Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 50323 dokumen yang sesuai dengan query
cover
Julio Levi
"Banyak komponen tenaga listrik yang sedang beroperasi, seperti transformator dan circuit breaker, telah mengalami penuaan. Hal ini dapat mengakibatkan gangguan pada sistem transmisi tenaga listrik. Penuaan pada komponen ini meningkatkan aging failure rate yang juga berimplikasi pada meningkatnya probabilitas power outage serta kerugian biaya. Pemeliharaan pada komponen tua dapat menjadi tidak layak untuk dilakukan karena masalah finansial, sehingga penggantian komponen dapat lebih pantas untuk dilakukan.
Dalam penelitian ini, keputusan penggantian diambil dengan membandingkan jumlah investasi dan kerugian dari gangguan penyaluran tenaga listrik. Biaya kerugian diperoleh dengan mengevaluasi reliabilitas dari sistem tenaga listrik berdasarkan pada probabilitas dan frekuensi power outage. Setiap komponen tenaga listrik pada sistem direpresentasikan dengan Markov state model, dimana karakteristik aging state setiap tipe komponen diperoleh dari hasil evaluasi data condition monitoring.
Berdasarkan data yang digunakan pada penelitian ini, didapatkan bahwa penggantian terhadap komponen-komponen tenaga listrik, seperti transformer, harus dilakukan ketika memasuki umur 46 tahun, dan hal ini sesuai dengan umur operasional standar, yaitu sekitar 40 tahun.

Many existing operating electric power equipment, including transformers and circuit breakers, have aged which may result interruption into electric power transmission. Aging equipment has increasing aging failure rate which also implicates to the rising number of system unavailability and its interruption cost. Since aging equipment tends to be impractical for maintenance due to economical constraint, a replacement is needed.
In this study, a replacement decision was made by comparing the interruption and investment cost. The interruption cost was obtained by evaluating the power system reliability based on outage probability and frequency. In order to perform this reliability evaluation, each equipment in the system was represented into Markov state model, where the aging state characteristic was obtained based on condition monitoring data assessment.
As based on the data given in this study, it was found that electric equipment, such as transformers, needs replacement at the age of 46 years which complies to the standard operational period of 40 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S70078
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahid Pinto Nugroho
"Penelitian ini dilakukan untuk menentukan nilai frekuensi kegagalan ratarata saluran kabel dan nilai frekuensi kegagalan rata-rata saluran udara dari 41 penyulang Gardu Induk (GI) Bogor Baru dengan menghitung indeks frekuensi kegagalan rata-rata saluran kabel per kms atau Cable Line Average Failure Frequency Index-CAFFI/kms dan indeks frekuensi kegagalan rata-rata saluran udara per kms atau Over Head Line Average Failure Frequency Index-OHAFFI/kms dari penyulang dengan menggunakan nilai frekuensi kegagalan rata-rata peralatan.
Hasil penelitian ini adalah indeks kegagalan rata-rata saluran kabel per kms atau CAFFI/kms adalah 0,25/kms/tahun dan indeks kegagalan rata-rata saluran udara per kms atau OHAFFI/kms adalah 0,56/kms/tahun. Nilai ini dapat digunakan sebagai nilai prediksi kegagalan penyulang yang beroperasi di area Bogor dan sebagai nilai acuan untuk meningkatkan keandalan pada masa depan.

The research is conducted to define cable line average failure index and over head line average failure index of 41 feeders of Bogor Baru substation by calculate Cable Line Average Failure Frequency Index-CAFFI/kms and Over Head Line Average Failure Frequency Index - OHAFFI/kms of the feeders by using the value of equipment frequency average failure.
