Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 937 dokumen yang sesuai dengan query
cover
Natterer, Frank, 1941-
"This book provides a unified view of tomographic techniques, a common mathematical framework, and an in-depth treatment of reconstruction algorithms. It focuses on the reconstruction of a function from line or plane integrals, with special emphasis on applications in radiology, science, and engineering. The Mathematics of Computerized Tomography covers the relevant mathematical theory of the Radon transform and related transforms and also studies more practical questions such as stability, sampling, resolution, and accuracy. Quite a bit of attention is given to the derivation, analysis, and practical examination of reconstruction algorithms, for both standard problems and problems with incomplete data."
Philadelphia: Society for Industrial and Applied Mathematics, 2001
e20443315
eBooks  Universitas Indonesia Library
cover
Ahmad Syafii
"Citra Megavoltage Computed Tomography (MVCT) dapat digunakan sebagai modalitas adaptive planning setelah diregistrasi ke citra Kilovoltage Computed Tomography (KVCT). Hasil adaptive planning pada penelitian terdahulu pada teknik penyinaran konvensional diketahui bahwa adaptive planning dapat mengkoreksi dosis pada PTV dan OAR menjadi lebih optimal, namun pada sebagian kasus, adaptive planning tidak memberikan keuntungan. Sayangnya, penelitian mengenai penggunaan MVCT pada teknik penyinaran fraksinasi rendah (hipofraksinasi) dan dosis tinggi belum banyak dilakukan. Penelitian ini difokuskan untuk mengevaluasi penggunaan MVCT pada 9 pasien kasus kanker hati hipofraksinasi dosis tinggi teknik Stereotactic Body Radiation (SBRT) dengan dosis perfraksi 3-8 Gy dalam 4-10 fraksi. Citra MVCT diregistrasi ke KVCT untuk mendapatkan contour sehingga dapat digunakan untuk modalitas planning. Citra MVCT juga dikirim ke Linac untuk planning untuk mengetahui efek perpindahan pasien Tomoterapi ke Linac. Hasil planning dianalisis menggunakan parameter HI, CI, dan GI. Nilai CI didapatkan pada rentang 0,7-1 (0,95 ± 0,063), nilai HI dalam rentang 0,02-0,53 (0,16 ± 0,12) dan nilai GI dalam rentang 2,6-8,24 (4,09 ± 1,57). Nilai indeks gamma pada keseluruhan planning dengan kriteria DD 3% DTA 3mm sebesar (95,4 ± 5,6). Secara umum, MVCT dapat digunakan untuk adaptive planning dengan perbedaan sebaran dosis PTV dan OAR tidak jauh berbeda dengan hasil planning KVCT pada kasus kanker hati. Perpindahan pasien dari Tomoterapi ke Linac dapat dilakukan dengan tetap mempertahankan capaian dosimetri Tomoterapi

Many researchers have been proposing Megavoltage Computed Tomography (MVCT) image as adaptive planning modality recently. The adaptive planning results using MVCT in the previous study noted that adaptive planning could optimize the dose in PTV and reduce the OAR dose, but in some cases, adaptive planning did not provide benefits. Unfortunately, research on the use of MVCT in low fractionation radiation techniques (hypofractionation) and high doses have not been widely investigated. This study focused on evaluating the use of MVCT in 9 Hepatocellular Carcinoma (HCC) patients with high-dose hypofractionation using Stereotactic Body Radiation (SBRT) technique (dose/fraction was 3-8 Gy in 4-10 fractions). The MVCT images then registered to Kilovoltage CT (KVCT) for contouring. The MVCT as well as KVCT also have been sent to the Linac planning station to mimic the clinical use of transfer patient treatment from Tomotherapy to Linac. The final plans were analyzed using HI, CI, and GI parameters. CI values found in the range 0.7-1 (0.95 ± 0.063), HI values in the range 0.02-0.53 (0.16 ± 0.12) and GI values in the range 2.6-8.24 (4.09 ± 1.57). The gamma passing rate for the overall planning with a 3% DD 3% DTA criteria is (95.4 ± 5.6). Generally, it was concluded that MVCT could be used for adaptive planning with differences in the distribution of PTV and OAR doses were not much different from the KVCT planning results for HCC cases. Transfer of patients from Tomotherapy to Linac can be done while maintaining the performance of Tomotherapy dosimetry"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T54693
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1995
S38431
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kak, Avinash C.
