classification and reservoir delineation."
Depok: Fakultas Matematika dan Ilmu Pemgetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadhli Yusuf
"Permasalahan delineasi sistem geothermal adalah hal yang penting untuk dikaji, karena akan menentukan seberapa besar prospek panas bumi yang berada di subsurface. Metode magnetik bisa menentukan zonasi daerah di subsurface yang mengalami demagnetisasi akibat thermal. Batuan yang menjadi penyusun reservoir mengalami perubahan suseptibilitas dari tinggi ke rendah akibat pengaruh fluida dan panas dari heat source yang berada pada sistem tersebut.
Penelitian ini telah membuktikan keberadan delineasi sistem panas bumi Lapangan "E" dengan metode Magnetik dan Magnetotellurik, data magnetik sebanyak 674 titik dikoreksi dengan diurnal variation dan undistributed earth magnetic field atau lebih dikenal dengan IGRF. Setelah itu telah dilakukan kontinuasi hingga ketinggian 700 m asl, dan terlihat bodi yang berorientasi dipole dengan arah NE-SW pada inklinasi intermediet. Dilakukan Reduction to Pole pada hasil pengangkatan keatas dan didapatlah anomali low negatif yang mengindikasikan keberadaan hydrothermally demagnetization rock.
Hasil RTP juga dikorelasikan dengan kurva apparent resistivity MT, didapatkan nilai anomali low negatif cenderung berasosiasi dengan kurva MT tipe H. Kontur RTP dimodelkan dengan inversi 3D magnetik dan didapatkan zonasi reservoir berada dikedalaman mean sea level s/d 1900 m bsl. Cross korelasi pun dilakukan antara hasil Inversi 3D magnetik dan 2D Forward Modelling Magnetik serta inversi MT, bahwa zona batuan reservoir memiliki suseptibilitas sebesar 0.04-0.06 Cgs dan dengan resistivitas 20-80 ohm.m, Keberadaan reservoar panas bumi diduga berada di zona upflow hingga ke arah SW yang berada di sekitar sesar utama di daerah lapangan" E" yang berasosiasi dengan anomali low negatif sebesar-300 s.d -550 nT.

The delineation problem of the geothermal system is important to examine, as it will determine how big the geothermal prospects are in the subsurface. Magnetic methods can zonate the subsurface region undergoing thermal demagnetization processes. The rocks that make up the reservoir have changed the susceptibility from high to low due to the influence of fluid and heat from the heat source in the system.
This research has proved the existence of Geothermal Field 39 s delineation of Field E with Magnetic and Magnetotellurik method, 674 points magnetic data corrected by diurnal variation and undistributed earth magnetic field or better known as IGRF.After that continuity has been carried out to a height of 700 m asl, and visible dipole oriented body with NE SW direction in intermediate inclination. Reduction to Pole was performed on uplift and obtained a low negative anomaly indicating the presence of hydrothermally demagnetization rock.
The RTP results are also correlated with the apparent resistivity MT curve, and the low negative anomaly values tend to be associated with the Type H MT curve. The RTP contour is modeled by a 3D magnetic. And the reservoir zonation is in the mean sea level to 1900 m bsl. Cross correlation was performed between magnetic 3D Inversion and 2D Forward Modeling Magnetic and MT inversion, that reservoir rock zone has a susceptibility of 0.04 0.06 Cgs and with resistivity of 20 80 ohm.m The existence of geothermal reservoir is suspected to be in the upflow zone up to SW direction is in the vicinity of the main fault in the E field area associated with a negative low anomaly 300 s d 550 nT.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S67018
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan
"Pemahaman kondisi reservoir merupakan salah satu aspek penting dalam aktivitas monitoring proses produksi fluida dalam sistem panas bumi. Langkah awal manajemen reservoir bagi Lapangan Panas Bumi FR yang baru berproduksi sejak tahun 2014 perlu dilakukan. Penelitian ini bertujuan mendelineasi reservoir khususnya fasa uap menggunakan metode tomografi waktu tunda. Penelitian ini menggunakan data seismogram yang diukur selama 95 hari yang direkam oleh 11 stasiun perekaman. Hasil picking waktu tiba mendapatkan 215 kejadian gempa mikro dengan minimal terekam oleh 3 stasiun perekaman. Distribusi hiposenter awal menunjukkan posisi episenter cenderung mengkluster pada sumur produksi akan tetapi dari segi kedalaman hiposenter masih terdapat fix depth pada elevasi 1170 masl, oleh sebab itu masih diperlukan proses relokasi hiposenter. Relokasi hiposenter dilakukan dengan dua metode secara kombinasi yaitu menggunakan metode Joint Hypocenter Determination (JHD) dan metode double difference. Selanjutnya dilakukan proses tomografi waktu tunda menggunakan perangkat lunak simulsp12.
