Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 10034 dokumen yang sesuai dengan query
cover
Krishnan, Krish
Burlington: Elsevier Science, 2013
005.745 KRI d
Buku Teks SO  Universitas Indonesia Library
cover
"Data warehousing in the age of the big data will help you and your organization make the most of unstructured data with your existing data warehouse.
As big data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how big data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses big data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a big data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory."
Waltham, MA: Morgan Kaufmann, 2013
e20426924
eBooks  Universitas Indonesia Library
cover
"Big data analytics will assist managers in providing an overview of the drivers for introducing big data technology into the organization and for understanding the types of business problems best suited to big data analytics solutions, understanding the value drivers and benefits, strategic planning, developing a pilot, and eventually planning to integrate back into production within the enterprise."
Waltham, MA: Elsevier, 2013
e20426807
eBooks  Universitas Indonesia Library
cover
"Corporations and governmental agencies of all sizes are embracing a new generation of enterprise-scale business intelligence (BI) and data warehousing (DW), and very often appoint a single senior-level individual to serve as the enterprise BI/DW program manager. This book is the essential guide to the incremental and iterative build-out of a successful enterprise-scale BI/DW program comprised of multiple underlying projects, and what the enterprise program Manager must successfully accomplish to orchestrate the many moving parts in the quest for true enterprise-scale business intelligence and data warehousing.
Author Alan Simon has served as an enterprise business intelligence and data warehousing program management advisor to many of his clients, and spent an entire year with a single client as the adjunct consulting director for a $10 million enterprise data warehousing (EDW) initiative. He brings a wealth of knowledge about best practices, risk management, organizational culture alignment, and other Critical Success Factors (CSFs) to the discipline of enterprise-scale business intelligence and data warehousing.
"
Waltham, MA: Morgan Kaufmann, 2015
e20426986
eBooks  Universitas Indonesia Library
cover
Ishmah Naqiyya
"Perkembangan teknologi informasi dan internet dalam berbagai sektor kehidupan menyebabkan terjadinya peningkatan pertumbuhan data di dunia. Pertumbuhan data yang berjumlah besar ini memunculkan istilah baru yaitu Big Data. Karakteristik yang membedakan Big Data dengan data konvensional biasa adalah bahwa Big Data memiliki karakteristik volume, velocity, variety, value, dan veracity. Kehadiran Big Data dimanfaatkan oleh berbagai pihak melalui Big Data Analytics, contohnya Pelaku Usaha untuk meningkatkan kegiatan usahanya dalam hal memberikan insight yang lebih luas dan dalam. Namun potensi yang diberikan oleh Big Data ini juga memiliki risiko penggunaan yaitu pelanggaran privasi dan data pribadi seseorang. Risiko ini tercermin dari kasus penyalahgunaan data pribadi Pengguna Facebook oleh Cambridge Analytica yang berkaitan dengan 87 juta data Pengguna. Oleh karena itu perlu diketahui ketentuan perlindungan privasi dan data pribadi di Indonesia dan yang diatur dalam General Data Protection Regulation (GDPR) dan diaplikasikan dalam Big Data Analytics, serta penyelesaian kasus Cambridge Analytica-Facebook. Penelitian ini menggunakan metode yuridis normatif yang bersumber dari studi kepustakaan. Dalam Penelitian ini ditemukan bahwa perlindungan privasi dan data pribadi di Indonesia masih bersifat parsial dan sektoral berbeda dengan GDPR yang telah mengatur secara khusus dalam satu ketentuan. Big Data Analytics juga memiliki beberapa implikasi dengan prinsip perlindungan privasi dan data pribadi yang berlaku. Indonesia disarankan untuk segera mengesahkan ketentuan perlindungan privasi dan data pribadi khusus yang sampai saat ini masih berupa rancangan undang-undang.

The development of information technology and the internet in various sectors of life has led to an increase in data growth in the world. This huge amount of data growth gave rise to a new term, Big Data. The characteristic that distinguishes Big Data from conventional data is that Big Data has the characteristic of volume, velocity, variety, value, and veracity. The presence of Big Data is utilized by various parties through Big Data Analytics, for example for Corporation to incurease their business activities in terms of providing broader and deeper insight. But this potential provided by Big Data also comes with risks, which is violation of one's privacy and personal data. One of the most scandalous case of abuse of personal data is Cambridge Analytica-Facebook relating to 87 millions user data. Therefor it is necessary to know the provisions of privacy and personal data protection in Indonesia and which are regulated in the General Data Protection (GDPR) and how it applied in Big Data Analytics, as well as the settlement of the Cambridge Analytica-Facebook case. This study uses normative juridical methods sourced from library studies. In this study, it was found that the protection of privacy and personal data in Indonesia is still partial and sectoral which is different from GDPR that has specifically regulated in one bill. Big Data Analytics also has several implications with applicable privacy and personal data protection principles. Indonesia is advised to immediately ratify the provisions on protection of privacy and personal data which is now is still in the form of a RUU."
