Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 190202 dokumen yang sesuai dengan query
cover
Praditya Adi Nugroho
"Adanya peningkatan penggunaan beban nonlinier seperti peralatan elektronika dan komputer menyebabkan timbulnya permasalahan pada pembacaan alat ukur energy listrik. Pada beban yang nonlinier dan tidakseimbang, arus listrik yang mengalir mempunyai bentuk nonsinusoidal yang mengandung harmonisa dan timbulnya arus pada kawat netral. Pengukuran energi listrik pada kondisi tersebut berpotensi mengalami kesalahan pengukuran.
Penelitian ini bertujuan untuk mendapatkan metode perhitungan daya listrik semu (VA) yang akurat bagi pengukuran daya listrik pada kwh meter tiga fasa kondisi non - sinusoida dan ketidakseimbangan. Dengan membandingkan hasil pengukuran kuantitas daya dari alat ukur kualitas daya (power Quality Analyze) metode vektorial dengan metode perhitungan daya semu vektorial, aritmatik dan standar daya semu IEEE 1459 - 2010.
Berdasarkan hasil analisis dari dua studi kasus yang telah dilakukan, pada kondisi nonsinusoidal dan ketidakseimbangan nilai Std. Dev.SV > Std. Dev. SA dan nilai Std. Dev. pfV ≥ Std. Dev. pfA. Deviasi tersebut disebabkan karena nilai Se > SA ≥ SV dan pfV ≥ pfA > pfe. Faktor yang berkontribusi terhadap deviasi atau mempengaruhi akurasi alat ukur metode vektorial atau aritmatik terhadap standar IEEE 1459 - 2010 adalah adanya komponen nonfundamental harmonisa dalam bentuk komponen daya nonfundamental (SeN) dan komponen ketidakseimbangan yang diperhitungkan pada daya semu efektif fundamental (Se1). Sedangkan pada alat ukur metode vektorial komponen tersebut tidak diperhitungkan dalam perhitungan kuantitas daya yang ada.

The increasing of nonlinear loads such as electronic equipment and computers has led to issues in electric energy measuring instrument readings. In the nonlinear load, the electric current flow has nonsinusoidal form and containing harmonics and symetrical component. Measurement of electrical energy on the condition potentially experiencing measurement error.
This study aims to obtain accurate apparent power (VA) calculation method for the measurement of electrical power on three-phase energy meter under non - sinusoidal and unbalance conditions. By comparing result from energy meter from power quality instrument base on vectorial apparent power with several methods of calculating apparent power including arithmetic apparent power, vectorial apparent power and standard IEEE 1459 - 2010.
Based on the analysis of two case studies under nonsinusodal and unbalanced conditions Std. Dev.SV > Std. Dev. SA dan nilai Std. Dev. pfV ≥ Std. Dev. pfA. The deviation is caused the value of Se > SA ≥ SV and pfV ≥ pfA > pfe. Factors that contribute to deviation or affect the accuracy of measuring devices based on vectorial and arithmetic apparent power than IEEE std 1459 - 2010 is the presence of non-fundamental harmonic component in the form of non-fundamental power components (SeN) and imbalances components at the form of effective fundamental apparent power (Se1) are calculated. While measuring devices based on vectorial and arithmetic apparent power are not taken that components into account in the calculation of power quantity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45622
UI - Tesis Membership  Universitas Indonesia Library
cover
Himawan Nurcahyanto
"Transformer memainkan peran besar dalam distribusi energi listrik. Salah satu faktor yang menentukan tingkat keandalan transformator adalah umur transformator. Semakin sering sebuah transformator digunakan, semakin tidak dapat diandalkan transformatornya dan karena itu memperpendek umurnya. Tujuan dari penelitian ini adalah untuk memprediksi umur transformator berdasarkan perhitungan transformator indeks kesehatan yang kemudian dimodelkan menggunakan jaringan saraf tiruan.
Hasil dari penelitian ini adalah nilai-nilai yang digunakan sebagai parameter dalam pengujian transformator yaitu isolasi minyak, furan, dan gas terlarut. Salah satu kelebihan metode jaringan saraf tiruan dalam memprediksi usia transformator adalah kesalahan perhitungan yang dapat diminimalisir.