This research results are with CAFFI/kms as high as 0,25/kms/year and OHAFFI/kms as high as 0,56/kms/year. Further, this value can be used as predicted value of feeder failure which operate at Bogor area and as reference value to improve reliability of the distribution system in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35094
UI - Tesis Membership  Universitas Indonesia Library
cover
Diva Erenst Nataprawira
"Biaya investasi industri panas bumi dan tarif listrik telah bersaing dengan pembangkit listrik berbiaya yang lebih rendah. Situasi ini menantang semua orang yang bekerja untuk industri untuk mengoptimalkan keandalan pabrik mereka, meningkatkan pendapatan, dan mengurangi biaya. Kegiatan pemeliharaan dapat dianggap sebagai proses penting yang bisa menyebabkan biaya tinggi jika kegiatan tersebut tidak dikelola dengan baik. Bagian dari manajemen pemeliharaan adalah menentukan interval pemeliharaan yang optimal dengan biaya pemeliharaan terendah. Penelitian ini menentukan interval pemeliharaan optimal dari subsistem paling kritis di fasilitas pembangkit panas bumi skala besar di Indonesia. Subsistem yang paling kritis dari fasilitas dipilih berdasarkan nilai keandalan. Salah satu metode yang dipilih dalam industri sebagai kerangka kerja untuk mengevaluasi keandalan sistem adalah Reliability Block Diagram (RBD). Berdasarkan RBD, sub-sistem yang paling kritis adalah Cooling Tower Structure System yang terdiri dari dua peralatan, yaitu Cooling Tower Fan dan Cooling Tower Structure. Interval pemeliharaan optimal dari Cooling Tower Fan dan Cooling Tower Structure dihitung menggunakan persamaan model biaya total. Analisis sensitivitas juga dilakukan dalam penelitian ini untuk menentukan rasio biaya di mana perhitungan biaya pemeliharaan dan biaya kegagalan harus dihitung secara rinci. Resampling data dengan metode bootstrap diterapkan pada data kegagalan peralatan karena jumlah data yang terbatas untuk mendapatkan interval pemeliharaan yang optimal dengan selang kepercayaan tertentu. Interval pemeliharaan optimal untuk Cooling Tower Fan adalah 412 hari dan untuk Cooling Tower Structure adalah 914 hari.

Geothermal industry unit capital cost and electricity tariff has been competing with lower-cost power generators. This situation has challenged all people that work for the industry to optimize their plant reliability, increase revenue, and reduce costs. Maintenance activities can be considered a critical process which can be very costly if those activities are not managed properly. Part of maintenance management is to determine the optimal maintenance interval with the lowest maintenance cost. This paper determines the optimal maintenance interval of the most critical subsystem in Indonesia's big-scale geothermal generation facility. The most critical subsystem of the facility is chosen based on reliability value. One of the tools chosen in the industry as a framework for evaluating system reliability is Reliability Block Diagram (RBD). Based on RBD, the most critical sub-system is the Cooling Tower Structure System which consists of two equipment, the Cooling Tower Fan, and the Cooling Tower Structure. The optimum maintenance interval of the Cooling Tower Fan and Cooling Tower Structure was calculated using the total cost model equation. Sensitivity analysis is also carried out in this paper to determine the cost ratio at which maintenance cost and failure cost calculations must be calculated in detail. The data resampling with the bootstrap method is applied to the equipment failure data due to the limited amount of data to obtain optimum maintenance intervals with a certain confidence interval value. The optimum maintenance interval for Cooling Tower Fan is 412 days and for Cooling Tower Structure is 914 days."
Jakarta: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Iqbaal Fadlli Besstian
"Teknologi yang semakin berkembang telah menjadi bagian hidup dari manusia salah satunya adalah Smartphone, yang digunakan untuk berinteraksi secara skala global, mengirim dan menerima informasi. Kecanggihan teknologi telah memudahkan manusia dengan mudah untuk mengontrol segala sesuatu dengan mudah termasuk pengontrolan suatu perangkat dengan jarak jauh. Selain dalam mengontrol, teknologi juga memudahkan manusia untuk memonitoring suatu aktivitas yang akan di dilakukan pengontrolan. Prototype penelitian yang dibuat terdiri dari sistem monitoring yang bisa mengukur parameter listrik arus bolak-balik seperti tegangan efektif, arus efektif, daya aktif dan jumlah pemakaian energi dan sistem pengendali yang dapat secara langsung mengendalikan peralatan listrik melalui internet. Hasil penelitian akan menunjukkan desain alat monitoring dan pengendalian beban listrik berbasis Internet of Things (IoT) dibagi dalam 3 (tiga) bagian utama yaitu input, proses dan output. Bagian input terdiri atas sensor arus sebagai pendeteksi arus beban listrik dan sensor tegangan yang digunakan untuk pengukur tegangan pada jaringan. Bagian proses terdiri atas modul ESP 32 yang bertindak sebagai mikrokontroller sistem monitoring parameter listrik dan Modul ESP8266 yang bertindak sebagai sistem pengendali beban listrik. Bagian output terdiri dari atas relay sebagai pemutus dan penyambung beban listrik, dan rangkaian pengendali berbasis inframerah sebagai pengendali langsung beban listrik. Alat pengukur dan pengendali daya listrik yang dirancang pada penelitian ini, menggunakan media aplikasi pada smartphone sehingga dapat dengan mudah dilakukan monitoring dan pengendalian secara langsung.

