Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 57635 dokumen yang sesuai dengan query
cover
Taopik Hidayat
"Teknologi boiler sampai saat ini telah mengalami perkembangan yang pesat. Dimulai dengan teknologi grate firing atau stoker, pulverized, sampai dengan teknologi circulating fluidized bed CFB yang mempunyai efisiensi pembakaran lebih baik. Walaupun telah ditemukan lebih dari satu abad, stoker masih digunakan untuk produksi uap dan pembangkit listrik. PLTU batubara skala 7MW, 15 MW masih dibutuhkan untuk wilayah yang terisolasi, pulau atau beban yang tersebar seperti di Kalimantan, Sumatra, Sulawesi dan wilayah Timur lainnya. Pada skala tersebut umumnya menggunakan teknologi pembakaran stoker. Pada studi ini, akan dikaji karakteristik pembakaran batubara dalam sebuah tungku fixed bed yang mensimulasikan grate stoker. Karakteristik pembakaran yang didapatkan pada tungku fixed bed akan dijadikan dasar lamanya batubara berada di dalam tungku vibrating grate simulator. Profil temperatur, komposisi gas buang dan efisiensi pembakaran akan dianalisis baik pada fixed dan vibrating grate .Hasil menunjukan bahwa getaran yang terjadi pada vibrating grate sangat berpengaruh terhadap kinerja pembakaran. Sebagai validasi maka digunakan laju devolatilisasi sebagai pembanding dengan penelitian yang sudah ada. Efisiensi pembakaran meningkat menjadi 98 untuk batubara lignit dan 97.2 untuk batubara sub bituminus. Laju pembakaran overall juga meningkat menjadi 0.72 g/s untuk batubara sub bituminus dan 0.68 g/s untuk batubara lignit. Burning time menjadi lebih singkat menjadi 20 menit yang sebelumnya pada fix grate yaitu 38 menit untuk sub bituminus dan 30 menit untuk lignit.

Until now, boiler technology has grown fast. Start with grate firing, pulverized combustion, and circulating fluidized bed CFB which have better burning efficiency. Altough had founded for one century, stoker still used for steam production and electric generation. Coal Power Plant 7 MW, 15 MW still needed for far an isolated region, that spread in Kalimantan, Sumatra, Sulawesi, and another east of Indonesia. In this study, coal combustion charachteristic will be discussed in fixed bed furnace that simulate grate stoker fired. Combustion Carachteristic that will develop from fixed bed will be one of decision for how long a coal will be loaded in vibrating grate simulator. Temperature profile, flue gas composition and burning efficiency will be analyzed in fix and vibrating grate. The result show that vibration had great effect to combustion on vibrating grate. Devolatilization rate will be used for validate this research with another research that had been develop. Burning efficiency is raise to 98 for lignite and 97.2 for sub bituminous. Overall burning rate also increase to 0.72 g s for sub bituminous and 0.68 g s for lignite. Burning time drop to 20 minute were for fix grate is 38 minute for sub bituminous and 30 minute for lignite.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T47650
UI - Tesis Membership  Universitas Indonesia Library
cover
Cahyadi
"Salah satu teknologi Carbon Capture Storage (CCS) untuk pada pembangkit listrik tenaga uap dengan batubara halus adalah teknologi pembakaran oxy-fuel. Didalam teknologi pembakaran oxy-fuel, batubara dibakar dalam campuran oksigen murni dan resirkulasi gas buang dengan kandungan gas CO2 yang tinggi. Pembakaran batubara didalam lingkungan O2 dan CO2 akan mempengaruhi kinerja pembakaran dibandingkan dengan lingkungan udara (O2/N2). Berdasarkan beberapa penelitian sebelumnya menunjukkan bahwa konsentrasi oksigen perlu dinaikkan sehingga kinerja pembakarannya sama dengan lingkungan udara. Pada disertasi ini dibahas tentang karakteristik penyalaan batubara dan pembakaran batubara didalam lingkungan oxy-fuel menggunakan TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) dan DTF (Drop Tube Furnace). Tiga jenis batubara Indonesia dengan peringkat lignit, sub-bituminus dan bituminus telah digunakan sebagai sampel batubara. Pengujian pembakaran batubara didalam TG-DTA dan DTF telah disuplai dengan udara tekan untuk lingkungan udara dan campuran gas 21%O2/79CO2 untuk lingkungan oxy-fuel. Hasil pengujian menunjukkan bahwa pelambatan penyalaan batubara terjadi dalam pembakaran oxy-fuel pada ketiga sampel tersebut. Laju pembakaran char didalam lingkungan oxy-fuel mengambil waktu lebih lama dibandingkan dalam lingkungan udara. Perbedaan dalam sifat fisik gas mempengaruhi penyalaan batubara dan karakteristik pembakaran.
