Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 128954 dokumen yang sesuai dengan query
cover
Adlan Mizan
"Telah dilakukan proses sintesis LiFe 1-x VxPO4/C untuk katoda baterai litium ion. Pada bahan ini, sintesis diawali dengan pembuatan LiFePO4 yang dilakukan melalui proses hidrotermal dengan bahan dasar LiOH, NH4H2PO4 dan FeSO4.7H2O. Setelah LiFePO4 disintesis, lalu dilakukan penambahan variasi vanadium serbuk yang bersumber dari H4NO3V dan karbon yang berasal dari hasil pirolisis sukrosa selama 2 jam pada 400 C. Bahan-bahan dicampur menggunakan ball-mill lalu dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasilnya memperlihatkan bahwa transisi terjadi pada temperatur sekitar 700 C yang kemudian dijadikan patokan untuk menentukan proses sintering. Sintering dilakukan selama 4 jam lalu hasilnya dikarakterisasi menggunakan difraksi sinar-X XRD. Struktur mikto dan morfologi permukaan selanjutnya dianalisis menggunakan mikroskop elektron SEM.
Hasil karakterisasi dengan XRD menunjukkan bahwa fasa LiFe 1-x VxPO4/C telah terbentuk dengan struktur berbasis olivin. Hasil SEM menunjukan adanya persebaran partikel LiFe 1-x VxPO4/C walaupun beberapa terlihat masih beraglomerasi. Proses pembuatan baterai dilakukan dari bahan hasil sintesis dan diuji menggunakan electrochemical impedance spectroscopy EIS dan uji performa melalui cyclic voltametry CV dan charge and discharge CD . Hasil EIS menunjukan bahwa doping dengan vanadium meningkatkan konduktifitas yang cukup berarti. Hal yang sama juga terjadi dengan adanya karbon sintesis dari sukrosa walaupun masih lebih rendah jika dibandingkan dengan karbon komersial. Uji performa menunjukan bahwa penambahan vanadium meningkatkan kapasitas 51.06 mAh/g saat charging dan 49.42 mAh/g saat discharging dengan beda potensial 3.581 V saat charging dan 3.319 V saat discharging. Hasil yang didapatkan ini cukup menjanjikan untuk penggunaan selanjutnya sebagai katoda baterai litium ion.

Synthesis of LiFe 1 x VxPO4 C used for lithium ion battery cathode has been carried out. In the process, the synthesis was begun by synthesizing of LiFePO4 through a hydrothermal method with the precursors of LiOH, NH4H2PO4 and FeSO4.7H2O. The as synthesized LiFePO4 was then mixed with H4NO3V and carbon pyrolyzed from sucrose for 2 hours at 400 C. The mixture was mixed in a ball mill and then was characterized using a thermal analyzer to determine the transition temperature at which sintering at 700 C for 4 hours was obtained. X ray diffraction XRD was performed to analyzed the crystal structure whereas scanning electron microscope SEM was used to examine the microstructure and surface morphology.
XRD results show that the phase LiFe 1 x VxPO4 C has been formed with an olivine based structure. SEM results showed the distribution of LiFe 1 x VxPO4 C particles are mostly distributed. The batteries were prepared from the as synthesized materials and was tested using electrochemical impedance spectroscopy EIS, cyclic voltammetry CV and charge and discharge CD performance test. The EIS results showed that doping with vanadium improved the conductivity. The same was true with the carbon even at a smaller value compared to that of the commercial one. The performance test showed that the addition of vanadium increased the capacity of about 51.06 mAh g with a potential of 3.581 V at charging and 49.42 mAh g with a potential of 3.319 V at discharging. These results are promising in terms of using this material for lithium ion battery cathode development.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66642
UI - Skripsi Membership  Universitas Indonesia Library
cover
Audiya Dewi Rachmawati
"Telah dilakukan sintesis katoda LiFePO4/V berlapis karbon dari karbon aktif tempurung kelapa untuk katoda baterai lithium ion. Prekursor yang digunakan adalah LiOH, NH4H2PO4, dan FeSO4.7H2O dibuat melalui proses hidrotermal. Selanjutnya, dilakukan pencampuran karbon dari karbon aktif tempurung kelapa sebanyak 4 dan variasi vanadium serbuk yang bersumber dari H4NO3V. Campuran LiFePO4/V/C dikarakterisasi menggunakan analisis termal STA untuk menentukan temperatur sintering. Hasilnya sintesis terjadi pada temperatur di atas 681,950C dan serbuk berwarna abu-abu gelap sebagai karakteristik dari LiFePO4. Kemudian proses sintering dilakukan pada temperatur 8500C selama 4 jam. Serbuk LiFePO4 sintesis dikarakterisasi menggunakan difraksi sinar-X XRD, mikroskop elektron dan pendeteksi unsur SEM-EDS serta sifat listrik melalui spektroskopi impedansi EIS.