Dari hasil penelitian ini, ditemukan bahwa hasil prediksi menggunakan jaringan saraf tiruan dan kondisi asli transformator berdasarkan indeks kesehatan transformator memiliki nilai yang hampir sama, sehingga dapat dikatakan bahwa sistem prediksi usia transformator sudah dapat digunakan langsung untuk menentukan usia transformator lain, baik yang baru maupun yang sudah beroperasi, dengan persentase kesalahan yang rendah. Selanjutnya, metode ini dapat digunakan sebagai opsi dalam mempertahankan transformator daya.

Transformers play a big role in the distribution of electrical energy. One factor that determines the level of reliability of the transformer is the life of the transformer. The more often a transformer is used, the more unreliable the transformer and therefore shortens its life. The purpose of this study is to predict the life of the transformer based on the calculation of the transformer health index which is then modeled using an artificial neural network.
The results of this study are the values ​​used as parameters in transformer testing, namely the isolation of oil, furan, and dissolved gas. One of the advantages of artificial neural network methods in predicting the age of a transformer is a calculation error that can be minimized.
From the results of this study, it was found that the prediction results using artificial neural networks and the original condition of the transformer based on the transformer health index have almost the same value, so it can be said that the transformer age prediction system can be used directly to determine the age of other transformers, both new and already operating, with a low error percentage. Furthermore, this method can be used as an option in maintaining power transformers.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iqbal Ramdhani
"Pertumbuhan beban listrik pada gedung GK Fakultas Teknik Universitas Indonesia menimbulkan permasalahan baru yaitu semakin buruknya kualitas daya listrik pada gedung tersebut. Kualitas daya listrik merupakan setiap permasalahan daya listrik yang berbentuk penyimpangan tegangan, arus, atau frekuensi yang mengakibatkan kegagalan ataupun kesalahan operasi pada peralatan yang terjadi pada sisi konsumen energi listrik. Untuk memastikan apakah kualitas daya listrik pada gedung GK sudah baik maka diperlukan pengukuran terlebih dahulu.
Hasil yang didapat untuk parameter variasi nilai tegangan, ketidakseimbangan tegangan, variasi nilai frekuensi, faktor daya, dan harmonik tegangan sudah memenuhi standar yang berlaku. Tetapi untuk harmonik arus belum memenuhi standar yang berlaku dimana penyumbang nilai harmonik arus terbesar ada pada orde ketiga, kelima, dan ketujuh.
Peniliti telah berhasil merancang 2 buah single-tuned filter yang bertujuan untuk mereduksi harmonik orde kelima dan ketujuh. Untuk orde kelima berhasil tereduksi dari 10,9 menjadi 6,2 dan untuk orde ketujuh, berhasil tereduksi dari 8,9 menjadi 2,9 . Untuk mereduksi harmonik orde 3, digunakan transformator penggeser fasa Dy11 dan berhasil mereduksi 12,6 menjadi 0.

The growth of electricity load creates a new problem, a bad quality of electrical power in GK Building of Faculty of Engineering in Universitas Indonesia. Electrical power quality is a problem related to deviation of voltage, current, or frequency that can lead into failure or misoperation of equipments on GK building. To ensure that the power quality of GK building is fine, we have to make a measurement first.
The result of this research shows most of the parameters measured are qualified for passing the standards. Those parameters are variance of voltage, voltage unbalanced, variance of frequency, power factor, and voltage harmonic. However, the result of current harmonic parameter does not pass. The biggest contribution for current harmonic value occur on the third, fifth, and seventh orde.
Researcher has succeeded on designing 2 sets of single tuned filter that aim to reduce harmonic from fifth and seventh orde. For fifth ord, the filter has succeed to reduce harmonic from 10,9 to 6,2 and for seventh orde, the filter has succeed to reduce harmonic from 8,9 to 2,9 . For reducing the 3rd orde of harmonic, phase shifting transformer is used with configuration of Dy11 and success to reduce harmonic from 12,6 to 0 .
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Rahman Darmawan
"Pada sebuah LNG complex site, terdapat dua permasalahan, yaitu rendahnya kehandalan di pembangkit listrik existing LNG plant dan adanya beban baru dari new LNG plant. Kemudian dibuatlah beberapa alternatif pemecahan masalah untuk dua permasalahan tersebut. Setelah dianalisis, alternatif pemecahan masalah yang paling mungkin dilakukan adalah pembangunan pembangkit listrik baru untuk memenuhi beban baru dan diinterkoneksi ke pembangkit listrik eksisting untuk meningkatkan kehandalannya. Kesalahan pemilihan pembangkit listrik baru akan menyebabkan inefisiensi dan tidak mampu mengatasi permasalahan rendahnya kehandalan di existing LNG plant.