"Principles of Computerized Tomographic Imaging provides a comprehensive, tutorial-style introduction to the algorithms for reconstructing cross-sectional images from projection data and contains a complete overview of the engineering and signal processing algorithms necessary for tomographic imaging. In addition to the purely mathematical and algorithmic aspects of these algorithms, the book also discusses the artifacts caused by the nature of the various forms of energy sources that can be used for generating the projection data. Kak and Slaney go beyond theory, emphasizing real-world applications and detailing the steps necessary for building a tomographic system.
Since the fundamental aspects of tomographic reconstruction algorithms have remained virtually the same since this book was originally published, it is just as useful today as it was in 1987. It explains, among other things, what happens when there is excessive noise in the projection data; when images are formed from insufficient projection data; and when refracting or diffracting energy sources are used for imaging. Anyone interested in these explanations will find a wealth of useful information in this book."
Philadelphia: Society for Industrial and Applied Mathematics, 2001
e20443187
eBooks  Universitas Indonesia Library
cover
Siahaan, Ferdinan Manuel
"X-ray computed tomography (CT) has been playing an important role in current medical practice for diagnostic procedure. Beside its delicate technology, the 'hidden' software of CT image reconstruction has contributed almost half of total cost of a CT-scanner unit. Since Algebraic Reconstruction Technique (ART) is a basic to understand an iterative method of CT image reconstruction algortihm, and since it is difficult to find a clear description of fan beam ART algorithm in university literatures, it is important to develop an own algorithm and to begin a basic systematic research of this iterative method. After a long term of trial and error work, the research had succeded in developing an ART algorithm for third generation CT image reconstruction. By comparing the result of the research with more popular technique like Filtered Back Projection (FBP), the algorithm has been proved applicable to reconstruct a low dimension object matrix (32x32 and 64x64). By the resulted computer program, then basically a simple and low cost third generation CT-scanner can be designed for medical physics or biomedical imaging research. Finding a way of shortening the massive number of iterations process then, will be able to open the possibility of using the software for higher object matrix dimensions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
T21394
UI - Tesis Open  Universitas Indonesia Library
cover
Kalender, Willi A.
""The book offers a comprehensive and user-oriented description of the theoretical and technical system fundamentals of computed tomography (CT) for a wide readership, from conventional single-slice acquisitions to volume acquisition with multi-slice and cone-beam spiral CT. It covers in detail all characteristic parameters relevant for image quality and all performance features significant for clinical application. Readers will thus be informed how to use a CT system to an optimum depending on the different diagnostic requirements. This includes a detailed discussion about the dose required and about dose measurements as well as how to reduce dose in CT. All considerations pay special attention to spiral CT and to new developments towards advanced multi-slice and cone-beam CT. For the third edition most of the contents have been updated and latest topics like dual source CT, dual energy CT, flat detector CT and interventional CT have been added. The enclosed CD-ROM again offers copies of all figures in the book and attractive case studies, including many examples from the most recent 64-slice acquisitions, and interactive exercises for image viewing and manipulation. This book is intended for all those who work daily, regularly or even only occasionally with CT: physicians, radiographers, engineers, technicians and physicists. A glossary describes all the important technical terms in alphabetical order. The enclosed DVD again offers attractive case studies, including many examples from the most recent 64-slice acquisitions, and interactive exercises for image viewing and manipulation"--Back cover."
Weinheim: Wiley-VCH, 2011
616.075 72 KAL c (1)
Buku Teks  Universitas Indonesia Library
cover
Tommy Sugiarto
"Electrical Impedance Tomography (EIT) merupakan salah satu teknik tomografi yang memanfaatkan distribusi konduktivitas dari objek yang diamati. Teknik pencitraan ini tidak menghasilkan radiasi karena menggunakan arus listrik bolak-balik orde lemah dan berfrekuensi tinggi. Arus akan diinjeksikan kedalam phantom yang berisi 16 elektroda yang terbuat dari tembaga yang dilapisi lapisan silver conductive paint. Tembaga yang digunakan berukuran 4 x 2 cm dengan ketebalan 0.5 mm. Tegangan akan diukur pada elektroda lainnya yang kemudian data tersebut akan diolah oleh perangkat lunak EIDORS menjadi hasil rekonstruksi citra. Pengontrolan elektroda yang akan diinjeksi arus dan diukur teganganya dilakukan oleh 16 channel multiplekser dan demultiplekser. Proses akuisisi data pada penelitian ini menggunakan perangkat NI ELVIS II dengan bantuan perangkat lunak LabVIEW. Sistem ini mampu melakukan proses rekonstruksi citra untuk objek plastik berbentuk silinder dengan diameter terkecil 2.5 cm.

