Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150210 dokumen yang sesuai dengan query
cover
Rachman Kurnia
"Aluminium dan paduannya tengah dikembangkan sebagai badan pesawat terbang karena sifatnya yang lebih ringan daripada baja dan mudah dibentuk. Paduan aluminium 7XXX yang mengandung Zn dan Mg dapat ditingkatkan sifat mekanisnya melalui proses deformasi. Persentase deformasi yang diberikan akan meningkatkan kekerasan paduan melalui mekanisme penguatan regang. Proses anil yang dilakukan setelah deformasi akan mengembalikan keuletan paduan melalui mekanisme stress relieve, rekristalisasi dan pertumbuhan butir. Penelitian ini bertujuan untuk mengetahui pengaruh persen deformasi dan temperatur anil terhadap rekristalisasi dan sifat mekanik paduan Al-4.7Zn-1.8Mg berat.
Pembuatan paduan dilakukan dengan proses squeeze casting. Proses homogenisasi dilakukan pada temperatur 400 oC selama 4 jam. Paduan hasil homogenisasi kemudian diberikan canai dingin dengan persen deformasi 5, 10 dan 20 . Selanjutnya paduan dengan deformasi 20 diberi perlakuan panas anil dengan temperatur 300, 400 dan 500 oC selama 2 jam. Karakterisasi meliputi pengujian kekerasan untuk melihat pengaruh canai dingin dan temperatur anil terhadap sifat mekanik paduan, pengamatan struktur mikro dengan mikroskop optik dan Scanning Electron Microscope SEM yang dilengkapi dengan Energy Dispersive Spectroscopy EDS.
Hasil penelitian menunjukkan bahwa peningkatan persen deformasi sebesar menyebabkan terjadinya pemipihan butir. Deformasi 5, 10 dan 20 menghasilkan rasio deformasi butir sebesar 2.19, 3.19 and 4.59 dan meningkatkan kerasan paduan dari 69.5 HV menjadi sebesar 95.3, 100.1 dan 105.4 HV. Perlakuan panas anil pada temperatur 300 oC menyebabkan terjadinya recovery sedangkan rekristalisasi terjadi pada temperatur 400 oC dgrain 290 ?m. Grain growth terjadi pada temperatur 500 oC dgrain 434 ?m yang menyebabkan penurunan kekerasand dari 105.4 HV menjadi 71.5, 96.8 and 95.3 HV berturut turut. Rekristalisasi sempurna diprediksi pada temperature anil 375 ndash; 425 oC selama 2 jam.

Aluminium alloys are developed as airplane body due to its lighter weight compared to steel and good formability. Aluminium 7XXX series with Zn and Mg alloying elements are commonly used because of its mechanical properties can be improved through deformation process. Deformation such as cold rolling may increase the hardness of an alloy through strain hardening. Annealing process after deformation process will recover ductility through stress relieve, recrystallization and grain growth mechanisms. This research aimed to find out the effect of cold rolling and annealing temperatur on the recrystallization and mechanical properties of Al 4.7Zn 1.8Mg wt. alloy.
The alloy was produced by squeeze casting process. Homogenization was conducted at 400 oC for 4 hours followed by cold rolling with degree of deformation of 5, 10 and 20 . The samples with 20 of deformation were then annealed at 300, 400 and 500 oC for 2 h. Vickers hardness test was performed on the cold rolled and annealed samples to reveal strain hardening effect and subsequent recrystallization process. Microstructure was observed by using optical microscope and Scanning Electron Microscope SEM with Energy Dispersive Spectroscopy EDS.