Akan dilakukan penelitian untuk menentukan jenis dan kapasitas serta jumlah unit pembangkit listrik baru yang tepat. Sehingga keseluruhan pembangkit listrik, eksisting maupun baru, dapat menyuplai energi listrik dengan handal dan efisien serta dengan biaya serendah mungkin sesuai dengan prinsip to provide good quality energy at the lowest possible cost. Dari beberapa alternatif pembangkit listrik baru akan dicari alternatif pembangkit listrik yang paling optimal dari sisi kehandalan dan keekonomian pembangkit.
Parameter kehandalan pembangkit menggunakan metode LOLP (Loss of Load Probability) sedangkan parameter keekonomian pembangkit menggunakan perhitungan COE (Cost of Electricity) dan LCC (Lifecycle Cost). Kemudian dilakukan analisis kelayakan investasi guna mengetahui apakah investasi pembangkit listrik baru tersebut layak. Berdasar analisis, PLTMG 6x16 MW adalah yang paling optimal secara kehandalan dan keekonomian pembangkit listrik. Minimal terjadinya total black out pada kondisi eksisting adalah 50 hari per tahun, sedangkan LOLP setelah penambahan pembangkit listrik baru ini adalah 2,93 hari per tahun. Investasi pembangkit listrik tersebut dinyatakan layak.

There are two problems in an LNG complex site, lack of reliability of the power plant in the existing LNG plant and additional load of new LNG plant. Then defined some alternatives to solve these problems. After these alternatives has been analyzed, the best alternative can be done is create new power plant to cater the new load and to be interconected with the existing power plant to increase the reliability. Miscasting the new power plant will cause an innefficiency and cannot increase the reliability of electricity supply in the LNG complex site.
The purposes of this research are to choose the best type of power plant for the new power plant, how much the capacity and the number of the new power plant. So that the new and existing power plant can supply the electricity to whole LNG complex site with high reliability at the lowest possible cost, suitable with motto ?to provide good quality energy at the lowest possible cost?. From some alternatives of new power plants, will be analyzed which is the most optimal power plant in terms of reliability and economical.
Reliability parameter of power plant using LOLP (Loss of Load Probability) method while economic parameter of power plant using COE (Cost of Electricity) and LCC (Lifecycle Cost). Investment feasibility analysis to determine wheter the investment of new power plant is feasible. The result of the analysis, Gas Engine Power Plant 6x16 MW is the most optimal alternative in term of reliability and economical. Minimum total black out of existing system is 50 days per year, while the LOLP after interconnected with the new power plant become 2,93 days per year. The investment of that power plant is feasible.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45113
UI - Tesis Membership  Universitas Indonesia Library
cover
"Keberhasilan operasi sistem pembangkit tenaga listrik sangat ditentukan oleh kemampuan untuk memberikan pelayanan yang handal dan kelancaran pasokan kepada konsumen. Keandalan pasokan memberikan dampak yang sangat penting dari hanya sekedar tersedianya pelayanan kepada konsumen. Idealnya, beban harus dipasok listrik dengan tegangan dan frekuensi yang konstan sepanjang waktu. Secara praktis ini berarti bahwa tegangan dan frekuensi harus dipertahankan pada toleransi yang dUjinkan dengan derajat kestabilan yang ting~ sehingga perala tan yang digunakan oleh konsum~n dapat bekerja secara memuaskan. Stabilitas sistem pembangkit secara luas didefinisikan sebagai kemampuan dari sistem pembangkit untuk mempertahankan keseimbangan operasi pada kondisi normal dan dapat mengembalikan pada kondisi yang dapat diterima setelah terjadinya gangguan. Sistem kontrol pembangkit tenaga listrik adalah merupakan proses multivariable orde tinggi yang beroperasi pada kondisi di mana perubahan akibat kondisi lingkungan terjadi secara rutin. Pada struktur yang luas sistem kontrol otomatik bekerja mengendalikan sistem pembangkit tenaga listrik yang terdiri darl kontrol unit pembangkit, kontrol sistem transmisi dan kontrol sistem pembangkitan. Sistem kontrol otomatik untuk semua peralatan dan sistem pada prinsipnya adalah sistem kontrol umpan balik yang mampu mempertahankan kestabilan sistem berdasarkan nilai presetnya setelah terjadi gangguan. Sistem kontrol pada unit pembangkit dan sistem transmisi pada dasarnya adalah suatu problem tunggal yang dapat dianalisa dengan sistem kontrol umpan batik. Pada paper ini akan disajikan analisa sistem kontrol umpan balik dengan metoda root locus untuk mengetahui rentang kestabilan sistem kontrol kecepatan turbin dengan menggunakan data parameter pokoknya."