Hasil XRD menunjukkan LiFePO4/V/C telah terbentuk dengan struktur berbasis olivin. Hasil SEM-EDS menggambarkan partikel yang teraglomerasi dan LiFePO4/V telah terlapisi karbon. Hasil EIS menunjukkan konduktivitas sebesar 5,33 x 10-5 S/cm untuk LiFePO4/C tanpa vanadium dan 6 x 10-6 S/cm untuk LiFePO4/C dengan doping vanadium 5.

Activated carbon from coconut shell has been used as an additive to form LiFePO4 V C composite for lithium ion battery cathode. Lithium iron phosphate LFP was synthesized from the precursors of LiOH, NH4H2PO4, and FeSO4.7H2O via hydrothermal method. The LiFePO4 V C composite was formed by adding various vanadium concentration 0, 3, 5, 7 at. and a fix concentration of carbon 4 wt. Thermal analysis STA was used to characterize the formation of LFP and the transition temperature of the composite from which a transition temperature of 681.950C was obtained. X ray diffraction XRD was used to characterize the crystal structure, whereas scanning electron microscope SEM equipped with energy dispersive X ray spectroscopy EDX was used to characterize the morphology and composition of the composite. The conductivity of the composite was examined using electrical impendance spectroscopy EIS.
The XRD results showed that LiFePO4 V C has an olivine structure with Pnmb space group. The SEM EDX results depicted aglomerate particles but most LiFePO4 V has been coated by carbon. EIS test results showed a conductivity of 5.33 x 10 5 S cm for LiFePO4 C with no vanadium and 6.0 x 10 6 S cm for 5 wt. vanadium doped LiFePO4 V C.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68917
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanna Hertiani
"Green Synthesis nanopartikel Li2O, Mn2O3, dan LiMn2O4 berhasil dilakukan dengan menggunakan ekstrak daun pepaya (Carica Papaya L.). Metabolit sekunder yang ada dalam ekstrak daun berperan sebagai sumber basa untuk menghidrolisis dan capping agent untuk menstabilkan pembentukan nanopartikel. LiMn2O4 yang disintesis menggunakan metode konvensional telah berhasil dilakukan. Spektrofotometri UV-Vis, FTIR, PSA, XRD, SEM-EDX, dan TEM untuk mengkarakterisasi material hasil sintesis. Karakterisasi XRD menunjukan bahwa nanopartikel LiMn2O4 spinel kubik, dengan distribusi ukuran partikel sebesar 58,30 nm melalui karakterisasi PSA dan rata-rata ukuran sebesar 55,91 nm melalui karakterisasi TEM. Lembaran katoda LiMn2O4 dibuat dengan mencampurkan material aktif dengan PVDF dan super P dengan perbandingan 8:1:1 menggunakan pelarut N,N-dimethylacetamide (DMAC) menjadi slurry. Kemudian slurry dilapiskan pada Al foil menjadi sebuah lembaran. Data cyclic voltammetry menunjukkan LiMn2O4 hasil green synthesis memiliki performa elektrokimia yang stabil. Ditunjukkan dari voltammogram yang terbentuk dan kapasitas retensi sebesar 87,28% setelah 50 siklus. Dari pengujian galvanostatic charge-discharge didapatkan kapasitas spesifiknya hanya 63,93 mAH/g dengan efisiensi coulombic sebesar 94,78%