The results showed that the higher the deformation, the more elongated the grains. Deformation of 5, 10 and 20 led to grain shape ratios of 2.19, 3.19 and 4.59, respectively and increase in the hardness of the alloy from 69.5 HV to 95.3, 100.1 and 105.4 HV, respectively. Annealing at 300 oC resulted in recovery, while at 400 oC, recrystallization occured dgrain 290 m. Grain growth was observed after annealing at 500 oC for 2 h dgrain 434 m. The annealing temperature of 300, 400 and 500 oC decrease the hardness of the alloy from 105.4 HV to 71.5, 96.8 and 95.3 HV, respectively. Full recrystallization was predicted to happen at 375 ndash 425 oC for 2 hours.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67978
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maya Putri Agustianingrum
" ABSTRAK
Paduan aluminum telah dikenal sebagai material utama untuk berbagai aplikasi yang membutuhkan kombinasi antara kekuatan dan massa jenis yang rendah. Paduan aluminium yang sering diaplikasikan yaitu paduan seri 7xxx. Kebanyakan paduan ini digunakan untuk aplikasi pesawat terbang yang membutuhkan kekuatan yang tinggi dan keuletan. Dalam industri penerbangan, paduan Al-Zn-Mg mengalami proses pembentukan untuk menghasilkan produk struktural. Salah satu masalah yang sering muncul dari produk hasil pembentukan adalah peripheral coarse grain PCG dan hot tearing yang dapat mengurangi sifat mekanik dan ketahanan korosi paduan. Penambahan paduan mikro dapat digunakan untuk mengatasi masalah ini. Penambahan kromium Cr pada paduan Al-Zn-Mg dapat menekan pertumbuhan butir dan mengontrol ukuran butir dengan mencegah rekristalisasi lanjutan. Tujuan dari studi ini yaitu untuk mengetahui pengaruh deformasi melalui proses canai dingin pada paduan Al-4.5Zn-1.5Mg-0.9Cr berat dan untuk mengetahui pengaruh kromium terhadap struktur mikro dan sifat mekanik selama rekristalisasi melalui proses anil.Dalam studi ini, paduan dihasilkan melalui squeeze casting. Kemudian, paduan dilakukan homogenisasi selama 4 jam dengan temperatur 400 C. Paduan kemudian dicanai dingin dengan persen deformasi 5, 10 dan 20 . Proses anil dilakukan pada sampel deformasi 20 dengan variasi temperatur 300, 400 dan 500 C selama 2 jam. Karakterisasi yang dilakukan terdiri dari analisis struktur mikro oleh mikroskop optik dan Scanning Electron Microscope SEM - Energy Dispersive Spectroscopy EDS dan pengujian sifat mekanik dengan uji keras Microvickers. Hasilnya, terjadi pemipihan struktur diikuti dengan peningkatan reduksi ketebalan 5, 10 dan 20 dengan nilai rasio butir terdeformasi berturut-turut yaitu, 1.6, 2.84 dan 2.99. Struktur yang semakin pipih ini efektif untuk meningkatkan kekerasan. Selain itu, proses anil hasil canai dingin 20 pada temperatur 300 C dan 400 C belum menunjukkan adanya proses rekristalisasi. Proses rekristalisasi baru terjadi pada proses anil dengan temperatur 500 C. Sementara, pada paduan tanpa Cr, rekristalisasi baru terjadi pada temperatur 400 C. Hal ini dikarenakan adanya dispersoid Cr dalam bentuk Al, Zn 7Cr dengan ukuran kurang dari 1 m menghambat pergerakan dislokasi dan proses rekristalisasi. Hal ini ditandai dengan pembentukan butir baru berawal dari intermetalik Al, Zn 7Cr dengan ukuran lebih dari 1 m yang telah terdeformasi melalui mekanisme particle stimulated nucleation PSN .