537 JIEK 1:1 (2008)
Artikel Jurnal  Universitas Indonesia Library
cover
Andre Dwi Risandy
"Permintaan daya energi listrik seiring berjalannya waktu meningkat hal ini karena menyangkut dengan kebutuhan bergeraknya ekonomi dan membantu mempermudah dalam kehidupan sehari, tanpa terkecuali institusi Pendidikan yaitu Fakultas Teknik Universitas Indonesia, yaitu gedung Mochtar Riady Plaza Quantum MRPQ , fungsi gedung diantaranya sebagai ruang rapat dosen, auditiorium, laboratorium, riset menjadikan gedung ini fundamental bagi Departemen Teknik Elektro, menggunakan peralatan listrik, yang membuat pemakaian listrik bervariasi setiap harinya. Maka dari itu diperlukan analisis kualitas daya untuk mengetahui mutu kelistrikan gedung tersebut. Diperoleh nilai tegangan maksimum dan minimum sebesar MRPQ yang didirikan pada Tahun 2008 dengan kapasitas tegangan yang diberikan dari transformator sebesar 0,38 kV, dengan tegangan maksimum yaitu 229,45 V dan minimum 214,60 V, arus maksimum dan minimum per fasa 34,86 A dan 25,48 A Terdapat berbagai macam kegiatan terjadi, namun masih terasa kurangnya pemahaman serta implementasi akan pentingnya akan konservasi energi listrik dan penggunaannya.

Demand for electrical energy over time increases this because it involves the need for economic moves and help simplify the day to day life, without exception, educational institutions i.e Faculty of Engineering University of Indonesia, the building Mochtar Riady Plaza Quantum MRPQ , building functions such as lecturers meeting room , auditiorium, laboratory, research purposes makes this building fundamental for the Department of Electrical Engineering, using electrical equipment, which makes the use of electricity varies every day. Therefore the required quality of power analysis to determine the electrical quality of the building. Maximum and minimum voltage values obtained MRPQ were established in 2008 with a given voltage capacity of the transformer of 0.38 kV, with a maximum voltage of 229.45 V and a minimum of 214.60 V, the maximum and minimum currents per phase 34 , 86 A and 25.48 A There is a wide range of activities going on, but there is still a lack of understanding and implementation importance of conserving electrical energy and its use."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fajar Tri Wardana
"ABSTRAK
Dalam sistem tenaga listrik, penyaluran tenaga listrik yang baik merupakan hal yang vital dalam memenuhi kebutuhan beban. Kapasitas penyaluran daya pada saluran transmisi dibatasi oleh batas Surge Impedance Loading (SIL). Saat saluran transmisi dibebani pada nilai SIL-nya maka saluran transmisi tersebut akan bersifat resistif murni. Apabila saluran transmisi bersifat resistif murni maka nilai susut tegangan akan semakin berkurang dan akan memperbaiki kualitas daya. Tegangan yang berada dibawah nilai normalnya akan menyebabkan peralatan listrik tidak bekerja dengan maksimal. Saat level SIL suatu saluran transmisi dinaikkan maka kapasitas suatu saluran transmisi juga akan bertambah. Menaikkan level SIL dapat dilakukan dengan mengubah-ubah konfigurasi saluran transmisi tersebut. Pengubahan yang dilakukan antara lain, memperbesar diameter konduktor, menjauhkan jarak antar subkonduktor, menambah jumlah subkonduktor perfasa dan mendekatkan jarak antar fasa. Dari semua variasi tersebut akan dilihat nilai SIL dan susut tegangan dari saluran transmisi 500kV TASIK-DEPOK. Dari hasil yang diperoleh dapat diambil kesimpulan bahwa nilai SIL terbesar terjadi saat jumlah subkonduktor sebanyak 6 buah dengan jarak antar subkonduktor 80cm. SIL terbesar bernilai 2429.4543 MW dan % tegangan bus DEPOK tertinggi adalah 96.81%.

