Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 20203 dokumen yang sesuai dengan query
cover
"The microbial desalination cell (MDC) is a modification of the microbial fuel cell (MFC) system. The microbial desalination cell is a sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during the oxidation process of organic matter. In this study, tempe wastewater will be used as a substrate. Methylene blue (MB) at concentrations of 100 μM, 200 μM, and 400 μM in the anolyte is added as a redox mediator, and the effect on electricity production and desalination performance are evaluated. The average power density increases by 27.30% and 54.54% at MB concentrations of 100 μM and 200 μM, respectively. On the other hand, the increase of the MB concentration in the anolyte results in a decrease in the salt removal percentage. The observation made using a scanning electron microscope showed the presence of MB adsorption on the surface of the anion exchange membrane (AEM) and is suspected to be the cause of the disruption of anion transfer between MDC chambers causing a decrease in the salt removal percentage."
[Place of publication not identified]: [Publisher not identified], 2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Fachryan Zuhri
"The microbial desalination cell (MDC) is a modification of the microbial fuel cell (MFC) system. The microbial desalination cell is a sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during the oxidation process of organic matter. In this study, tempe wastewater will be used as a substrate. Methylene blue (MB) at concentrations of 100 ?M, 200 ?M, and 400 ?M in the anolyte is added as a redox mediator, and the effect on electricity production and desalination performance are evaluated. The average power density increases by 27.30% and 54.54% at MB concentrations of 100 ?M and 200 ?M, respectively. On the other hand, the increase of the MB concentration in the anolyte results in a decrease in the salt removal percentage. The observation made using a scanning electron microscope showed the presence of MB adsorption on the surface of the anion exchange membrane (AEM) and is suspected to be the cause of the disruption of anion transfer between MDC chambers causing a decrease in the salt removal percentage."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:6 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fachryan Zuhri
"Indonesia merupakan salah satu negara di dunia yang diproyeksikan akan mengalami krisis air bersih pada tahun 2025. Microbial Desalination Cell (MDC) merupakan teknologi baru yang berkelanjutan untuk mendesalinasi air garam menjadi air bersih dengan memanfaatkan langsung listrik hasil dari proses oksidasi senyawa organik oleh bakteri. Potensi penggunaan limbah sebagai bahan bakar pada MDC kini mulai menarik perhatian. Pada penelitian ini, limbah cair tempe dimanfaatkan sebagai substrat. Untuk meningkatkan kinerja MDC, maka akan dievaluasi pengaruh konsentrasi metilen biru (MB) 0,1, 0,2, dan 0,4 mM sebagai mediator redoks pada ruang anoda, laju aerasi 250 dan 500 mL/menit pada ruang katoda, dan jenis limbah tempe yang digunakan (limbah model dan limbah lndustri). Terlihat peningkatan power density dengan penambahan MB dan aerasi katoda, namun sebaliknya kinerja desalinasi mengalami penurunan. Hasil terbaik dari penelitian ini didapatkan pada penggunaan limbah tempe industri, tanpa penambahan MB, dan tanpa aerasi katoda dengan besar salt removal 17,89%, dan besar power density rata-rata yang dihasilkan 44,74 mW/m3.

Indonesia is one of countries in the world that will undergo water crisis phenomena in 2025. Microbial desalination cell (MDC) offers a new and sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during organic matter oxidation. The potential use of waste as fuel in MDC has started to attract the attention. In this research, tempe wastewater will be used as substrate. To improve the performance of MDC, the effect of methylene blue concentration (MB) 0,1, 0,2, dan 0,4 mM in anolyte, cathodic aeration rate 250 and 500 mL/min, and types of tempe wastewater (model and industrial) are evaluated. The addition of MB and cathodic aeration can increase power density, but decrease the desalination rate. This research shows that MDC using industrial tempe wastewater without addition of MB and cathodic aeration, give the best performance by salt removal 17,89%, and average power density 44,74 mW/m3."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59744
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adel Fisli
"The main problem with the slurry process is the difficulty in recovering the photocatalyst nanoparticle from water following purification. An alternative solution proposed the photocatalyst be immobilized on magnetic carriers, which would allow them to be recollected from the water suspension following treatment using an external magnetic field. Magnetically photocatalyst composites were prepared using simple heteroagglomeration by applying attractive electrostatic forces between the nanoparticles with an opposite surface charge. The Fe3O4/SiO2/TiO2 photocatalysts were synthesized in an aqueous slurry solution containing Fe3O4/SiO2 and TiO2 nanoparticles under pH 5 conditions. Meanwhile, Fe3O4/SiO2 was prepared by a simple procedure via a coprecipitation of iron(II) and iron(III) ion mixtures in ammonium hydroxide and was leached by sodium silicate. The synthesized samples were investigated to determine the phase structure, the magnetic properties, and the morphology of the composites by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and transmission electron microscopy (TEM), respectively. The results indicated that the composites contained anatase and rutile phases and exhibited a superparamagnetic behavior. Fe3O4/SiO2 particles, which were of the aggregation spherical form at 20 nm in size, were successfully attached onto the TiO2 surface. The catalytic activity of Fe3O4/SiO2/TiO2 composites was evaluated for the degradation of methylene blue under ultraviolet (UV) irradiation. The presence of SiO2 as a barrier between Fe3O4 and TiO2 is not only improves the photocatalytic properties but also provides the ability to adsorb the properties on the composite. The Fe3O4/SiO2/TiO2 (50% containing TiO2 in composite) were able to eliminate 87.3% of methylene blue in water through the adsorption and photocatalytic processes. This result is slightly below pure TiO2, which is able to degrade 96% of methylene blue. The resulting Fe3O4/SiO2/TiO2 composite exhibited an excellent ability to remove dye from water and it is easily recollected using a magnetic bar from the water. Therefore, they have high potency as an efficient and simple implementation for the dye effluent decolorization of textile waste in slurry reactor processes."