Depok: Fakultas Hukum Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. "
Switzerland: Springer Nature, 2019
e20507207
eBooks  Universitas Indonesia Library
cover
Febtriany
"Saat ini kompetisi di industri telekomunikasi semakin ketat. Perusahaan telekomunikasi yang dapat tetap menghasilkan banyak keuntungan yaitu perusahaan yang mampu menarik dan mempertahankan pelanggan di pasar yang sangat kompetitif dan semakin jenuh. Hal ini menyebabkan perubahan strategi banyak perusahaan telekomunikasi dari strategi 'growth '(ekspansi) menjadi 'value added services'. Oleh karena itu, program mempertahankan pelanggan ('customer retention') saat ini menjadi bagian penting dari strategi perusahaan telekomunikasi. Program tersebut diharapkan dapat menekan 'churn' 'rate 'atau tingkat perpindahan pelanggan ke layanan/produk yang disediakan oleh perusahaan kompetitor.
Program mempertahankan pelanggan ('customer retention') tersebut tentunya juga diimplementasikan oleh PT Telekomunikasi Indonesia, Tbk (Telkom) sebagai perusahaan telekomunikasi terbesar di Indonesia. Program tersebut diterapkan pada berbagai produk Telkom, salah satunya Indihome yang merupakan 'home services' berbasis 'subscriber' berupa layanan internet, telepon, dan TV interaktif. Melalui kajian ini, penulis akan menganalisa penyebab 'churn' pelanggan potensial produk Indihome tersebut, sehingga Telkom dapat meminimalisir angka 'churn' dengan melakukan program 'customer retention' melalui 'caring' yang tepat.
Mengingat ukuran 'database' pelanggan Indihome yang sangat besar, penulis akan menganalisis data pelanggan tersebut menggunakan metoda 'Big Data Analytics'. 'Big Data' merupakan salah satu metode pengelolaan data yang sangat besar dengan pemetaan dan 'processing' data. Melalui berbagai bentuk 'output', implementasi 'big data' pada perusahaan akan memberikan 'value' yang lebih baik dalam pengambilan keputusan berbasis data.

Nowadays, telecommunication industry is very competitive. Telecommunication companies that can make a lot of profit is the one who can attract and retain customers in this highly competitive and increasingly saturated market. This causes change of the strategy of telecommunication companies from growth strategy toward value added services. Therefore, customer retention program is becoming very important in telecommunication companies strategy. This program hopefully can reduce churn rate or loss of potential customers due to the shift of customers to other similar products.
Customer retention program also implemented by PT Telekomunikasi Indonesia, Tbk (Telkom) as the leading telecommunication company in Indonesia. Customer retention program implemented for many Telkom products, including Indihome, a home services based on subscriber which provide internet, phone, and interactive TV. Through this study, the authors will analyze the cause of churn potential customers Indihome product, so that Telkom can minimize the churn number by doing customer retention program through the efficient caring.
Given by huge customer database the author will analyze using Big Data analytics method. Big Data is one method in data management that contain huge data, by mapping and data processing. Through various forms of output, big data implementation on the organization will provide better value in data-based decision making.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ariana Azimah
"Perguruan tinggi memerlukan pengetahuan yang lebih dalam untuk evaluasi, perencanaan dan pengambilan keputusan yang lebih baik. Sebagian dari pengetahuan ini dapat diekstrak dari data operasional yang tersimpan dalam database perguruan tinggi tersebut. Cara yang dapat dilakukan antara lain dengan pembangunan data warehouse dan analisis data menggunakan teknik data mining. Data warehouse adalah kumpulan dari database yang terintegrasi yang dapat digunakan untuk mendukung proses pengambilan keputusan. Sedangkan teknik data mining adalah analysis tools yang dapat digunakan untuk mengekstrak informasi yang berguna yang ada di database yang besar.
Penelitian ini mengkaji perancangan data warehouse dan penerapan teknik data mining untuk data akademik di Universitas Nasional untuk menggali informasi-informasi yang penting dan membangun model yang dapat membantu operasional sehari-hari agar dapat memberikan pelayanan yang terbaik buat mahasiswa. Penelitian ini dimulai dengan membangun sebuah data warehouse. Data-data yang ada dalam data warehouse tersebut yang digunakan untuk analisa data menggunakan teknik data mining. Hasil dari penelitian ini adalah pengembangan data warehouse dengan media presentasi aplikasi berbasis web. Sedangkan untuk analisa data menggunakan teknik data mining menghasilkan pola karakteristik mahasiswa yang mengambil suatu program peminatan tertentu.