ABSTRACT
In electric power systems, the good electric power transmission is vital to occupy the load requirements. Power transmission capacity on transmission lines restricted by Surge Impedance Loading (SIL). When the transmission line loaded at its SIL value then the transmission line will be purely resistive. If the transmission line is purely resistive then the value of drop voltage will decrease and will improve the power quality. Voltage that below its normal value would cause the electrical equipment does not work in the maximum performance. When a transmission line SIL level is increased, the capacity of a transmission line will also increase. Increasing the level of SIL can be done by changing the configuration of the transmission line. The conversion is done inter alia, expand the diameter of the conductor, increasing the distance between subconduktor, increasing the number of subconduktor per phase and decreasing the gap between phases. From all of these variations will be seen the value of SIL and drop voltage of 500kV transmission line TASIK-DEPOK. From the results obtained it can be concluded that the value of the largest SIL occurs when the number of subconduktor as much as 6 pieces with subconduktor distance between 80cm. The highest SIL is 2429.4543 MW and the highest %voltage of DEPOK bus is 96.81%."
2016
S62705
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Grace Missrani Bangun
"ABSTRAK
Kebutuhan listrik saat ini semakin meningkat, namun produksi batubara sebagai pembangkit konvensional semakin menipis. Jadi pemerintah sedang menggalakkan penggunaan energi baru dan terbarukan. Sebagai contoh adalah PLTS. Pada penelitian ini akan mengembangkan penelitian sebelumnya dengan fokus pada studi hubung singkat pada sistem tenaga listrik Lombok khususnya pada 3 titik yang berbeda yaitu GI 150 kV Kuta, GI 150 kV Paokmotong, dan 150 kV GI Sengkol. Dimana akan dibandingkan antara tanpa PLTS dan menggunakan PLTS. Beberapa skenario dilakukan dengan memvariasikan kapasitas PV, yaitu 5 MWp, 10 MWp, 15 MWp, dan 20 MWp. Pada penelitian ini dilakukan simulasi dengan bantuan ETAP 12.6.0. Hasil studi yang diperoleh untuk analisis hubung singkat tanpa PLTS adalah 2.546 pada 150 kV GI Kuta; 3.021 di GI Paokmotong; dan 2.861 pada 150 kV GI Sengkol. Pada analisis gangguan hubung singkat menggunakan PLTS didapatkan hasil maksimal sebesar 2.599 pada 150 kV GI Kuta; 3.027 pada 150 kV GI Paokmotong; dan 2.873 pada 150 kV GI Sengkol. Dari hasil yang diperoleh dapat diketahui bahwa tidak ada perubahan yang signifikan pada gangguan hubung singkat.
ABSTRACT
The demand for electricity is currently increasing, but coal production as a conventional generator is running low. So the government is promoting the use of new and renewable energy. An example is PLTS. This study will develop previous research with a focus on short circuit studies on the Lombok electric power system, especially at 3 different points, namely GI 150 kV Kuta, GI 150 kV Paokmotong, and GI Sengkol 150 kV. Where will be compared between without PLTS and using PLTS. Several scenarios are carried out by varying the PV capacity, namely 5 MWp, 10 MWp, 15 MWp, and 20 MWp. In this study, a simulation was carried out with the help of ETAP 12.6.0. The study results obtained for short circuit analysis without PLTS are 2,546 at 150 kV GI Kuta; 3,021 at GI Paokmotong; and 2,861 at 150 kV GI Sengkol. In the short circuit analysis using PLTS, the maximum result is 2,599 at 150 kV GI Kuta; 3,027 at 150 kV GI Paokmotong; and 2,873 at 150 kV GI Sengkol. From the results obtained, it can be seen that there is no significant change in the short circuit fault."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Luky
"Indonesia memiliki sumber daya dan potensi panas bumi terbesar kedua di dunia dengan total kapasitas sekitar 29.000 MW 40 potensi panas bumi dunia . Total kapasitas terpasang Pembangkit Listrik Tenaga Panas Bumi adalah sebesar 1.643,5 MW dan menempati peringkat ketiga terbesar di dunia hingga akhir tahun 2016. Namun, Indonesia belum memanfaatkan potensi sumber daya panas bumi secara optimal jika dibandingkan dengan besarnya potensi yang dimiliki.Potensi panas bumi yang besar belum dimanfaatkan secara maksimal karena terdapat hambatan terutama terkait dengan investasi awal, risiko sumber daya panas bumi, dan pendanaan proyek. Pihak pengembang memasukkan seluruh risiko awal proyek sebagai biaya investasi sehingga menyebabkan harga pembelian tenaga listrik PLTP menjadi tinggi dan negosiasi dengan PT PLN Persero menjadi berlarut-larut.