Implementation of the Internet of Things (IoT) was carried out in this study to realize a Wireless-based monitoring and control system for the use of electricity. This research method is a monitoring system that can measure the electrical parameters of alternating current (AC) such as effective voltage, effective current, active power, the amount of electrical energy usage by using the Microcontroller module and ESP8266 module as a connecting medium with the Internet network. The calculation of electrical parameters obtained from the reading of the ATmega328P microcontroller ADC from a step down transformer that is used as a voltage sensor and an AC electric current sensor will be transmitted to the server via a Wi-Fi network through an Access Point (AP). The results of the study will show that the design of the Internet of Things (IoT) based electrical load monitoring and control system is divided into 3 (three) main parts, namely input, process and output. The input part consists of the current sensor as a detector of electrical load currents and step down transformers used for voltage sensors. The process part consists of an Arduino Uno microcontroller that has been integrated in the ESP8266 NodeMCU device. The output part consists of 4 channel relays as breakers and electrical load connectors. System implementation is designed in two parts, namely hardware and software. Hardware consists of a microcontroller, nodeMCU ESP8266, Voltage Sensor and sensor while the software consists of the Arduino IDE as its compiler and Blynk /AWS as an Internet of Things (IoT) service. Monitoring the use of electric power through the internet designed in research, through web browser and android applications will display electrical parameters.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tyas Kartika Sari
"Penurunan operasi pembangkit listrik PLTD Pesanggaran yang disebabkan oleh derating, tingkat efisiensi rendah, tingkat emisi dan kebisingan yang tinggi telah menimbukan masalah kelistrikan di Bali. Selain itu, PLTD Pesanggaran juga masih menggunakan bahan bakar minyak (single fuel) dimana biaya pokok produksi energi listrik meningkat seiring naiknya harga bahan bakar HSD (High Speed Diesel). Oleh sebab itu, untuk mempertahankan suplai listrik di Bali tetap terpenuhi, pemilik perusahaan melakukan efisiensi melalui program diversifikasi energi.
Pada tahun 2012, sebuah perusahaan konsultan telah dipilih untuk melakukan kajian FS (feasibility study) untuk menilai kelayakan operasi pembangkit. Kajian tersebut menyarankan agar perusahaan melakukan assets retirement without abandonment untuk PLTD Pesanggaran yaitu dengan melakukan penggantian (replacement) pembangkit lama dengan pembangkit baru yang menggunakan dual fuel engine.
Metode yang digunakan adalah perhitungan biaya COE, LCC dan economic life dari pembangkit lama maupun pembangkit baru. Penelitian menggunakan data amatan PLTD Pesanggaran, di Bali. Dengan metode tersebut dapat menghasilkan suatu model management tools untuk menentukan kelayakan keekonomiannya. Model management tools tersebut dapat dipakai untuk mempermudah pengambilan keputusan di kasus-kasus serupa pada pembangkit listrik PLTD.

The decline in diesel power plant operation Pesanggaran caused by derating, the level of low efficiency, emissions and noise levels are high already raises the problem of electricity in Bali. In addition, diesel Pesanggaran also still use fuel oil (single fuel) in which electrical energy production cost increases with rising fuel prices HSD (High Speed Diesel). Therefore, to maintain the supply of electricity in Bali remains unfulfilled, the owner of the company to improve efficiency through energy diversification program.