2017
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
"Wireless 3.5G is designed to deliver various kind of multimedia packages through IP network. Quality of Service (QoS) fulfilment is a crucial factor for multimedia applications...."
Artikel Jurnal  Universitas Indonesia Library
cover
"Every organization today needs a mission statement as the saying goes. Many consider mission statement s as to be important to bunsine success...."
Artikel Jurnal  Universitas Indonesia Library
cover
Nofrijon Sofyan
"Vanadium-doped LiFePO4/C
used as a cathode for a lithium ion battery has been successfully synthesized.
In this work, LiFePO4 was synthesized from LiOH, NH4H2PO4,
and FeSO4.7H2O at a stoichiometric amount. Vanadium was added in the
form of H4NO3V at concentration variations and 3 wt.%
carbon black. The characterization includes thermal analysis, X-ray
diffraction, electron microscopy, and electrical impedance spectroscopy. The
thermal analysis results showed that the LiFePO4 formation
temperature is 653.8?700.0°C. The X-ray
diffraction results showed an olivine structure with an orthorhombic space
group, whereas the electron microscopy results showed that LiFePO4/C
has a round shape with an agglomerated microstructure. Electrical impedance
test results showed values of 158 Ω and 59 Ω for the as-synthesized
LiFePO4/C and the 5 wt.% vanadium-doped
LiFePO4/C, respectively. Cyclic performance test results at 1 C
showed capacities of 24.0 mAh/g and 31.2 mAh/g for the as-synthesized LiFePO4/C
and the 5 wt.% vanadium-doped LiFePO4/C,
respectively. Charge and discharge test results showed charge and discharge
capacities of 27.6 mAh/g and 40.2 mAh/g for the as-synthesized LiFePO4/Candthe5 wt.%
vanadium-doped LiFePO4, respectively. This result is promising
in terms of increasing the performance of a lithium ion battery."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Erni Puspanantasari Putri
"East Java Province in
Indonesia is the centre of the eastern Indonesia region and it has a fairly
high economic significance, which has contributed 14.85% to the national Gross
Domestic Product (GDP). The role of Large and Medium Scale Manufacturing
Industry (LMSMI) clusters in this province is very important and strategic as
one of the main drivers for economic progress and it becomes a part of the
efforts to improve the society's life. Therefore, it is necessary to evaluate
the performance of LMSMI clusters continuously. The purpose of this study is to
investigate the productivity changes of LMSMI clusters in East Java Province,
Indonesia, so that they will be able to survive, grow and compete in facing
global competition. The method used in this study is the method of DEA-based
Malmquist Productivity Index. The result of this study indicates that 50% of
the LMSMI clusters in East Java Province are in the category of improved
productivity, while the remaining clusters are in the category of declining
productivity."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
R. Maheswari
"In any heterogeneous system, porting reconfigurable computing is often a high
performance platform for a broad range of computationally challenging issues.
However, efficiently utilizing the maximum potential of these reconfigurable
systems is a difficult job without understanding their performance
characteristics. This work proposes an analytic performance model using Petri
Nets (PN) for a Reconfigurable OR1200 (ROR1200) soft-core processor with model
validation and verifications. By modeling the ROR1200 system using Petri Nets,
both behavioral and structural properties existing in parallel systems were
analyzed. The Bound Level Analysis with respect to the dependency level of data
is also performed on Soft Core Processors (SCP) like the ROR1200, the OR1200
and the MicroBlaze."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Benyamin Kusumoputro
"Cylindrical uranium dioxide pellets, which are the main components for nuclear fuel elements in light water reactors, should have a high density profile, a uniform shape, and a minimum standard quality for their safe use as a reactor fuel component. The quality of green pellets is conventionally monitored by laboratory measurement of the physical pellet characteristics; however, this conventional classification method shows some drawbacks, such as difficult usage, low accuracy, and high time consumption. In addition, the method does not address the non-linearity and complexity of the relationship between pellet quality variables and pellet quality. This paper presents the development and application of a modified Radial Basis Function neural network (RBF NN) as an automatic classification system for green pellet quality. The weight initialization of the neural networks in this modified RBF NN is calculated through an orthogonal least squared method, and in conjunction with the use of a sigmoid activation function on its output neurons. Experimental data confirm that the developed modified RBF NN shows higher recognition capability when compared with that of the conventional RBF NNs. Further experimental results show that optimizing the quality classification problem space through eigen decomposition method provides a higher recognition rate with up to 98% accuracy."
2016
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>