Hasil distribusi relokasi hiposenter menunjukkan satu cluster di sekitar sumur produksi utama yaitu sumur B dan C. Sedangkan dari segi kedalaman hiposenter terdistribusi cluster disekitar trajectory sumur produksi B dan C dari elevasi 1000 sampai 0 masl dengan residual waktu tempuh antara 0.2 sampai 0.4 detik. Hasil tomogram menunjukkan bahwa pada elevasi sekitar 2000 sampai 1000 masl diduga sebagai zona batuan yang mengandung air dengan tingkat alterasi yang cukup besar yaitu zona clay cap dengan nilai VP/VS berkisar 1.73. Sedangkan dugaan zona uap berada pada elevasi 1000-500 masl dengan nilai VP/VS berkisar 1.67-1.7 melampar sepanjang Kawah Ciwidey dengan Kawah Putih. Selanjutnya dilakukan rekonstruksi model konseptual sederhana Lapangan Panas Bumi FR Jawa Barat dengan mengintegrasikan antara data utama penelitian yaitu tomografi microearthquake dan distribusi hiposenter yang sudah terelokasi dengan data pendukung berupa line penampang metode MT 2-D, section vertikal geologi berdasarkan data cutting sumur, profiling sumur temperatur serta lokasi sumur ekstraksi untuk memberikan arah fluida.

Understanding reservoir conditions is one of the important aspects in fluid production monitoring activity in geothermal systems. The initial step of reservoir management in the FR Geothermal Field which has only been producing since 2014 needs to be done. The object of this study to delineate the reservoir elemen especially the vapor phase using the tomography delay time method. This research used seismogram data measured for 95 days recorded by 11 seismometers. Arrivals time picking results get 215 micro earthquake events with a minimum recorded by 3 recording seismometers. The initial hypocenter distribution shows that the position of the epicenter tends to cluster in production wells but in terms of hypocenter depth there still fix depth at 1170 masl, therefore hypocenter relocation is still needed. Hypocenter relocation is done by two methods in combination. The first use Joint Hypocenter Determination (JHD) and second Double difference relocation method. Then the delay time tomography invers is using simulsp12 software.
The results of the hypocenter relocation distribution show one cluster around the main production wells that are wells B and C. While in terms of hypocenter depth distributed clusters around the trajectory of production wells B and C from elevations 1000 to 0 masl with a residual travel time of 0.2 to 0.4 seconds. The tomogram results show that at an elevation arround elevation 2000 to 1000 masl it is prediction that the zone containing water with a considerable alteration rate or usually calls of clay cap zone with a value of Vp / Vs ranging from 1.73. While the prediction steam zone is at an elevation of 1000-500 masl with a value of Vp / Vs ranging from 1.67-1.7 on the part between Ciwidey Crater and Putih Crater. The reconstruction of a simple conceptual model of West Java FR Geothermal Field by integrating the main data likes hypocenter distribution that has been relocated and microearthquake tomography with supporting data in the form of cross section MT 2-D method, geological vertical section based on well cutting data, profiling temperature wells and location of extraction wells to provide fluid direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marpriansyah
"Lapangan panasbumi Wayang Windu sudah berproduksi dari tahun 2000 dengan memproduksikan uap sebanyak 227 MW. Selama masa produksi yang dilalui, terdapat beberapa masalah muncul dipermukaan terutama yang bekaitan dengan beberapa sumur 1 fasa di bagian utara lapangan Wayang Windu. Adapun permasalah yang ada diantaranya: penurunan produksi yang melebihi kondisi normal, penurunan tekanan reservoir yang mengkhawatirkan setiap tahunnya, dan indikasi peningkatan jumlah sumur superheat. Analisa yang dilakukan terbatas pada analisa produksi, logging sumur dan geokimia fluida geokimia terutama dari beberapa sumurdi bagian utara lapangan Wayang Windu. Selanjutnya semua data yang ada disandingkan dengan data Microearthquake MEQ, dan hasil monitoring data tracer injection yaitu untuk melihat keberadaan reservoir brine terhadap kinerja reservoir uap untuk kepentingan sustainability. Semua data yang dianalisa adalah data yang diperoleh dari tahun 2000 sampai 2017.