Hasil karakterisasi pembakran dalam lingkungan udara dan oxy-fuel di TG-DTA menunjukkan adanya pelambatan pada pembakaran char. Ketika konenstrasi oksigen dinaikkan, profil DTA bergeser maju ke zona temperatur rendah, laju pembakaran meningkat dan waktu pembakaran lebih singkat. Penggunaan ukuran batubara yang lebih halus memberikan pengaruh puncak DTA menjadi lebih tinggi yang berarti temperatur batubara lebih tinggi. Laju pembakaran volatil menjadi lebih cepat dibandingkan ukuran kasar baik pada batubara lignit, sub-bituminus dan bituminus. Pada batubara lignit dan sub-bituminus dengan ukuran <44μm memiliki peluang untuk dibakar dalam lingkungan oxy-fuel dengan konsentrasi oksigen dibawah 30%, sedangkan pada batubara bituminus membutuhkan konsentrasi oksigen minimal 30% dengan pertimbangan puncak kurva DTA mirip di lingkungan udara.
Simulasi pada 2 (dua) jenis PLTU batubara dilakukan untuk mengevaluasi konsumsi energinya. PLTU tersebut adalah PLTU 400MW yang didisain dengan batubara sub-bituminus dan PLTU 700 MW yang didisain dengan batubara bituminus. Pembakaran dalam kondisi oxy-fuel telah dilakukan pada siklus uap pada masing-masing PLTU. Berdasarkan simulasi tersebut penurunan efisiensi PLTU dapat diketahui. Penurunan efisiensi pada PLTU 400 MW dalam lingkungan oxy-fuel 21%O2/79%CO2 dan 30%O2/70%CO2 adalah masing-masing 15.9%, dan 19.0%. Sedangkan pada PLTU 700 MW dalam lingkungan oxy-fuel 21%O2/79%CO2, dan 30%O2/70%CO2 adalah masing-masing 13.9%, dan 17.8 %. Kontribusi terbesar adalah konsumsi energi listrik pada ASU yang berkisar 20-30%. Berdasarkan uji pembakaran pada TG-DTA dan DTF, penggunaan batubara yang lebih halus dari 76 um (200 mesh) yaitu ukuran <44 um didalam PLTU oxy-fuel dapat mempunyai peluang pengurangan kebutuhan oksigen, sehingga penurunan efisiensi didalam PLTU oxy-fuel yang disebabkan konsumsi energi yang tinggi pada ASU dapat diturunkan.

One of Carbon Capture Storage (CCS) technology in pulverized coal fired power plant is oxy-fuel combustion technology. In oxy-fuel combustion technology, the coal is burned in a mixture of pure oxygen and recycled flue gas with high content of CO2 gas. Burning the coal in oxy-fuel combustion with O2 and CO2 environment will affect the combustion performance compare with air (O2/N2) environment. Based on previous researches indicated that oxygen concentration is required to be increased, so that the combustion behavior similar as in air environment. This study discusses the characteristics of coal ignition and combustion in oxy-fuel combustion applying TG-DTA (Thermo-Gravimetric Differential Thermal Analyzer) and Drop Tube Furnace (DTF). Three different Indonesian coal ranks of lignite, sub-bituminous and bituminous have been used as coal samples. Coal combustion test in DTF has been supplied with compressed air for air environment and mixing gas cylinder of 21%O2/CO2 for oxy-fuel environment. Experimental results indicated that the ignition time delay occurs in oxy-fuel combustion for all coal samples. Char combustion rate in oxy-fuel environment take longer time compared with in air environment. The different in physical gas properties influence on coal ignition and combustion characteristics.