High learning institutions need broader knowledge for evaluating, planning and better decision making. Some of this knowledge can be developed from operational data in the database of available at the institution. To get the above-mentioned purpose, we can build data warehouse and analyzing it by data mining technique. Data warehouse is an integrated database which can be used to support decision making process, while data mining is analysis tools which can be used to extract information from large database.
This study which deals with data warehouse planning and the application of data mining technique for academic data at Universitas Nasional is aimed at obtaining important informations and developing a model for rendering best services for student. The first step is to develop a data warehouse. Data from the data warehouse is then used to analyze data by data mining technique. The result of this study is developed data warehouse through web-based presentation, while data analysis is obtained from data mining to get characteristic pattern of previous student who were good in a given program.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2007
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Alex Ferdinansyah
"PT X, adalah sebuah perusahaan manufacturer perabotan rumah tangga. Dengan jumlah pegawai dan buruh yang mencapai lebih dari 3.000 orang. Tiap orangnya memiliki atribut-atribut kompleks. Beberapa atribut HR yang standard meliputi; tanggal mulai bekerja, job grade, position grade, gaji, jatah cuti, pendidikan, alamat, dan masih banyak lagi. Dalam organisasi sebesar PT X, masing-masing sumber daya manusia dengan atributatribut seperti diatas tadi akan mengalami transaksi dalam jumlah besar per-bulannya.
Secara berkala sumber daya manusia akan bertambah dengan adanya rekrutmen, adanya proses promosi, demosi, transfer antar unit kerja, pengambilan cuti, pelanggaran dan lain-lain. Dengan terjadinya transaksi yang demikian kompleks dan beragam, terhadap data dasar yang tak kalah kompleksnya, diperlukan sebuah sistem yang mampu membuat laporan summary dari berbagai informasi diatas.
Laporan bersifat summary ini diperlukan oleh pihak manajemen perusahaan pengambil keputusan. Untuk menghasilkan report dengan tingkat dinamika dan akurasi yang tinggi, diperlukan sistem reporting yang sangat fleksibel dan akurat. Untuk itu diperlukan Data Mart untuk HR di PT X. Pada saat ini di PT X sedang melakukan implementasi ERP HR yang datanya akan memiliki tingkat kelengkapan dan historikal yang tinggi dan dapat dimanfaatkan sebagai sumber data utama untuk Data Mart HR.
Project Akhir ini bertujuan untuk membangun sebuah rancangan Data Mart yang dapat memenuhi kebutuhan user seperti disebutkan di atas.
Hasil akhir dari Project Akhir ini yang berupa rancangan Data Mart yang dapat segera diimplementasikan. Rancangan yang akan dibangun merupakan rancangan yang fleksibel, generik dan relatif murah dalam implementasinya

PT X is a home furniture manufacturer company with employee count over 3.000 men. And every one of them has considerably complex human resource attributes such as work starting date, job grade, position grade, leaves, numeration, education, addresses etc. In an organization of PT X?s size, each human resource with their attributes as mentioned, is going to have huge transactions upon them monthly.
Over the time, the human resource count will increase with every recruitment event, promotion, demotion, staff transfer between working units, leaves, violation etc. With the complexity of the transaction and the data involved, the company will need a system that is capable of extracting the various bits of information, including summaries, that are useful for the company managers to support their decision-making process.
In order to produce such information from such data, a Data Mart is one solution. As the data source, PT X is currently implementing an HR ERP system that will maintain records of every HR transaction and data in the company. The ERP will provide data with high degree of integrity and history.
The objective of this Final Project is to build a Design of a Data Mart that cater for the general user requirements mentioned above.
The end result of the Final Project, is an implementable design of a Data Mart. The design is intended to be flexible, generic, and relatively cheap to implement."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Atal Malviya
"In today’s fast growing digital world, the web, mobile, social networks and other digital platforms are producing enormous amounts of data that hold intelligence and valuable information. Correctly used it has the power to create sustainable value in different forms for businesses. The commonly used term for this data is Big Data, which includes structured, unstructured and hybrid structured data. However, Big Data is of limited value unless insightful information can be extracted from the sources of data.
The solution is Big Data analytics, and how managers and executives can capture value from this vast resource of information and insights. This book develops a simple framework and a non-technical approach to help the reader understand, digest and analyze data, and produce meaningful analytics to make informed decisions. It will support value creation within businesses, from customer care to product innovation, from sales and marketing to operational performance.
The authors provide multiple case studies on global industries and business units, chapter summaries and discussion questions for the reader to consider and explore. Big Data for Managers also presents small cases and challenges for the reader to work on – making this a thorough and practical guide for students and managers."
New York: Routledge, 2019
e20529009
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>