Penelitian ini diharapkan dapat memberikan informasi secara terintegrasil terhadap permasalahan terkini yang dihadapi, selanjutnya dapat diambil langkah perbaikan dalam upaya melakukan penerapan reservoir managemen yang lebih baik untuk kelangsungan produksi, sekaligus memberikan masukan terhadap bagaimana menerapkan strategi injeksi fluida brine/condensat untuk mempertahankan kinerja produksi dan peforma reservoir lapangan Wayang Windu terutama dalam upaya mempertahankan performa reservoir uap.

Geothermal Wayang Windu Wayang field has been produced since 2000 by producing 227 MW of steam in total. During the production period, there are some problems appearing on the surface especially those associated with 1 phase steam production at some wells in the northern of Wayang Windu field. The problems are decreasing production that exceeds of normal decline condition, decreasing significant reservoir per year, and increasing of number of superheat wells. The analysis are limited to production decline analysis based on steam production data, reservoir performance analysis from well record logging data, and geochemical fluid analysis from several 1 phase steam well at the northern part of Wayang Windu field. Furthermore, all existing data is juxtaposed with information from Micro Earthquake MEQ, and tracer injection data support to see the relationship between wells or reservoir and performance presence of the brine reservoir support for the production sustainability. All data were obtained from the surface record from 2000 but with focussed on mainly data obtained after the existence of Unit 2 in 2009.
This research is expected to provide complete integrated information on the latest problems encountered in the field of Wayang Windu, and furthermore it is expected to give some reccomendation for better good reservoir management improvement as part of maintaining the continuity of production in the future, as well as providing recommendation to how implement good strategy for brine condensate injection in order to maintain reservoir and well production performance at Wayang Windu Field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T48816
UI - Tesis Membership  Universitas Indonesia Library
cover
Sinaga, Rebecca Putri
"Reservoir merupakan salah satu komponen utama pada sistem panas bumi. Fluida panas terakumulasi pada reservoir yang merupakan lapisan batuan permeabel. Metode Microearthquake dapat digunakan untuk mengetahui zona permeabel pada sistem panas bumi. Pengamatan hiposenter gempa-gempa mikro yang terjadi merupakan teknik yang cukup menjanjikan dalam mendeteksi zona permeabel pada sistem panas bumi. Penentuan hiposenter awal gempa mikro dilakukan dengan menggunakan metode Single Event Determination SED. Relokasi hiposenter gempa mikro dilakukan untuk mendapatkan lokasi hiposenter yang lebih akurat serta untuk mengurangi pengaruh kesalahan model kecepatan yang tidak sesuai dengan keadaan bawah permukaan yang kompleks.
Metode relokasi yang digunakan pada penelitian ini adalah Double Difference yang merupakan metode paling efisien, cepat dan menghasilkan error yang kecil serta tidak memerlukan koreksi stasiun. Data pemantauan aktivitas gempa mikro di lapangan panas bumi R yang digunakan ialah data sejak April 2012 hingga Oktober 2012 dengan menggunakan 18 stastiun pengukuran. Proses pengolahan data dilakukan dari data mentah berupa data time series. Distribusi hiposenter gempa mikro yang telah direlokasi kemudian dicocokkan dengan data pendukung berupa data MT dan Geologi.
Dari penelitian yang telah dilakukan didapatkan hasil bahwa pada daerah Selatan Gunung R terdapat aktivitas seismik dalam jumlah yang signifikan. Distribusi gempa mikro di daerah Selatan Gunung R membentuk klaster dan pattern patahan arah Barat Laut ndash; Tenggara. Sebaran titik hiposenter tersebut diinterpretasikan sebagai zona permeabel di bawah permukaan, dengan pattern patahan arah Barat Laut ndash; Tenggara sebagai pengontrol sistem panas bumi Gunung R.