The green synthesis of Li2O, Mn2O3, and LiMn2O4 nanoparticles has been successfully done using papaya leaf extract (Carica Papaya L.). The secondary metabolite in the leaf extract plants a role as base source to hydrolize and capping agent to stabilize nanoparticle formation. The synthesized LiMn2O4 using conventional method was also successfully done. We use, UV-Vis spectrophotometry, FTIR, PSA, XRD, SEM-EDX, and TEM to characterize the synthesized material. XRD characterization shows that the cubic spinel LiMn2O4 nanoparticle with particle size distribution of 58,30 nm through PSA characterization and the average size about 55,906 nm through TEM characterization. LiMn2O4 cathode sheet is made by mixing active material with PVDF and super P with a ratio of 8:1:1 using N.N-dimethylacetamide (DMAC) became slurry. Then slurry was superimposed to Al foil to become a sheet. cyclic voltammetry data shows that synthesized LiMn2O4 has been a stable electrochemical performance. This is shown from the shape of the formed voltammogram and retention capacity of 87,82% after 50 cycles. From galvanostatic charge-discharge test, a specific capacity of 63.93 mAH.g-1 was obtained with a coulombic efficiency of 94.78%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rudiyansah
"Struktur Olivine LiMnPO4 sebagai material katoda baterai Li-ion memiliki daya tarik tersendiri dikarenakan nilai potensial oksidasi-reduksi yang tinggi yaitu 4.2 volt terhadap Li/Li+, stabil secara termal, dan relatif ramah lingkungan (nontoxic).
Namun nilai konduktifitas ionik dan elektronik yang rendah sekitar (10-9 S/cm), nilai specific capacity yang rendah akibat distorsi kisi (Jahn-Teller effect),
menjadi tantangan tersendiri. Proses pelapisan karbon pada bahan aktif LiMnPO4 dengan menggunakan starch atau pati singkong , subtitusi kation dengan penambahan Fe dan Ni (covalent-doping) dimana formulasi LiMn0.7Fe0.3-
xNixPO4/C dengan 0 X 0.2 digunakan untuk meningkatkan konduktifitas elektronik-ionik, nilai specific capacity dan working voltage (Voksidasi/reduksi).
Pengujian XRD menunjukan pola difraksi struktur kristal LiMnPO4 telah berhasil terbentuk melalui proses milling (330 rpm, 48 jam) dan sintering disuhu 800°C (solid state reaction). Proses reduksi ukuran dan coating karbon dengan Ball Milling mampu menghasilkan partikel bahan aktif LiMn0.7Fe0.3-xNixPO4/C dengan 0 X 0.2 berukuran hingga 290 nanometer dengan ukuran kristalit hingga 60 nanometer. Pertumbuhan pelapisan karbon kearah horizontal pada bahan aktif LiMn0.7Fe0.3-xNixPO4/C dengan 0 X 0.2 menjadi bukti bahwa starch atau pati singkong berperan sebagai fasilitator pengintian pelapisan karbon dan terlihat pada pengujian SEM (perbesaran 50000 x) dan pengujian EDX dengan kadar Mn
yang tinggi menjadi bukti penguat. Frame network polianion terbentuk pada bahan aktif LiMn0.7Fe0.3-xNixPO4/C dengan 0 X 0.2 ditandai dengan nilai vibrasi v1- v4 (1138 dan 1098 cm-1) yang dominan muncul pada hasil pengujian FTIR. Penambahan karbon sebagai pelapis bahan aktif memberikan nilai konduktifitas elektronik (pasif) dan ionik (aktif) yang cukup tinggi sekitar 1 x 10-3 S/cm dan 7.2 S/cm, dimana penambahan Ni (doping kation) berkontribusi dalam peningkatan nilai konduktifitas elektronik (pasif). Komposisi bahan aktif
LiMn0.7Fe0.25Ni0.05PO4/C menunjukan nilai specific capacity oksidasi hingga 60.92 mAh/gr dan nilai Voksidasi-reduksi sekitar 4.13 volt dan mampu digunakan
sebagai bahan aktif katoda baterai Li-ion secara praktikal dari hasil pengujian cyclic voltammetry. Puncak Voksidasi/reduksi ganda yang merupakan kontribusi
Voksidasi Fe2+/Fe3+ dan Mn2+/Mn3+ sering terlihat pada hasil pengujian cyclic voltammetry.