Electrical Impedance Tomography is one of tomography method which is based on distribution of electrical conductivity from the object. This method doesn’t produce harmful radiation because it is use constant low amplitude and high frequency AC current. On this method current will be injected to the phantom by 16 electrodes which made from copper that coated by silver conductive paint. The copper’s size is 4 x 2 cm and 0.5 mm thickness. Voltage will be measured on adjacent electrodes and then EIDORS will proccess it into image reconstruction. Data aqcuisition system are processed by NI ELVIS II with LabVIEW software. This system is able to process image reconstruction from cylindrical plastic object which has minimum size 2.5 cm of diameter"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S57839
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ristania Nodya
"Computed Tomography (CT) Scanner merupakan alat pencitraan diagnostik yang memberikan informasi citra medis untuk menunjang pengobatan pasien, namun tanpa disadari pemanfaatan radiasinya dapat menimbulkan efek negatif pada organ sensitif sekitar. Penelitian ini dilakukan untuk mengukur dosis organ sensitif (mata, tiroid, dan payudara) menggunakan fantom Rando pada CT Scanner area thorax. Untuk memudahkan penelitian ini, TLD rod 100 digunakan sebagai dosimeter, dimana kV dan pitch dijadikan sebagai variasi parameter penelitian. Hasil menunjukkan bahwa nilai paparan dosis tertinggi pada tiap kualitas berkas berturut-turut dari 80, 120, dan 140 kV yaitu payudara kanan (1,72±0,34 mGy), tiroid kanan (6,25±0,16 mGy), dan payudara kiri (10,78±0,76 mGy). Pada variasi pitch nilai paparan dosis tertinggi secara berturut-turut dari 4, 6, dan 8 yaitu payudara kiri (6,19±0,02 mGy), tiroid kanan (6,25±0,16 mGy), dan payudara kanan (5,08±0,85 mGy). Dapat disimpulkan bahwa nilai dosis payudara pada CT Thorax lebih tinggi dibandingkan dengan mamografi, namun keduanya tidak melebihi nilai batas dosis yang ditetapkan International Commission on Radiological Protection (ICRP) yaitu 5 Gy.

Computed Tomography (CT) Scanner is an instrument of medical imaging using radiation to support treatment for patient, but the radiation may give a negative effect around sensitive organs. The research meant to measure dose for sensitive organs at thorax area (eyes, thyroid, and breast) using CT Scanner with rando phantom as an object. To ease this experiment, TLD rod 100 used as dosimetry, which kV and pitch as a parameter variation. The result showed that the highest dose for kV variation upon each sequent beam quality from 80, 120, and 140 kV are right breast (1,72±0,34 mGy), right thyroid (6,25±0,16 mGy), and left breast (10,78±0,76 mGy). Towards pitch variation the highest exposure dose value in sequently from 4, 6, and 8 are left breast (6,19±0,02 mGy), right thyroid (6,25±0,16 mGy), and right breast (5,08±0,85 mGy). As a conclusion, the dose on breast from CT Thorax is higher than the one from mammography but both are bellow dose value limit from International Commission on Radiological Protection (ICRP) which is 5 Gy."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2014
S58757
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emidatul Manzil
"Computed Tomography Dose Index (CTDI) merupakan konsep utama dalam dosimetri CT scan. Berdasarkan rekomendasi IAEA di TRS 457, CTDI dapat diukur di udara dan di fantom khusus CTDI. Ukuran dan massa fantom cukup besar sehingga akan menyulitkan dalam mobilisasi. Dalam penelitian ini dilakukan pengukuran CTDI untuk mengetahui faktor fantom pesawat Siemens Sensation 64. Faktor fantom adalah perbandingan CTDIw terhadap CTDIair. Fantom yang digunakan adalah fantom berbahan polymethil methacrylic (PMMA) berdiameter 16 cm sebagai fantom kepala dan 32 cm sebagai fantom tubuh. Detektor yang digunakan adalah Xi CT Platinum dan Xi Base Unit sebagai elektrometer. Estimasi dosis efektif dihitung berdasarkan nilai CTDIair pengukuran yang dikoreksi dengan perangkat lunak ImPACT CT Dosimetry Patient Calculator version 1.0.4. Nilai faktor fantom yang diperoleh untuk fantom kepala dan tubuh secara berturut-turut ialah 0.702 dan 0.357. Estimasi dosis efektif satu fase (rata-rata ± deviasi standar) ialah: kepala rutin 2.01 ± 0.11 mSv, kepala trauma 2.53 ± 0.16 mSv, thorak 3.4 2 ± 0.79 mSv, abdomen 5.99 ± 2.16 mSv, dan pelvis 2.12 ± 0.99 mSv. Faktor konversi DLP displai scanner terhadap dosis efektif: kepala rutin 0.0021 mSv/mGy.cm, kepala trauma 0.0022 mGy.cm, thorak 0.0182 mSv/mGy.cm, abdomen 0.0151 mSv/mGy.cm, dan pelvis 0.0118 mSv/mGy.cm.