Reservoir is one of the important components in geothermal system. Hot fluids are accumulated in Reservoir which is a thick layer of permeable rocks. Micro earthquake method can be used to identify the permeable zone in geothermal system. Observation of the micro earthquake hypocentres is a promising technique in detecting the permeable zone. The determination of the hypocentre is performed by using single event determination method SED Method. Micro earthquake hypocentre relocation is done to get more accurate locations and to reduce errors that happen because of the inaccuracy velocity model that is used.
Relocation method that is used in this research is double difference relocation which is the most efficient, fast and generating less error with no need of station correction. Data recording of micro earthquake activity in R geothermal Field that is used in this research are from June 2012 to October 2012 with 18 stations recording. The processing data starts from raw data which is time series data. The distribution of the hypocentre that has been relocated then matched to the supporting data which are MT and Geology data.
From the research that has been done, the result shows that there is a significant amount of seismic activity on the Southern part of Mount R. The distribution of micro earthquake form cluster and structure pattern NW ndash SE. The distribution of hypocentre can be interpreted as the permeable zone beneath the surface, with a NW SE fault pattern as the controller of the geothermal system on R geothermal field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S67134
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurrul Ahmad Hidayat
"Penelitian ini membahas karakterisasi zona reservoar hidrokarbon berdasarkan analisis petrofisika. Penelitian dilakukan dengan melakukan evaluasi formasi dan analisis petrofisika. Dalam evaluasi formasi dibutuhkan parameter-parameter fisika untuk mengevaluasi dan memprediksi kandungan minyak dan gas bumi dalam batuan reservoar. Parameter-parameter fisika tersebut adalah kandungan lempung, porositas, kejenuhan air dan permeabilitas yang didapatkan dari analisis petrofisika.
Dalam penelitian ini dilakukan analisis petrofisika dari 7 data sumur. Berdasarkan hasil akhir analisis petrofisika, reservoar zona target pada lapangan penelitian adalah reservoar pada sumur Lisburne 1 dengan kandungan lempung sebesar 9%, porositas efektif 24% dan saturasi air 10%. Litologi pada reservoar ini merupakan batupasir dengan ketebalan reservoar sebesar 53,64 meter. Reservoar ini terletak pada kedalaman 1978 - 2154 ft.

This study discusses the caracterization of hydrocarbon reservoir zones based on petrophysical analysis. The study was conducted by formation evaluation and petrophysical analysis. In formation evaluation physics parameters needed to evaluate and predict the content of oil and gas in the reservoir rocks. The physical parameters are the clay content, porosity, water saturation and permeability obtained from petrophysical analysis.
In this study carried petrophysical analysis of 7 well data. Based on the final results of petrophysical analysis, reservoir target zone on the research field is reservoir at Lisburne 1 well with the clay content is 9%, effective porosity is 24% and water saturation is 10%. Lithology in this reservoir is sanstone with a reservoir thickness is 53,64 meters. The reservoir lies at a depth 1978 - 2154 ft.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2013
S47333
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Riziq Maulana
"Identifikasi zona permeabel merupakan aspek penting dalam pengembangan dan pemantauan bidang panas bumi. Zona permeabel umumnya dikaitkan dengan kondisi tegangan bawah permukaan dan adanya struktur seperti fraktur di reservoir. Distribusi dan orientasi fraktur menjadi jalur untuk perbanyakan cairan di reservoir panas bumi. Salah satu metode geofisika untuk mendeteksi keberadaan zona permeabel adalah metode gempa mikro. Metode ini merekam respons alami tegangan-regangan batuan. Studi ini membahas distribusi gempa mikro, distribusi intensitas, dan orientasi fraktur. Data yang digunakan adalah data gempa mikro yang direkam oleh seismogram pada periode Januari - April 2018. Penentuan gempa hiposenter awal menggunakan perangkat lunak Hypo71. Hasil distribusi Hypocenter dari perhitungan Hypo71 masih memiliki spatial error dan residual RMS yang tinggi karena model kecepatan belum sesuai dengan kondisi bawah permukaan lapangan. Oleh karena itu, pembaruan model kecepatan dan relokasi hiposenter diperlukan dengan perangkat lunak Joint Hypocenter Determination (JHD) Velest. Distribusi hiposenter yang telah dipindahkan menunjukkan pergeseran posisi hiposenter ke area zona produksi dan beberapa mengikuti tren struktur permukaan. Sedangkan untuk memetakan distribusi intensitas dan orientasi fraktur, analisis Shear Wave Splitting (SWS) digunakan. Fenomena SWS terjadi ketika gelombang S merambat melalui media anisotropi. Gelombang S akan dibagi menjadi dua polarisasi (ɸ) dengan kecepatan yang berbeda, yaitu Sfast yang paralel dan Sslow yang tegak lurus dengan orientasi fraktur. Teknik korelasi rotasi digunakan untuk menentukan parameter SWS, yaitu arah polarisasi (ɸ) dan waktu tunda (dt) gelombang S. Hasil penelitian ini menunjukkan bahwa area tengah WKP memiliki intensitas patah yang tinggi didukung oleh keberadaan sumur dengan produksi uap terbesar di lapangan dan munculnya struktur yang lebih kompleks di permukaan. Sedangkan arah dominan orientasi fraktur dalam penelitian ini relatif paralel mengikuti tren struktur lokal NW-SE dan NE-SW.