ABSTRACT Aluminum alloys have been known as the main material for various application which requires the combination of strength and low density. One of the alloys that widely used is 7xxx series aluminum alloy. Most of the alloys are commonly used in aircraft industries for their high strength and ductility. In aircraft industries, Al Zn Mg alloys undergo many kinds of forming processes to create structural product. Problems that are usually found in the forming process include peripheral coarse grain PCG and hot tearing which decrease mechanical properties and corrosion resistance of the alloys. Microalloying element can be used to overcome these problems. The addition of chromium Cr in Al Zn Mg alloys can supress the grain growth and control the grain size by preventing excess recrystallization. The aim of this study is to understand the effect of deformation by cold rolling and Cr addition on the microstructure and mechanical properties of Al 4.5Zn 1.5Mg 0.9Cr wt. during recrystallization by annealing process.The Al 4Zn 1.5Mg 1Cr wt. alloy was fabricated by squeeze casting process and was subsequently homogenized at 400 oC for 4 hours. The samples were cold rolled for 5, 10 and 20 . The 20 deformed samples were then annealed at 300, 400 and 500 oC for 2 hours. The material characterization consisted of microstructure analysis by optical microscope and Scanning Electron Microscope SEM Energy Dispersive Spectroscopy EDS and also mechanical testing by Microvickers hardness test. The results showed that the deformed grain ratio was found to be 1.6, 2.84 dan 2.99 in the 5, 10 and 20 deformed samples, rexspectively. The elongated dendrites were effective to increase the hardness of the alloy. No recrystallization was detected during annealing at 300 oC and 400 oC. Recrystallization was observed in the annealing process at 500 oC. Whereas, for the samples without Cr addition, recrystallization occurred at 400 oC. It means the addition of Cr was found to increase the recrystallization temperature of the alloy. It occurred because Cr dispersoid in Al, Zn 7Cr with size less than 1 m impedes the dislocation motion. However, the presence of Al, Zn 7Cr intermetalics with size more than 1 m promote the formation of new grains around them by particle stimulated nucleation PSN mechanism. "
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63574
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rachman Kurnia
"Aluminium alloys are developed as airplane body due to their lighter weight compared to steel and good formability. Aluminium 7XXX series with Zn and Mg alloying elements is commonly used because its mechanical properties can be improved through a deformation process. A deformation process such as cold rolling may increase the hardness of an alloy through strain hardening. An annealing process following the deformation process will recover ductility through stress relief, recrystallization, and grain growth mechanisms. This research aimed to discover the effect of cold rolling and annealing temperature on the recrystallization and mechanical properties of Al-4.7Zn-1.8Mg (wt. %) alloy. The alloy was produced by a squeeze casting process. Homogenization was conducted at 400oC for 4 hours followed by cold rolling with degrees of deformation of 5%, 10%, and 20%. The samples with 20% deformation were then annealed at 300oC, 400oC, and 500oC for 2 h. The Vickers hardness test was performed on the cold-rolled and annealed samples to reveal the strain hardening effect and subsequent recrystallization process. The microstructure was observed using an optical microscope and a Scanning Electron Microscope (SEM). The results showed that the higher the deformation, the more elongated the grains. Deformation of 5, 10 and 20% led to grain shape ratios of 2.19, 3.19 and 4.59, respectively and increase in the hardness of the alloy from 69.5 VHN to 95.3, 100.1 and 105.4 VHN, respectively. Slip bands and cross slips were found only in the 20% deformed samples. The annealing process resulted in recovery at 300oC, followed by recrystallization at 400oC (dgrain ~290 ?m) and grain growth at 500oC (dgrain ~434 ?m). Annealing temperatures of 300oC, 400oC and 500oC decreased the hardness of the alloy from 105.4 VHN to 71.5, 96.8 and 95.3 VHN, respectively."
Depok: Faculty of Engineering, Universitas Indonesia, 2017
UI-IJTECH 8:7 (2017)
Artikel Jurnal  Universitas Indonesia Library
cover
Desrilia Nursyifaulkhair
"Paduan Al-Zn-Mg (Seri 7xxx) telah banyak dikembangkan dalam berbagai aplikasi, terutama dalam industri penerbangan sebab memiliki kekerasan yang tinggi sementara densitasnya rendah. Paduan tersebut umumnya diperkuat melalui perlakuan penuaan, di mana terjadi difusi atom-atom Zn dan Mg dari larutan padat sangat jenuh sehingga terbentuk presipitat metastabil. Selain itu, paduan dapat diperkuat pula dengan penambahan Ti yang akan memperhalus butir. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh Ti dalam penguatan presipitasi paduan Al-5.1Zn-1.8Mg-0.4Ti (% berat) pada berbagai temperatur.
Paduan ini dibuat dengan proses squeeze casting. Kemudian dilakukan homogenisasi pada temperatur 400 oC selama 4 jam dan laku pelarutan pada 440 oC selama 1 jam yang dilanjutkan dengan pencelupan air hingga temperatur ruang. Penuaan dilakukan pada temperatur 90, 130 dan 200 oC selama 200 jam. Untuk mengetahui respon penuaan, dilakukan pengujian kekerasan Rockwell, sementara itu perubahan struktur mikro diamati dengan menggunakan Mikroskop Optik dan Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS).