Computed Tomography Dose Index (CTDI) is primary dosimetric concept in CT scan. Based on IAEA TRS 457 recommendation, CTDI can be measured free in air and by using phantom. Phantom size and mass are huge, thus it will complicate the mobilization. This research conducted CTDI measurement to find out the Siemens Sensation 64 phantom factor. Phantom factor is a ratio between CTDIw over CTDIair. A Polymethyl Methacrylic (PMMA) phantom was used in this research, which has 16 cm of diameter for head phantom and 32 cm of diameter for body phantom. The Xi CT Platinum detector was used in this research and Xi base unit is as an electrometer. The estimation of effective dose was calculated using CTDIair value and ImPACT CT Dosimetry Patient Calculator version 1.0.4. In this research was found out that the phantom factors are 0.702 for head phantom and 0.357 for body phantom. The estimation of effective dose for one phase (mean ± standard deviation): head routine 2.01 ± 0.11 mSv, head trauma 2.53 ± 0.16 mSv, thorax 3.4 2 ± 0.79 mSv, abdomen 5.99 ± 2.16 mSv, and pelvis 2.12 ± 0.99 mSv. DLP on scanner display to effective dose conversion factors: head routine 0.0021 mSv/mGy.cm, head trauma 0.0022 mSv/mGy.cm, thorax 0.0182 mSv/mGy.cm, abdomen 0.0151 mSv/mGy.cm, and pelvis 0.0118 mSv/mGy.cm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2011
S1242
UI - Skripsi Open  Universitas Indonesia Library
cover
Samsun
"Perkiraan nilai dosis yang diterima pasien ( CTDI ) yang langsung ditampilkan pada monitor CT setiap selesai pemeriksaan akan diketahui ketepatan nilainya dengan pengukuran langsung menggunakan pencil ion chamber dan pengukuran tidak langsung menggunakan TLD (Thermolumescence Dosimeter ) yang ditempatkan pada objek phantom dan dibandingkan dengan nilai dosis referensi yang telah ditetapkan, sehingga diharapkan mendapatkan informasi nilai dosis yang sebenarnya.
Analisis variasi parameter kV, mAs, dan pitch untuk menentukan berapa rentang nilai parameter optimum untuk mendapatkan nilai dosis pasien (CTDI/mAs) yang minimum namun tidak mengesampingkan kualitas pencitraan hasil CT. Scan yang baik guna menunjang diagnosa, pengukuran langsung maupun tidak langsung dengan menggunakan fantom kepala dan perut.
Pengukuran tidak langsung dengan menggunakan TLD (Thermolumescence Dosimeter ) pada menunjukan hasil yang tidak jauh berbeda dengan pengukuran langsung dengan menggunakan pencil ion chamber, dapat ditunjukkan dengan hubungan sifat kelinearan antara pitch dan dosis (CTDI/mAs).

An estimation dose (CTDI) received by the patient which is directly displayed on the CT monitor on every examination will be able to known it?s precisien by direct measurement using pencil ion chamber and the indirect measurement using TLD placed on the object (phantom) and compared with the value of dose reference, so the real dose rate will be known.
The variant analysis of kV, mAs and pitch parameters to justify the range of optimal parameter value, it is used to get the minimum patient dose rate (CTDI/mAs) while the image quality for supporting the diagnose still on the right value, directly or not directly using head and abdomen phantom.
Indirect measurement using TLD show unsignificant result if compared with the ion chamber. This value is shown by a relative variant parameter using stright pitch and dose ( CTDI/mAs).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
T21548
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>