Identification of permeable zones is an important aspect in the development and monitoring of the geothermal field. Permeable zones are generally associated with subsurface stress conditions and the presence of fracture-like structures in the reservoir. The distribution and orientation of the fracture is the pathway for the multiplication of fluids in geothermal reservoirs. One geophysical method for detecting permeable zones is the micro earthquake method. This method records the natural response of stress-strain rocks. This study discusses the micro earthquake distribution, intensity distribution, and fracture orientation. The data used are micro earthquake data recorded by seismograms in the period January - April 2018. Determination of the initial hypocenter earthquake using Hypo71 software. Hypocenter distribution results from the calculation of Hypo71 still have high spatial error and RMS residuals because the velocity model is not in accordance with the subsurface conditions. Therefore, updating the speed model and relocating the hypocenter is needed with Velest Joint Hypocenter Determination (JHD) software. The distribution of the hypocenter that has been moved shows a shift in the position of the hypocenter to the area of ​​the production zone and some follows the surface structure trends. Whereas to map the fracture intensity and orientation distribution, Shear Wave Splitting (SWS) analysis is used. SWS phenomenon occurs when S waves propagate through anisotropic media. S waves will be divided into two polarizations (ɸ) with different speeds, namely Sfast which is parallel and Sslow which is perpendicular to the fracture orientation. Rotational correlation technique is used to determine the SWS parameters, namely the direction of polarization (ɸ) and the time delay (s) of S waves. The results of this study indicate that the central area of ​​the WKP has a high fracture intensity supported by the presence of wells with the largest steam production in the field and the appearance of structures which is more complex on the surface. While the dominant direction of fracture orientation in this study is relatively parallel following the trends of the NW-SE and NE-SW local structures."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faris Maulana Yunus
"Wilayah geothermal Tulehu ditandai oleh kemunculan manifestasi permukaan. Tidak ada manifestasi yang mengindikasikan zona upflow. Survei geosains telah dilakukan dan diikuti oleh pengeboran 4 sumur eksplorasi. Namun, penggambaran zona upflow suhu tinggi yang terkait dengan sumber panas masih sulit. Hal ini karena area survei geosains yang dilakukan belum mencakup keseluruhan sistem geotermal (daerah upflow dan outflow). Dugaan keberadaan sumber panas kemungkinan menuju G. Eriwakang seperti yang ditunjukkan oleh distribusi temperatur dari data sumur. Berdasarkan studi data geosains yang tersedia, diintegrasikan dengan data sumur yang ada, maka dibuat model konseptual yang mencakup kemungkinan keberadaan sumber panas (zona upflow) di sekitar G. Eriwakang dan kemunculan manifestasi permukaan sebagai zona outflow. Untuk menyelidiki kemungkinan lokasi sumber panas sistem geotermal Tulehu, maka simulasi reservoir dilakukan berdasarkan model konseptual yang telah dibuat dengan menggunakan simulator TOUGH2/iTOUGH2. Hasil simulasi setelah mencapai kondisi natural state menunjukkan bahwa sumber panas dimungkinkan berada di bawah G. Eriwakang. Hal ini ditunjukkan dengan kesesuaian kurva temperatur vs kedalaman antara hasil simulasi dengan data sumur. Untuk mengkonfirmasi hasil penelitian ini, maka direkomendasikan untuk dilakukan survei geosains lebih lanjut.