Olivine LiMnPO4 structure as cathode material in Li-ion battery have very
attractive because its high potential oxidation/reduction around 4.2 volts vs. Li/Li+,
thermally stable, and nontoxic. Its low electronic and ionic conductivity around
(10-9 S/cm), low specific capacity by lattice distortion (Jahn-Teller effect),
become its challenges. Carbon-coating process with starch of cassava in cathode
material LiMnPO4, co-subtitution by adding Fe and Ni where LiMn0.7Fe0.3-
xNixPO4/C with 0  X  0.2 formulation have been used to enhanced ionicelectronic
conductivity, specific capacity, and working voltage of cathode material.
Pattern diffraction of XRD shown LiMnPO4 structure have been formed via
milling process (330 rpm, 48 hours) and sintering process at 800°C (solid state
reaction). Size reduction process and carbon coating have been carried and
produced cathode material LiMn0.7Fe0.3-xNixPO4/C with 0  X  0.2 with the
particle size up to 290 nanometers and crystallite size up to 60 nanometers.
Carbon-coating process have been grown in horizontal direction in cathode
material LiMn0.7Fe0.3-xNixPO4/C with 0  X  0.2 and become approval that the
starch of cassava have been facilitates nuklea of carbon-coating to grown in
cathode material and can be seen by SEM with magnification 50000 times, and
also the high content of Mn that have founded by EDX evaluation agreed. Frame
network of polyanion have formed in cathode material LiMn0.7Fe0.3-
xNixPO4/C with 0  X  0.2 indicated by vibration value of v1- v4 (1138 and 1098
cm-1) that appeared dominantly during FTIR evaluation. Electronic conductivity
(passive) of cathode material LiMn0.7Fe0.3-xNixPO4/C with 0  X  0.2 increased
significantly up to 1 x 10-3 S/cm by carbon-adding process as carbon-coating in
cathode material, where the process of Ni-added as cation-doping also contribute
in increasing the value of electronic conductivity. Based of cyclic voltammetry
evaluation the formulation LiMn0.7Fe0.25Ni0.05PO4/C of cathode material shown
the highest specific capacity oxidation near 60.92 mAh/gr and Voxidation/reduction
around 4.13 volts and practically can be used as Li-ion battery. Doblet
Voxidation/reduction peak appeared several times as the contribution of Voxidation/reduction
Fe2+/Fe3+ and Mn2+/Mn3+ in cyclic voltammetry evaluation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T34990
UI - Tesis Membership  Universitas Indonesia Library
cover
Sarah Alya Firnadya
" ABSTRAK
Baterai lithium ion merupakan baterai yang sedang dikembangkan untuk menjadi tempat penyimpanan energi khususnya untuk mobil listrik. Anoda Li4Ti5O12 LTO atau lithium titanat merupakan anoda yang cukup menjanjikan untuk aplikasi ini karena sifat zero-strain yang dimiliki sehingga dapat tahan pada high rate. Namun, kapasitas yang dimiliki LTO masih tergolong rendah. Oleh karena itu LTO perlu dikombinasikan dengan bahan lain yang memiliki kapasitas tinggi seperti Si. Silikon memiliki kapasitas yang sangat tinggi yaitu 4200mAh/g namun volume ekpansinya pun tinggi. Ukuran nano juga dapat membantu meningkatkan kapasitas. Oleh karena itu komposit LTO/nano Si dibuat untuk mendapat anoda dengan kapasitas yang tinggi dan bersifat stabil. Nano Si yang ditambahkan dengan variasi 1 , 5 , dan 10 . Komposit LTO/nano Si dikarakterisasi dengan XRD, SEM-EDX, dan TEM-EDX. Lalu, untuk mengetahui performa baterai, pengujian yang dilakukan adalah EIS, CV, dan CD. Hasil yang didapat adalah Si meningkatkan konduktivitas, namun tidak signifikan. Penambahan Si menghasilkan kapasitas baterai yang lebih besar yaitu 262,54 mAh/g pada LTO-10 Si. Stabilitas dari komposit LTO/nanoSi baik, dibuktikan dengan efisiensi coulomb pada high rate yang mendekati 100 .