The result of combustion characteristic in air and oxy-fuel environment applying the non-isothermal thermo gravimetric analysis shows the delayed in char burning compared with that in air environment at the same oxygen concentration. As oxygen concentration increases, DTA profiles shift to lower temperature zone, combustion rate increases and burnout time gets shorter. Finer coal size is also give higher DTA peak that meaning higher coal temperature in oxy-fuel environment. Volatile combustion rate is faster than coarser size in sub-bituminous and bituminous coal. Based on DTA combustion profile with the coal size of <44um, sub-bituminous coal has opportunity to use oxygen concentration below than 30% considering the peak of DTA curve so much higher than in air environment. Meanwhile, the bituminous coal needs at least 30%O2, because the peak on DTA curve is similar within air environment.
Simulation on two different existing coal fired power plants is presented to evaluate the different of energy consumption in oxy-fuel coal fire power plant. The 400MW coal fired power plant is designed with sub-bituminous coal type and 700 MW with bituminous coal type. Oxy-fuel combustion environment has been simulated on the steam cycle of each type coal fired power plant. Based on this simulation, the potency for decreasing efficiency loss in oxy-fuel coal fired power plant can be predicted. The efficiency loss at 400 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2 and 30%O2/70%CO2 are 15.9%, and 19.0%, respectively. Furthermore, the efficiency loss at 700 MW coal fired power plant in oxy-fuel environment of 21%O2/79%CO2, and 30%O2/70%CO2 are 13.9%, and 17.8 %, respectively. Based on combustion test in TG-DTA, finer coal utilization with the coal size of <44 um in oxy-fuel power plant has opportunity for reducing oxygen concentration, so that the efficiency loss in oxy-fuel coal fired power plant due to higher consumption on ASU can be minimized.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
D2016
UI - Disertasi Membership  Universitas Indonesia Library
cover
Tata Sutardi
"Pengujian karakterisasi pembakaran batubara sangat penting dilakukan untuk mengetahui sifat batubara. Sifat batubara ini sangat mempengaruhi baik atau tidaknya suatu jenis batubara digunakan sebagai bahan bakar, sehingga dengan mengetahui sifatnya maka segala permasalahan teknis yang mungkin terjadi di saat pembakaran nantinya dapat diperkecil atau diantisipasi. Saat ini fasilitas pengujian untuk mengkarakterisasi pembakaran batubara dilakukan dalam skala yang cukup besar dan biaya yang cukup mahal, sehingga seringkali usaha pengujian yang ingin dilakukan terkendala dengan masalah biaya dan fasilitas uji yang terbatas. Oleh sebab itu perlu dilakukan pengembangan fasilitas uji yang berskala kecil, sehingga frekuensi pengkajian terhadap suatu batubara dan permasalahannya dapat dilakukan lebih mudah dan intensif. Fasilitas yang dikembangkan ini adalah Drop Tube Furnace(DTF).
Penelitian ini merupakan tahap awal dari pengembangan DTF, dan ruang lingkupnya meliputi desain, pembuatan dan sampai uji pembakaran batubara. Tahap uji pembakaran batubara dengan DTF yang dilakukan pada penelitian ini diarahkan pada penentuan parameter uji bakar batubara yang dapat ditentukan dengan menggunakan DTF. Hasil uji pembakaran batubara di DTF, menunjukkan bahwa beberapa parameter yang dapat diuji dengan menggunakan alat ini adalah parameter temperatur nyala, panjang nyala, dan deposisi abu batubara. Pada tahap pengkajian awal ini, fenomena tersebut didapat dengan membandingkan pada fenomena yang didapat melalui pengujian alat standar.

Testing for coal combustion characterization is very important to find out the properties of coal. Coal properties are influencing the quality of combustion, and this information is needed to reduce or anticipate if technical problem exist in combustion process. Currently, the coal combustion testing facilities are done in large scale and expensive enough, so the frequently testing is limited by these conditions. It was the reason for development of small scale coal combustion test facility. By this facility, the research and assessment of coal combustion problem can be done easily and intensively. This facility is called Drop Tube furnace (DTF).