Additionally in 2012, a consulting firm has been selected to conduct a study FS (Feasibility Study) to assess the feasibility of plant operation. The study recommends that companies perform asset retirement without abandonment to diesel Pesanggaran by performing replacement (replacement) old plant with a new plant that uses a dual fuel engine.
A methodology is needed to conduct research studies both technical and economical feasibility of the concept. The study used data Pesanggaran diesel observations, in Bali. The methodology can produce a model management tools to determine its economic feasibility as well as to perform sensitivity testing of each parameter related. Model management tools can be used to facilitate decisionmaking in similar cases in the diesel power plant.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T43702
UI - Tesis Membership  Universitas Indonesia Library
cover
Fahmy Miftahurrahman
"Konsumsi listrik pada sektor perumahan di Indonesia cukup tinggi. Salah satu cara yang mungkin untuk mengurangi konsumsinya dengan menerapkan konsep near Zero Energy Building. Strategi retrofit adalah salah satu strategi untuk menggabungkan efisiensi energi dan efektivitas biaya. Pemilihan modul surya berdampak langsung pada daya yang dihasilkan sehingga perlu dioptimalkan. Di sisi lain, pemilihan peralatan listrik juga perlu dioptimalkan untuk efisiensi konsumsi energi. Dalam penelitian ini, meminimalkan biaya retrofit dan menemukan kombinasi biaya optimal, teknologi efisiensi energi dan sistem pembangkit energi terbarukan digabungkan dan diteliti. Pemilihan peralatan untuk memasak, pendinginan ruang, dan jenis peralatan umum diadakan berdasarkan biaya energi per beban dan harga peralatan. Hasil pemodelan matematika dan simulasi adalah kombinasi peralatan penanak nasi Cosmos CRJ-9303, water dispenser Polytron PWC-777, lemari es Panasonic NR-BN209N, pengkondisi udara Gree C3E, televisi SONY KD-43X7500F, pompa air Shimizu PC-260BIT, dan mesin cuci Sharp ES-FL872. Kombinasi ini membutuhkan 5,678 kWh energi pertahun. Modul surya jenis mono-crystalline standar kapasitas 4.5 kWp menghasilkan energi sebesar 5,891 kWh pertahun, memerlukan ruang sebanyak 26.1 m2 pada atap model. Perbandingan energi peralatan listrik dengan modul surya menghasilkan AEMR sebesar 104%, sehingga dapat dinyatakan bahwa model dengan kombinasi tersebut memenuhi persyaratan dalam penerapan konsep nZEB dengan biaya retrofit optimum sebesar Rp 106,076,459.

The power consumption for the residential in Indonesia is quite high. It makes sense to reduce consumption by applying the near Zero Energy Building concept. The retrofit strategy is one strategy for combining energy efficiency and cost-effectiveness. PV system equipment impact directly to generated power, need to be optimized. On the other side, load equipment needs to be optimized for energy consumption efficiency. In this research, minimizing the retrofit cost and find a cost-optimal package, energy efficiency technologies and Renewable energy generation systems be combined and investigated. Equipment selection for cooking, space cooling, and general appliances type held based on cost per load energy and equipment price. The result of mathematical modelling and simulation is combination of appliances; Cosmos CRJ-9303 rice cooker, Polytron PWC-777 water dispenser, Panasonic NR-BN209N refrigerator, Gree C3E air conditioner, SONY KD-43X7500F television, Shimizu PC-260BIT water pump, and Sharp ES-FL872 washing machine. This combination requires 5,678 kWh annual energy. Standard mono-crystalline PV module with 4.5 kWp capacity could generate 5,891 kWh annually, required 26.1 m2 roof space. Comparison between energy consumption and supply is 104%, it can be stated that the model meets the requirements in applying the nZEB concept, with optimum retrofit cost of Rp 106,076,459."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55330
UI - Tesis Membership  Universitas Indonesia Library
cover
Ghany Heryana