ABSTRACT The lithium ion battery is a battery that is being developed to become a repository of energy, particularly for electric cars. Li4Ti5O12 LTO anode or lithium titanate anodes are quite promising for this application because of its zero strain properties so it can withstand the high rate. However, the capacity of LTO is still relatively low. Therefore, the LTO needs to be combined with other materials that have high capacity such as Si. Silicon has a very high capacity which is 4200mAh g but, it has a high volume of the expansion. Nano size can also help increase the capacity. Therefore composite of LTO nano Si is made to create an anode with a high capacity and also stable. Nano Si is added with a variation of 1 , 5 and 10 . LTO nano Si composite is characterized using XRD, SEM EDX, and TEM EDX. Then, to determine the battery performance, EIS, CV, and CD tests were conducted. From those tests, it is studied that Si improves the conductivity of the anode, but not significantly. The addition of Si results a greater battery capacity which is 262.54 mAh g in the LTO 10 Si. Stability of composite LTO nanoSi is good, evidenced by the coulomb efficiency at the high rate of close to 100 ."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66640
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Yunianto Putro
"Telah dilakukan sintesis katoda LiFePO4 dengan penambahan variasi Vanadium sebagai bahan aditif. Dalam penelitian ini bubuk LiFePO4 dibuat dengan LiOH, NH4H2PO4, dan FeSO4.7H2O sesuai stoikiometri melalui proses hidrotermal. Pada tahapan berikutnya, dilakukan pencampuran pelarut dan bubuk H4NO3V sebagai variasi dari katoda aktif bahan dan karbon hitam sebanyak 4% wt. Selanjutnya dilakukan proses hidrotermal untuk membentuk LiFePO4 murni dengan warna abu-abu terang. Setelah proses sintering, didapatkan hasil berwarna abu-abu gelap sebagai karakteristik partikel LiFePO4. Bahan katoda LiFePO4 murni disintesis pada suhu 180 °C dalam autoclave dengan waktu penahanan selama 20 jam dan selanjutnya disintering 750 °C dengan penahanan selama 4 jam. Hasil sintesis dikarakterisasi menggunakan analisis termal (STA), difraksi sinar-X (XRD), mikroskop elektron (SEM), dan sifat listrik melalui spektroskopi impendansi (EIS). Hasilnya memperlihatkan bahwa temperatur pembentukan LiFePO4 dari uji STA adalah antara 653,8 – 750,0 °C. Hasil XRD menunjukkan LiFePO4 memiliki struktur olivin dengan grup ruang ortorombik, sementara hasil SEM menunjukkan bahwa LiFePO4 berbentuk bulat dan teraglomerasi. Hasil uji EIS menghasilkan nilai impedansi atau hambatan sebesar 158 Ω untuk LiFePO4 murni hasil sintesis dan 59 Ω untuk LiFePO4 dengan doping vanadium 5%.