This research is the beginning step of DTF development, and the scopes of research are designing DTF, making DTF and combustion testing. The testing of coal combustion with DTF is limited only to find out the parameters of coal combustion test which is able to be tested by DTF. The results of experiments show that some parameters which are be able to be tested by DTF are flame temperature, flame length, and ash deposition. The phenomenons of these parameters are compared by the result of other standard testing facilities.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T41210
UI - Tesis Open  Universitas Indonesia Library
cover
Dwika Budianto
"Pembakaran batubara dalam boiler PLTU untuk mendapatkan efisiensi yang optimal diperlukan analisis karakteristik pembakaran. Proses karakterisasi dilakukan pada alat One Dimensional Furnace (1D furnace) dan Drop Tube Furnace (DTF) sebagai representasi dari tungku boiler skala komersil. Pada penelitian ini dilakukan karakteristik pembakaran pada kedua alat tersebut dengan menggunakan 3 sampel yang berbeda masing-masing mewakili jenis bituminous, subbituminous, lignite. Ukuran sampel batubara seragam 75 μm (200 mesh) dan dibakar dalam kondisi pembakaran udara lingkungan (21%O2/79%N2). Kedua alat uji tersebut memiliki geometri dan metode pemanasan yang berbeda, 1D furnace memiliki tinggi 6 m dan diameter dalam 0.3 m sedangkan DTF tinggi 1.5 m dan diameter dalam 0.07 m, metode pemanasan tungku 1D dilakukan dengan pembakaran gas LPG sedangkan DTF dipanasi melalui heater listrik. Dengan latar belakang konfigurasi yang berbeda kedua alat digunakan untuk menganalisis karakterisasi pembakaran batubara dengan sampel yang sama. Hasil parameter karakterisasi pembakaran mencakup distribusi temperatur (dinding dan gas), temperatur penyalaan, waktu penyalaan, waktu karbon terbakar seluruhnya, panjang nyala api. Berdasarkan hasil eksperimen menunjukkan bahwa hasil waktu penyalaan dalam DTF antara 13.25 ? 15.06 ms cenderung lebih lambat dibandingkan hasil 1D furnace antara 2.72 - 4.30 ms, hal ini lebih dipengaruhi oleh thermal inersia pada 1D furnace lebih besar karena didukung burning rate besar, selain itu minimnya konsentrasi O2 pada lingkungan gas dalam tungku DTF oleh karena kondisi temperatur tinggi dalam tungku menyebabkan O2 langsung berinteraksi dengan volatil menghasilkan CO2 dimana CO2 memiliki kapasitas panas besar yang berdampak terhadap penurunan temperatur dan keterlambatan penyalaan. Waktu karbon terbakar habis pada DTF antara 1936-2546 ms cenderung lebih lambat dibanding pada 1D furnace antara 896-1230 ms. Hal ini disebabkan oleh faktor difusivitas dan faktor reaksi gasifikasi pada DTF akibat temperatur gas pembakaran tinggi dan konsentrasi O2 kecil akibat char/karbon langsung bereaksi dengan O2 membentuk CO dan CO2. Kedua sifat spesies gas tersebut akan mempengaruhi terhadap penurunan temperatur dan memperpanjang waktu karbon terbakar habis. Panjang nyala api dalam DTF antara 0.224-0.267 m cenderung lebih pendek dibandingkan pada 1D furnace antara 0.615-1.000 m, hal ini dipengaruhi oleh jumlah laju alir batubara yang berbeda signifikan dimana 1D furnace 155-175 kali lebih besar daripada DTF. Hasil temperatur penyalaan antara pada DTF dan 1D furnace terhadap jenis peringkat batubara mendekati sama yang berkisar antara 318-388 0C. Hasil eksperimen pada masing-masing jenis sampel batubara juga menunjukkan konsisten terhadap fuel ratio (FC/VM), dimana fuel ratio bituminous paling besar, diikuti lignite dan subbituminous. Sebagai prediksi dari hasil eksperimen DTF dilakukan simulasi numerik dengan Computational Fluid Dynamics (CFD). Hasil simulasi yang diinvestigasi antara lain profil distribusi temperatur, profil kecepatan, profil konsentrasi gas buang CO dan CO2. Berdasarkan hasil simulasi menunjukkan bahwa distribusi temperatur sampel bituminous paling tinggi diikuti sampel lignite dan subbituminous, sedangkan konsentrasi CO dan CO2 menunjukkan profil sampel bituminous lebih tinggi, diikuti sampel subbituminous dan lignite. Kecenderungan hasil simulasi numerik CFD ini memiliki kesesuaian secara kualitatif dengan hasil eksperimen pembakaran dalam DTF.