Dalam tesis ini disusun tiga skema berbeda yang diaplikasikan secara internasional dalam pengembangan PLTP yang melibatkan BUMN dan IPP. Untuk pengembangan PLTP oleh BUMN Model 1 diperoleh harga pembelian tenaga listrik PLTP berkisar 6,33 sen USD/kWh 110 MW s.d. 14,15 sen USD/kWh 10 MW , pengembangan PLTP oleh BUMN IPP Model 2 diperoleh harga pembelian tenaga listrik PLTP berkisar 6,99 sen USD/kWh 110 MW s.d. 15,63 sen USD/kWh 10 MW, pengembangan PLTP oleh IPP Model 3 diperoleh harga pembelian tenaga listrik PLTP berkisar 7,92 sen USD/kWh 110 MW s.d. 17,7 sen USD/kWh 10 MW , dan pengembangan PLTP oleh IPP dengan bantuan grant Model 3 Grant diperoleh harga pembelian tenaga listrik PLTP berkisar 7,05 sen USD/kWh 110 MW s.d. 15,76 sen USD/kWh 10 MW.
Pengembangan PLTP di Jawa Bali, Sumbar, Sumsel, Jambi, Bengkulu, Lampung, Sulselrabar hanya layak dikembangkan oleh pihak BUMN Model 1 melalui proses negosiasi B to B dengan PT PLN Persero dan untuk sistem-sistem kecil dapat dikembangkan oleh pihak IPP dengan bantuan grant dari Pemerintah mengingat kapasitas PLTP yang dapat dikembangkan hanya kelas kapasitas kecil 10 MW dan 20 MW yang kurang ekonomis secara unit cost dibandingkan dengan kelas kapasitas medium dan besar 55 MW dan 110 MW.

It is said that Indonesia has the world 2nd biggest class geothermal energy resources and its potential is about 29,000 MW which corresponds to about 40 of all potential of the world. The current total capacity of geothermal power generation in Indonesia is 1,438.5 MW and occupies the 3rd position in the world ranking as of 2015. However, Indonesia has not exploited the geothermal resource potential enough yet, when its huge potential is considered.The large potential of geothermal have not been maximally utilized because of the obstacles associated primarily with initial investment, geothermal resource risks, and project funding. The developer calculates all the initial risks of the project as an investment cost causing the purchase price of geothermal power to be high and become protracted negotiation with PT PLN Persero.
In this thesis, there are three different schemes that are applied internationally in the development of geothermal power plant involving BUMN and IPP. For the development by SOE Model 1 obtained the purchase price of 6.33 cents USD kWh 110 MW up to 14.15 cents USD kWh 10 MW , the development by SOE IPP Model 2 obtained the purchase price of 6.99 cents USD kWh 110 MW up to 15.63 cents USD kWh 10 MW , by IPP Model 3 obtained the purchase price 7.92 cents USD kWh 110 MW up to 17.7 cents USD kWh 10 MW , and the development by IPP with grant assistance Model 3 Grant obtained the purchase price of 7.05 cents USD kWh 110 MW up to 15.76 cents USD kWh 10 MW.
The development of geothermal power plant in Java Bali, West Sumatera, South Sumatera, Jambi, Bengkuliu, Lampung, Sulselrabar is only feasible to be developed by SoE Model 1 through B to B negotiation with PT PLN Persero and for small systems can be developed by IPP with grant assistance from the Government, consider geothermal power plant capacity that can be developed only small capacity classes 10 MW and 20 MW which is less cost effective in terms of unit cost compared to medium and large capacity classes 55 MW and 110 MW .
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47890
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>