Vanadium-doped LiFePO4 used as cathode for lithium ion battery has been suscessfully synthesized. In this work, LiFePO4 was synthesizwed from LiOH, NH4H2PO4, and FeSO4.7H2O at stoichiometric amount through a hydrothermal method. Vanadium was added in the forms of H4NO3V powder at concentration variations and 4% wt carbon black. The hydrothermal process has been successfully carried out to form a pure LiFePO4 with a light gray color. After the sintering process, a dark gray powder as the characteristics of LiFePO4 particles were obtain. Pure LiFePO4 was synthesized at 180 °C in an autoclave for 20 hours and was sintered at 750 °C for 4 hours. The craharacterization includes thermal analysis (STA), X-ray diffraction (XRD), electron microscope (SEM), and electrical impendance spectroscopy (EIS). The STA results showed that LiFePO4 formation temperature is at 653.8 – 750.0 °C. The XRD results showed LiFePO4 are having olivine structure with orthorhombic space group, whereas the SEM results showed that LiFePO4 has round shape with agglomerated microstructure. EIS test results showed impedance of 158 Ω for pure LiFePO4 and 59 Ω for LiFePO4 doped 5% vanadium."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael
"ABSTRAK
Baterai adalah komponen listrik yang digunakan untuk menyimpan listrik. Saat ini, baterai yang paling banyak digunakan adalah baterai Lithium Ion. Baterai lithium memiliki kepadatan energi yang relatif tinggi dibandingkan pendahulunya, tetapi sangat beracun dan berbahaya bagi organisme hidup dan memerlukan penanganan yang hati-hati dalam operasinya, salah satunya adalah dengan menggunakan sistem manajemen baterai. Dalam tesis ini, dirancang perlindungan overcharging dan sistem manajemen baterai balancing pasif untuk baterai Lithium seri terhubung. Pengujian prototipe dilakukan dengan menguji kemampuan perlindungan pengisian berlebih dengan memantau setiap tegangan sel dan nilai saat ini saat diisi. Pengujian kemampuan balancing pasif dilakukan dengan mengukur setiap tegangan sel saat diisi. Berdasarkan dari data pengujian prototipe sirkuit balancing overcharging dan pasif, disimpulkan bahwa prototipe mampu memberikan perlindungan pengisian daya yang berlebihan dan mampu menyeimbangkan secara pasif setiap seri sel baterai terhubung pada 3,75 Volt menggunakan 0,2 Ampere arus pengisian.

ABSTRACT
atteries are electrical components that are used to store electricity. Currently, the most widely used battery is a Lithium Ion battery. Lithium batteries have a relatively high energy density compared to their predecessors, but are highly toxic and dangerous to living organisms and require careful handling in their operations, one of which is to use a battery management system. In this thesis, designed overcharging protection and passive battery balancing management system for connected series Lithium batteries. Prototype testing is done by testing the overcharging protection capability by monitoring each cell voltage and current value when charged. Passive balancing capability testing is done by measuring every cell voltage when filled. Based on the prototype overcharging and passive balancing circuit testing data, it was concluded that the prototype is able to provide excessive charging protection and is able to passively balance each series of battery cells connected at 3.75 Volts using 0.2 Amperes of charging current."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Winidias Chandra Prameswari
"Litium Titanat Oksida (Li4Ti5O12) adalah kandidat yang menjanjikan sebagai anoda untuk baterai Litium ion. Dalam penelitian ini, Li4Ti5O12 disintesis oleh solid-state dengan kadar ZnO Nanorod yang berbeda. Tiga variasi penambahan kadar ZnO Nanorod yaitu 0%, 4% dan 7% dengan label LTO anoda, LTO/ZnO 4% dan LTO/ZnO Nanorod 7%. Uji karakterisasi terhadap zat yang digunakan adalah SEM dan XRD. Uji karakterisasi bertujuan untuk mengamati terbentuknya ZnO Nanorod dengan metode Chemical Bath Deposition (CBD) dan efek penambahan kadar ZnO Nanorod terhadap LTO pada struktur morfologi sampel.
Hasil penelitian menunjukan bahwa kapasitas optimum masing-masing sampel adalah 127.73 mAh/g untuk LTO anoda, 120.74 mAh/g untuk LTO/ZnO 4% dan 125.00 mAh/g untuk LTO/ZnO 7%. Nilai konduktifitas tertinggi yang didapatkan dari pengujian Electrochemical Impedance Spectrometry (EIS) adalah LTO/ZnO 4%. Berdasarkan hasil XRD, Hasil dari semua variabel dipengaruhi oleh impuritas yang terdapat dalam material aktif yang digunakan.