Coal combustion in coal fired power plants are required characteristics combustion analysis to obtain optimum efficiency. The process characterization have performed on One Dimensional Furnace (1D furnace) and Drop Tube Furnace (DTF) as a representation of a commercial scale boiler furnace. In this research were conducted the combustion characteristics of these two equipment using 3 different samples each representing a type of bituminous, subbituminous, lignite. The sample of coal size was prepared uniform 75 μm (200 mesh) and burned in air fired environmental conditions (21% O2/79% N2). Both of the furnaces test have different geometry configuration and heated method, the configuration of 1D furnace is 6 m in height and 0.3 m inside diametre whereas DTF 1.5 m in height, 0.07 m inside diametre, the wall of 1D furnace is heated by combust LPG gas whereas DTF by electrically heated. With a different background configuration of both devices are used to characterize coal combustion with the same sample. The results of combustion characterization parameters include temperature distribution (walls and gas), ignition temperature, ignition time, carbon burn out time, flame length. Based on the experimental results presented that the ignition time results in the DTF between 13.25 - 15.06 ms tend to be slower compared to the 1D furnace between 2.72 ? 4.30 ms, it is affected by inertia thermal on 1D furnace greater due to assist more burning rate,in addition the lack of O2 concentration in the gas environment in DTF because of high temperatures in the furnace conditions cause O2 directly interact with volatiles produce CO2 where CO2 has a large heat capacity that affects decrease temperature and increase ignition delay. Carbon burn out time on DTF between 1936-2546 ms tend to be slower than in the 1D furnace between 896-1230 ms. It is influenced by diffusivity factors and gasification reactions on DTF due to high temperature combustion gas and O2 concentration less so the char / carbon directly react with O2 to form CO and CO2. Both of gas species will affect the temperature decrease and extend carbon burn out time. Flame length in the DTF between 0.224-0.267 m tend to be shorter than the 1D furnace between 0.615-1.000 m, it is influenced by a number of coal flow rate significantly different where 1D furnace 155-175 times greater than the DTF. The results of ignition temperature between DTF and 1D furnace have almost equal against each type of coal rank, which ranging 318-388 0C. The results of the experiment on each type of coal samples also showed consistent to fuel ratio (FC/VM), where the bituminous is largest one, subsequently lignite and subbituminous. As prediction of the results of experiments in DTF were performed numerical simulation with Computational Fluid Dynamics (CFD). Simulation results are investigated include temperature distribution profile, velocity profile, emission gas concentration profiles of CO and CO2. Based on the simulation results show that the distribution temperature bituminous samples is more higher and followed subbituminous and lignite samples, while the CO and CO2 concentration profile of the bituminous sample is showed higher, subbituminous and lignite samples subsequently. The tendency of the CFD numerical simulation results have good qualitatively agreement with the experimental results of combustion in DTF.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41388
UI - Tesis Membership  Universitas Indonesia Library
cover
Harjono Saputro
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36758
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrie Sukma Nitiarso
"Sistem pembakaran Campuran Batubara-Air (CBA) pada boiler merupakan salah satu dari "Teknologi Batubara Bersih" yang dewasa ini baru dikembangkan penelitiannya di Indonesia sebagai salah satu usaha mencari energi altematif pengganti BBM dan gas bumi khususnya sebagai bahan bakar pada mesin-mesin industri dan pembangkit tenaga listrik.
Untuk menghasilkan Campuran Batubara-Air (CBA) yang dapat dibakar secara optimal di dalam boiler dipengaruhi oleh beberapa aspek antara lain: karakteristik batubara yang dipergunakannya, perbandingan berat antara batubara dan air dalam campuran tersebut, bahan aditif untuk stabiliser campuran dan perancangan dari sistem pembakarau pada boiler itu sendiri seperti penggunaan atomisi dan udara bertekanan.
Aspek-aspek tersebut diatas dapat mempengaruhi kinerja atau efisiensi dari pembakaran CBA pada boiler. Salah satu aspek yang sangat erat hubungannya dengan karakteristik pembakaran CBA pada boiler dan perlu untuk diteliti adalah proses pengatomisasian CBA tersebut. Dengan pengatomisasian yang baik, make akan dihasilkan pembakaran CBA pada boiler yang sempuma sehingga tercapai kondisi yang optimal.
Penelitian dan pengumpulan data-data mengenai pengatomisasian CBA untuk pembakaran pada boiler ini dilakukan dengan melakukan studi literatur dan stundi lapangan pada Laboratorium Sumber Daya dan Energi (LSDE) - BPP Teknologi, PUSPIPTEK, Serpong.