"Riset kendaraan listrik terus berkembang seiring dengan menurunnya cadangan bahan bakar fosil dan meningkatnya kesadaran tentang pentingnya sumber energi yang bebas dari polusi atau green energy. Menurunnya cadangan sumber daya fosil di Indonesia menjadi salah satu alasan utama. Saat ini Indonesia bukan lagi menjadi anggota OPEC karena kecilnya cadangan dan produksi minyak serta gas bumi. Jika hal ini tidak diantisipasi maka ketergantungan Indonesia terhadap impor bahan bakar akan semakin besar. Kendaraan bermotor merupakan salah satu pengguna energi fosil terbesar dan penyumbang polusi. Kebutuhan penggunaan kendaraan tidak dapat dihindari, oleh sebab itu diperlukan solusi kendaraan yang lebih hemat energi dan ramah lingkungan. Kendaraan listrik merupakan solusi yang sangat tepat terkait hal tersebut. Tujuan untuk menurunkan emisi dengan menggunakan kendaraan listrik dapat tercapai, namun untuk mendapatkan efisiensi energi yang baik diperlukan perancangan dan perencanaan daya yang tepat. Jika tidak, alih-alih mendapatkan efisiensi yang baik, yang didapatkan justru penggunaan listrik yang boros. Penentuan kapasitas motor listrik dan baterai umumnya didasarkan pada pengalaman empiris periset lain atau produsen kendaraan listrik yang telah terlebih dahulu memulai. Resiko dari cara ini adalah adanya kelebihan daya, kekurangan daya, atau tidak sinkronnya kapasitas daya motor dengan baterai. Hal ini diketahui setelah kendaraan diuji coba. Riset dimulai dengan kajian secara teoritis untuk mendapatkan model matematis penggunaan daya. Sedangkan eksperimen kendaraan listrik ini dimulai dengan konversi kendaraan ICE menjadi kendaraan listrik murni. Kendaraan yang dimaksud adalah bis listrik. Penggerak utama kendaraan diganti dengan motor listrik. Konsekuensinya, penggerak lain seperti power steering, compressed air, dan air conditioner harus diberi motor tersendiri (multi motor). Sumber daya didapat dari baterai dengan tegangan dan kapasitas arus jam tertentu. Baterai dan beban-beban diintegrasi hingga kebutuhan minimum agar bis dapat berfungsi terpenuhi. Dari hasil pengujian dan pengambilan data, dengan kapasitas motor utama 115 kW dan tegangan 384 VDC, bis mengkonsumsi 1.02 kWh untuk jarak 1 km. Kebutuhan daya motor utama tergantung kepada jarak tempuh, beban, dan kecepatan. Sedangkan power steering, compressed air, dan air conditioner tegantung kepada waktu. Algoritma perancangan dan perencanaan daya kendaraan listrik berhasil mengurangi fase trial and error dan eksperimen serta dapat digunakan untuk perencanaan kendaraan listrik selanjutnya.

Electric vehicle research continues to grow along with the decline in fossil fuel reserves and increasing awareness about the importance of energy sources that are free from pollution or green energy. Indonesia's decline in fossil resource reserves is one of the main reasons. Currently, Indonesia is no longer a member of OPEC because of the small reserves and production of oil and gas. Indonesia's dependence on imported fuel will be even greater if this is not anticipated. Motor vehicles are one of the most significant users of fossil energy and a contributor to pollution. The need for vehicle use cannot be avoided. Therefore, vehicle solutions that are more energy-efficient and environmentally friendly are needed. Electric vehicles are the perfect solution for this. The goal of reducing emissions by using electric vehicles can be achieved, but getting good energy efficiency requires proper power design and planning. If not, what you get is wasteful use of electricity instead of getting good efficiency. The determination of the capacity of electric motors and batteries is generally based on the practical experience of other researchers or electric vehicle manufacturers who have already started. The risk of this method is the presence of excess power, lack of power, or not synchronizing the motor power capacity with the battery. It is known after the vehicle is tested. The research begins with a theoretical study to obtain a mathematical power usage model. Meanwhile, the electric vehicle experiment started with converting ICE vehicles into pure electric ones. The vehicle in question is an electric bus. An electric motor replaces the main drive of the vehicle. Consequently, other drivers, such as power steering, compressed air, and air conditioner, must be given their motor (multi-motor). The power source is obtained from a battery with a specific voltage and current capacity. Batteries and loads are integrated until the minimum requirements for the bus to function are met. From the results of testing and data collection, with the main motor capacity of 115 kW and a voltage of 384 VDC, the bus consumes 1.02 kWh for a distance of 1 km. Main motor power requirements depend on the distance traveled, load, and speed. Meanwhile, power steering, compressed air, and air conditioner depending on time. The design and power planning algorithm of electric vehicles has succeeded in reducing the trial and error and experimental phases and can be used for further planning of electric vehicles."