Lithium Titanate Oxide (Li4Ti5O12) is a promising candidate for an anode material in Lithium-ion battery. In this research, Li4Ti5O12 is synthesized using the solid-state method with the addition of ZnO Nanorod. The variable used for this research are at 0%, 4% and 7% and each sample is labelled as LTO anode, LTO/ZnO 4% and LTO/ZnO 7%. Characterization tests were made to all the sample by using SEM and XRD. Characterizations were done to examine the structure of ZnO Nanorod as well as the effect of the addition of ZnO Nanorod to the sample and the elements consisting in the active material.
Result shows that LTO anode has the highest capacity at 127.73 mAh/g followed by LTO/ZnO 7% at 125.00 mAh/g and LTO/ZnO 7% 120.74 mAh/g. The conductivity tested using Electrochemical Impedance Spectroscopy (EIS) shows that the highest conductivity is possessed by LTO/ZnO 4%. The outcome of the research is affected by the impurities in the active materials as shown in the XRD result.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Benediktus Ma’dika
"Baterai litium-ion merupakan teknologi yang menjanjikan untuk mendukung transisi energi berbasis fosil ke energi baru terbarukan pada kendaraan listrik yang ramah lingkungan karena kinerja penyimpanan energinya yang unggul. Penelitian material energi untuk baterai litium-ion terus dilakukan secara intensif hingga saat ini. Untuk mendukung hal tersebut, penelitian ini mensintesis Lithium Lanthanum Titanate ( LLTO, dengan formula kimia Li0,5La0,5TiO3) dari kombinasi lantanum oksalat lokal (95,296 % atomik lanthanum), litium karbonat komersial dan titanium oksida komersial melalui solid-state reaction yang sederhana dan berbiaya rendah. Dalam metode ini, digunakan kalsinasi dua tahap di mana tahap pertama dilakukan pada temperatur 800 °C selama 8 jam di bawah kondisi atmosfer biasa sedangkan tahap kedua dilakukan pada tiga variasi temperatur yakni 1.050 °C, 1.150 °C dan 1.250 °C selama 12 jam di bawah kondisi atmosfer biasa yang masing-masing menghasilkan 97,98, 98,141 dan 92,328 % berat Li0,5La0,5TiO3. LLTO yang disintesis pada temperatur kalsinasi kedua 1.150 °C menunjukkan luas permukaan dan volume pori yang paling besar, butir-butir tersusun secara acak dan memiliki sifat pseudokapasitansi sehingga memberikan kapasitas spesifik yang tinggi sebesar 17.120 mAh g-1 (pada C-rate 0,5 dan potensial yang mendekati nol) dan konduktivitas yang tinggi sekitar 2,45 × 10 -2 S/cm. LLTO ini menjanjikan untuk digunakan sebagai anoda potensial rendah dalam baterai litium-ion.

Lithium-ion battery is one of the promising technologies to support the transition of fossil-based energy to renewable energy in eco-friendly electric vehicles due to its superior energy storage performance. Research on energy materials for lithium-ion batteries continues to be carried out intensively to date. To support this plan, this research has synthesized Lithium Lanthanum Titanate (LLTO, with a chemical formula Li0,5La0,5TiO3) from a combination of local lanthanum oxalate (95.296 % atomic of lanthanum), commercial lithium carbonate, and commercial titanium oxide through a low-cost and simple solid-state reaction. In this method, a two-stage calcination method was used, where the first step was carried out at a temperature of 800 °C for 8 h under atmospheric conditions while the second step was carried out at three different temperatures namely 1050 °C, 1150 °C and 1250 °C for 12 h under atmospheric conditions yielding 97.98, 98.141 and 92.328 weight % of Li0,5La0,5TiO3, respectively. The LLTO synthesized at the second calcination temperature of 1150 °C exhibited largest surface area and pore volume, randomly arranged particles, and pseudocapacitive feature as to provide a high specific capacity of 17,120 mAh g-1 (at a C-rate 0, 5 and near-zero potentials) and a high conductivity of 2.45 × 10 -2 S/cm. This LLTO holds promise for use as a low-potential anode in lithium-ion batteries."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Trivika Lemona
"[ABSTRAK