Dari penelitian atomisasi CBA untuk pembakaran pada boiler simulator ini dapat ditentukan aspek-aspek yang mempengaruhl kondisi optimal jika pembakaran CBA dilakukan pada mesin-mesin industri dan mesin-mesin pembangkit tenaga listrik.
Skripsi ini membahas tentang uji visual pengatomisasian CBA pada boiler simulator, sehingga diperoleh data-data mengenai aspek-aspek yang mempengaruhi tercapainya kondisi optimal pembakaran serta untuk mendukung perancangan sistem pembakaran CBA pada boiler pembangkit tenaga listrik dan industri."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S36837
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iman
"Pembakaran spontan pada batubara merupakan salah satu masalah besar bagi industri penambangan dan pemanfaat batubara. Pembakaran spontan pada batubara di pengaruhi oleh banyak faktor , baik faktor internal maupun eksternal. Salah satu faktor eksternal adalah kelembaban relatif. Di indonesia yang beriklim tropis dan mempunyai kelembaban udara cukup tinggi faktor ini sangat penting. Metode pengujian yang digunakan untuk penelitian ini adalah metode oksidasi adiabatik. Metode ini beroperasi pada temperatur awal sekitar 40oC, sehingga mensimulasikan kondisi mendekati nyata seperti yang terjadi dilapangan. Secara khusus penelitian ini membahas pengaruh kelembaban relatif pada laju peningkatan temperatur batubara dan kondisi tercapainya pembakaran spontan.

Spontaneous combustion of coals cause one of big problem for coal mining industry and coal user. Spontaneous combustion influences a lot of factors, internal also external factors. One of external factor is relative humidity. In Indonesian which have the tropical climate and have high air humidity enough this factor of vital importance. An adiabatic oxidation testing method used for this experiment. This method operate on initial temperature 40 oC, that condition of simulation near reality such as those which happened on the field. Special this research study influence of relative humidity on temperature rises and ignited state."
Depok: Fakultas Teknik Universitas Indonesia, 2007
T23319
UI - Tesis Membership  Universitas Indonesia Library
cover
Glifanny Ramadani
"ABSTRAK
Penelitian ini bertujuan untuk mempelajari kinerja pembakaran biobriket
berbahan campuran biomassa bagase tebu dan batubara subbituminous dengan variasi
komposisi biomassa 100%, 75% dan 50%. Kecepatan superfisial aliran udara juga
divariasikan sebesar 0,2 ; 0,3 dan 0,4 m/s. Hasil penelitian menunjukkan waktu ignisi
tercepat (0,49 menit) dicapai pada pembakaran briket komposisi 75% Biomassa
dengan kecepatan superfisial 0,4 m/s; emisi CO rata-rata terendah (161 ppm) pada
pembakaran briket berkomposisi 50% biomassa pada 0,4 m/s dan efisiensi termal
terbesar (0,376%) pada pembakaran briket dengan komposisi 50% biomassa.

ABSTRACT
This research aimed to studying the performance of biobriquettes combustion
made from mixture of bagasse sugar cane and subbituminouss coal, with varying of
biomass content of 100%,75% and 50%. The superficial velocity of air flow in the
stove has also varied at 0,2 ; 0,3 and 0,4 m/s. The results showed the fastest of
ignition time (0,49 minutes) was achieved by burning briquettes containing 75%
operated at superficial velocity 0,4 m/s; the lowest averange CO emissions (161
ppm) by burning briquettes containing 50% biomass at 0,4 m/s and the largest
thermal efficiency (0,376%) by burning briquettes containing 50% biomass.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43818
UI - Skripsi Open  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1993
S36718
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edwin Ramadhani Fatchudin
"Oil separation in grease is known to be caused by temperature, pressure, centrifuging or by bleeding. There has been a new issue of separation caused by vibration. This occurs primarily in centralized lubrication systems where a positive displacement pump delivers grease to a number of lubricating points located some distance from the pump.
A test rig was built to investigate this issue. It consists of two parts, one is a vibration simulation rig, and the other is a measuring rig. The vibration rig, when coupled with a vibrating table will be able to simulate vibration. The measuring rig was designed to be used with Load Cell machine, to push grease through the grease line. Oil separation is identified by uneven force distribution needed to push the grease.
Testing was done using grease number 2, commonly used grease in industry. There is quite a promising indication that oil separation in grease due to vibration does occur."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S38053
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>