Tulehu geothermal area is characterised by surface manifestations. Fumarole and other steam-type manifestations are absent. Geoscientific surveys covering thermal manifestations area have been conducted followed by exploration drillings. However, delineation of high temperature up-flow zone associated with heat source is still challenging, even drilling data from 4 wells could not answer the question yet. Possible existence of the heat source is likely toward Mt Eriwakang as indicated by temperature distribution from wells. Based on the geoscientitic data study, integrated with the existing well data, a conceptual model was developed that includes the possibility of the existence of a heat source (upflow zone) around G. Eriwakang and the appearance of surface manifestations as the outflow zones. To investigate the possible location of the heat source of the Tulehu geothermal system, reservoir simulations using TOUGH2/iTOUGH2 simulator were carried out based on the conceptual model that has been made. Simulation results, after achieving natural state conditions, indicate that the heat source is possibly located under Mt. Eriwakang. This is indicated by the suitability of the temperature vs. depth curve between the simulation results and the well data. Furthermore, to confirm the existence of the heat source, further geoscientific surveys are recommended to be carried out in this area."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurina KD
"Area geothermal Hayati merupakan daerah prospek yang terbentuk karena aktivitas tektonik dan vulkanik. Secara stratigrafi memiliki formasi batuan vulkanik yang terbentuk pada zaman kuarter di bagian atasnya, dan formasi sedimen terbentuk pada zaman pra- Tertier di bagian bawahnya. Sistem geothermal ini ditunjukkan dengan adanya upflow di bagian tengah yang diindikasikan oleh manifestasi fumarol, serta fluida yang mengalir membentuk outflow ke tenggara dengan ditemukannya hot springs di daerah tersebut. Data MT menunjukkan adanya lapisan clay cap yang membentuk up-dome shape dan data gravity membentuk kaldera. Untuk mengetahui karakteristik reservoir, letak dan besar energi heat source, serta hidrogeologi maka diperlukan pemodelan dan simulasi reservoir dengan menggunakan simulator TOUGH2. Parameter yang digunakan berdasarkan data geoiisika, geologi, geokimia dan data sumur yang meliputi batas sistem yang dimodelkan, permeabilitas, porositas, densitas batuan serta kapasitas panas spesifik.
Hasil model simulasi merupakan kondisi natural state yang dicapai ketika data temperatur sumur dan hasil simulasi sesuai. Pemodelan hasil simulasi divisualisasikan dalam bentuk 3-dimensi. Diperoleh bahwa heat source berada di sekitar G.Putik, G.Hayati dan G.Paras dengan top reservoir yang berada pada elevasi 200 m serta luas reservoir sekitar 6,7 kmz. Hasil simulasi juga merekomendasikan letak sumur-sumur produksi dan injeksi untuk tahap pengembangan.

Hayati geothermal is a geothermal prospect area formed due to tectonic and vulcanic activities. Stratigraphically this area is composed of volcanic rocks formations from the quartial age on its top and the formations of sedimentary rocks from the pre-tertiary age on its bottom. This geothermal system showed an upflow in center, indicated of fumarol manifestation, and fluid flow forming an outflow in the south east with occurred hot springs. MT data shows up-dome shape clay cap, and gravity data shows a caldera. To determine about reservoir characteristic, location and energy total of heat source, and hydrogeology, furthennore the reservoir simulation is done with TOUGH2 simulation. The simulation requires several parameters based on geophysics, geology, geochemistry, and well data are including the system boundary that will be modeled, penneability, porosity, rock density and specific heat capacity.
The result of the simulation is a natural state condition model that reached when the temperature well data and result of the simulation are match. Modeling of the simulation result are showed on three-dimensional. The obtained results are the heat source exists in the vicinity of Mt.Putik, Mt.Hayati, Mt.Paras with top reservoir exists on elevation 200 m and has a reservoir area of approximately 6.7 km2. As an addition, the simulation results are recommending of production and injection wells location for development stage."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S29383
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>