Hidrogen merupakan salah satu unsur yang dapat dijadikan sebagai bahan bakar alternatif karena BBH atau bahan bakar hidrogen bersifat ecoenergi dengan proses pembakaran yang hanya menghasilkan air dan energi (listrik dan panas). Salah satu teknologi penghasil hidrogen adalah dengan metode Contact Glow Discharge Elektrolisis atau CGDE. Penelitian ini menggunakan metode CGDE dengan multi katoda dan penambahan etanol dengan tujuan dapat meningkatkan laju produksi hidrogen dan efektivitas proses.pada penelitian ini akan dilihat pengaruh penambahan jumlah katoda, pengaruh konsentrasi etanol dan diameter katoda terhadap laju produksi dan efektivitas hidrogen. Dari karakterisasi arus dan tegangan yang diperoleh pada penelitian ini, dapat disimpulkan bahwa arus akan semakin meningkat seiring dengan bertambahnya jumlah katoda. Penggunaan multi katoda pada proses CGDE juga terbukti meningkatkan produksi hidrogen pada tegangan dan konsumsi energi yang sama. Penambahan zat aditif etanol juga dilakukan pada penelitian ini dan memperoleh hasil bahwa semakin tinggi konsentrasi etanol maka akan semakin tinggi produksi dan efektivitas gas Hidrogen yang dihasilkan. Selain itu, penelitian ini juga membuktikan bahwa semakin besar diameter katoda maka laju produksi akan semakin tinggi, namun konsumsi energi menjadi meningkat dan tidak sebanding dengan peningkatan laju produksi sehingga menghasilkan efektivitas yang semakin kecil. Proses CGDE multi katoda pada penelitian ini menunjukkan peningkatan efektivitas proses sebesar 76 kali lipat dibandingkan dengan elektrolisis Faraday.

ABSTRACT
Hydrogen is one of elements that can be used as an alternative energy. The combustion of Hydrogen only produces water and energy. Therefore, hydrogen is called as ecoenergy. One of technology that can produce hydrogen is Contact Glow Discharge Electrolysis or CGDE. CGDE is one of plasma electrolysis that uses electrolyte solution and inert electrode to produce hydrogen in high voltage. This research uses CGDE method with multi-cathode and ethanol in order to increase hydrogen production and the effectivity of process. In this research, we will explore the effect of increasing cathode number, etanol addition, and increasing of cathode diameter. From characterization of current and volatge, we can conclude that the increasing of cathode number can increase the current that through into cathode. Utilization of multi-cathode in CGDE is proven that can increase the hydrogen production at the same voltage and energy consumption. The addition of ethanol has done in this research and we can conclude that when we increase the concentration of ethanol, the hydrogen production will be increased either at the same voltage. In addition, this research also prove that the bigger diameter of a cathode will increase the production rate, but the energy consumption increases higher than the production rate. Therefore, the increasing of diameter of cathode is not effective to use in CGDE. The CGDE multi-cathode on this research indicated increasing of effectiveness as much as 76 times higher than the Faraday Electrolysis., Hydrogen is one of elements that can be used as an alternative energy. The combustion of Hydrogen only produces water and energy. Therefore, hydrogen is called as ecoenergy. One of technology that can produce hydrogen is Contact Glow Discharge Electrolysis or CGDE. CGDE is one of plasma electrolysis that uses electrolyte solution and inert electrode to produce hydrogen in high voltage. This research uses CGDE method with multi-cathode and ethanol in order to increase hydrogen production and the effectivity of process. In this research, we will explore the effect of increasing cathode number, etanol addition, and increasing of cathode diameter. From characterization of current and volatge, we can conclude that the increasing of cathode number can increase the current that through into cathode. Utilization of multi-cathode in CGDE is proven that can increase the hydrogen production at the same voltage and energy consumption. The addition of ethanol has done in this research and we can conclude that when we increase the concentration of ethanol, the hydrogen production will be increased either at the same voltage. In addition, this research also prove that the bigger diameter of a cathode will increase the production rate, but the energy consumption increases higher than the production rate. Therefore, the increasing of diameter of cathode is not effective to use in CGDE. The CGDE multi-cathode on this research indicated increasing of effectiveness as much as 76 times higher than the Faraday Electrolysis.]"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58845
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>