Depok: Fakultas Teknik Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ganesha Natapramudya
"Kereta listrik dengan jenis motor traksi direct current memiliki berbagai macam sistem agar kereta tersebut dapat bergerak. Sistem tersebut dimulai dari sistem transmisi listrik yang dimulai dari gardu traksi, listrik aliran atas, pantograph, konverter, hingga sampai pada motor traksi. Semua sistem tersebut disuplai listrik dengan daya tertentu agar bekerja dengan optimal. Daya yang bekerja pada kereta listrik terbagi menjadi 2 jenis berdasarkan kecepatannya yaitu daya listrik saat mode powering dan braking. Daya listrik saat mode powering digunakan untuk menyuplai motor traksi agar dapat menambah kecepatan sedangkan daya listrik saat mode braking merupakan daya yang berhasil dibangkitkan oleh motor traksi sebagai generator karena proses pengereman regeneratif. Penelitian ini bertujuan untuk membuat simulasi aliran daya pada kereta listrik yang disimulasikan menggunakan Matlab Simulink r2021a. Simulasi dibuat dengan metode eksperimental dan mempertimbangkan sebab akibat dari parameter lain diluar sistem yaitu kecepatan maksimal, massa total, dan tingkat keaerodinamisan dari kereta listrik. Hasil akhir dari simulasi ini adalah arus referensi yang berhasil dibangkitkan kembali dari pengereman regeneratif dan aliran daya elektris dari mode powering dan braking. Hasil yang diperoleh menunjukkan bahwa nilai tegangan maksimal memiliki pengaruh yang sangat signifikan terhadap daya listrik yang mengalir diikuti oleh massa kereta yang optimal, berbeda dengan tingkat keaerodinamisan yang tidak begitu berpengaruh. Ketiga parameter tersebut memiliki peran masing masing untuk menghasilkan nilai daya terbaik demi mencapai efisiensi yang optimal
Electric trains with direct current traction motors have several systems to move the train. The system starts from substation electrical transmission system start from upstream electricity, pantographs, converters, to traction motor. All of these systems are supplied with a certain amount of power to work optimally. The power that works on the electric train is divided into 2 types based on the speed, namely electric power during powering and braking mode. The electric power during the powering mode is used to activate the traction motor so it can increase the speed, and the electric power during braking mode is the power that has been successfully generated by the traction motor due the regenerative braking process. This study aims to create a power flow simulation on an electric train and simulated using MATLAB SIMULINK r2021a. The simulations using experimental methods and considered the effects of other parameters outside the system, namely maximum speed, total mass, and the level of aerodynamics of the electric train. The result of this simulation is the current reference which is successfully regenerated from regenerative braking and electrical power flow from powering and braking modes. The results indicate that the maximum voltage value has a very significant effect on the electric power flowing followed by optimal mass of the train, in contrast to the level of aerodynamics which has no significant effect. These three parameters have their roles to produce the best power value to achieve optimal efficiency."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bimo Aryo Rahmatullah
"Pemerintah Indonesia berkomitmen untuk menekan emisi gas rumah kaca dan menargetkan konsumsi energi baru terbarukan (EBT) sebesar 23% dari bauran energi nasional. Salah satunya dengan pembangunan PLTP di Indonesia Bagian Timur. Dalam proses studi interkoneksi ini ditemukan kondisi tidak stabil pada sistem yang dapat menyebabkan blackout. Berdasarkan kondisi ini, sistem membutuhkan adanya tindakan mitigasi untuk meningkatkan ketahanan sistem terhadap gangguan. Penambahan Battery Energy Storage System (BESS) dalam sistem dapat dilakukan sebagai tindakan mitigasi gangguan serta untuk meningkatkan keandalan sistem sendiri. Pada penelitian ini, ketahanan sistem terhadap gangguan akan diuji. Sistem akan diuji dalam 2 kondisi yaitu kondisi sebelum penambahan BESS pada sistem, dan setelah penambahan BESS pada sistem. Simulasi kestabilan dengan menggunakan perangkat lunak DIgSILENT PowerFactory menghasilkan kondisi sistem yang lebih stabil setelah penambahan BESS. Saat sistem mengalami islanding, penambahan BESS membuat sistem dapat kembali stabil setelah gangguan dengan nilai frekuensi dalam rentang 49,5 Hz – 50,5 Hz dan tegangan 0,90 p.u. – 1,10 p.u sesuai dengan grid code.

The Indonesian government is committed to reducing greenhouse gas emissions and targets the consumption of new and renewable energy (EBT) at 23% of the national energy mix. One of them is the construction of PLTP in Eastern Indonesia. In the process of this interconnection study found unstable conditions in the system that can cause blackouts. Based on these conditions, the system requires mitigation measures to increase the system's resistance to disturbances. The addition of a Battery Energy Storage System (BESS) in the system is carried out as a disturbance mitigation measure and to increase the reliability of the system itself. In this study, the resistance of the system to disturbance will be tested. The system will be tested in 2 conditions, namely the condition when there is no BESS in the system, and after BESS is in the system. Stability simulation using DIgSILENT PowerFactory software resulted in a more stable system condition after the addition of BESS. After the addition of BESS, the system can return to stability after disturbances with a safe frequency limit of 49.5 Hz – 50.5 Hz and a voltage of 0.90 p.u. – 1.10 p.u. according to the grid code."
Depok: Fakultas Teknik, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azzahra Dita Reminda
"Tujuan dari penelitian ini adalah untuk menganalisis manajemen biaya kualitas di PT T. Akar permasalahan dari penelitian ini adalah terdapat banyak biaya yang harus dikeluarkan dikarenakan kualitas produk yang buruk, sehingga dapat memengaruhi semua aspek di dalam perusahaan. Penelitian ini akan menjelaskan mengenai bagaimana cara mengidentifikasi biaya kualitas yang benar, bagaimana cara menghitung komposisi biaya kualitas, tren profit selama penerapan manajemen biaya kualitas, dan bagaimana cara membuat strategi manajemen biaya kualitas yang tepat untuk beberapa tahun kedepan. Penelitian ini merupakan penelitian kualitatif dengan strategi studi kasus. Penelitian ini menggunakan wawancara dan dokumentasi sebagai instrument penelitian. Hasil dari penelitian ini menunjukkan bahwa manajemen biaya kualitas PT T tidak sebaik yang diharapkan. Meskipun biaya kualitas PT T mengalami penurunan dalam 5 tahun terakhir, namun biaya penilaian memiliki komposisi yang lebih besar dibandingkan biaya pencegahan. PT juga tidak mengidentifikasikan dan mengelompokkan biaya kualitas dan tren profit selama penerapan manajemen biaya kualitas juga kurang tepat. PT T juga ingin mengurangi biaya kegagalan internal untuk beberapa tahun ke depan. Hasil dari penelitian ini diharapkan dapat memberikan manfaat untuk PT T dalam mengevaluasi manajemen biaya kualitasnya.
Kata kunci : biaya kualitas, kualitas, manajemen biaya kualitas, profit, strategi manajemen.

The purpose for this research is to analyze quality cost management in PT T. Root of problem in this research is there are lots of costs incurred due to poor quality product which will affect on all aspects in organization. This research will explain how to identify the quality costs in the correct way, how to calculate the composition of quality cost, profit trend during implementation of quality cost management, and how to make a good quality cost management strategy for the next few years. This is a qualitative research with case study strategy. This research is using interview and documentation as its research instruments. Result of this research is quality cost management on PT T is not as good as expected. Although the quality costs in PT T has been decreased in the last 5 years, yet the appraisal cost has bigger composition compare to prevention cost. PT T also did not identify and categorize quality costs and the profit trend during quality cost management is not good either. PT T also want to reduce their internal failure cost for next few years. The results of this research are expected to provide benefit for PT T in order to evaluating quality cost management."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>