Hasil penelitian menunjukkan bahwa kekerasan tertinggi dihasilkan setelah penuaan di temperatur 90 oC, bahkan pada temperatur ini, kekerasan terus meningkat setelah 200 jam. Semakin tinggi temperatur penuaan, semakin rendah kekerasan puncak yang dihasilkan, tapi waktu yang dibutuhkan untuk mencapai kekerasan puncak akan berkurang. Penambahan Ti diketahui dapat menahan penguatan dengan memperlambat kinetika presipitasi melalui penurunan jumlah kekosongan kompleks zat terlarut. Urutan presipitasi yang terbentuk adalah GP zone  ƞ?  ƞ (MgZn2).

Al-Zn-Mg alloys (7xxx series Al alloys) have been widely used in many applications, especially in aerospace industry because of their high strength and low density. These alloys are commmonly hardened upon ageing treatment, in which diffusion of Zn and Mg atoms from super saturated solid solution results in formation of metastable precipitates. To further increase the strength of the alloys, Ti is added to decrease the grain size. The objective of this study is to investigate the role of Ti in the precipitation strengthening of Al-5Zn-1.8Mg-0.4Ti (wt.%) alloy.
The alloy was fabricated by squeeze casting process. Then, the alloy was homogenized at 400 oC for 4 hours. Subsequent solution treatment was employed at 440 oC for 1 hour and followed by water quenching to room temperature. The ageing was conducted at 90, 130 and 200 oC for 200 hours. The ageing response was followed by Rockwell hardness testing, while the microstructural evolution was observed by using Optical Microscope (OM) and Scanning Electron Microscope (SEM) - Energy Dispersive Spectroscopy (EDS).
The results showed that the highest hardness was achieved after ageing at 90 oC, and even at this temperature, the hardness remained increase after 200 h of ageing. The higher the ageing temperature, the lower the achieved peak hardness but the time needed to peak hardness reduced. Addition of Ti retarded the strengthening by slowering kinetics of precipitation through decreasing number of solute-vacancy complexes. The suggested major precipitation sequence was GP zones  ƞ?  ƞ (MgZn2).
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66089
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Pasha Arrighi Effendi
"Aluminium adalah sebuah logam ringan dan ulet yang memiliki kegunaan terbanyak kedua di dunia industri setelah besi dan baja. Salah satu aluminium yang memiliki aplikasi yang luas adalah paduan Al-Mg-Si yang tergolong ke dalam aluminium seri 6xxx. Walaupun memiliki banyak keunggulan, paduan Al-Mg-Si memiliki kekurangan yaitu nilai kekerasannya yang rendah jika dibandingkan dengan aluminium seri lainnya. Oleh karena itu, peningkatan nilai kekerasan pada paduan Al-Mg-Si dapat dilakukan melalui pengerjaan dingin dan perlakuan penuaan. Kedua proses tersebut dapat digabungkan sehingga menghasilkan perlakuan yang disebut dengan perlakuan panas T8. Penelitian ini menggabungkan metode canai dingin yang dilakukan setelah perlakuan pelarutan kemudian diikuti dengan penuaan buatan pada paduan Al-1Mg-0.54Si ( % berat) yang dihasilkan melalui proses squeeze casting. Canai dingin yang dilakukan menggunakan tiga variasi deformasi yaitu 5, 10, dan 20 %. Sementara itu, penuaan dilakukan pada temperatur 180 °C selama 200 jam. Pengujian yang dilakukan adalah pengujian komposisi kimia, pengujian kekerasan, pengujian metalografi, pengujian SEM–EDS (Scanning Electron Microscope – Energy Dispersive Spectroscopy), dan pengujian XRD (X-Ray Diffraction). Hasil penelitian menunjukkan bahwa semakin besar deformasi menyebabkan butir semakin memanjang dan setelah penuaan menghasilkan peningkatan kekerasan puncak yang dicapai pada waktu yang semakin singkat. Hal ini ditunjukkan dengan paduan Al-Mg-Si setelah dideformasi sebesar 20 % yang diikuti dengan penuaan pada temperature 180 °C selama 30 menit menghasilkan nilai kekeran yang paling tinggi. Hal ini mengindikasikan adanya kombinasi dua mekanisme penguatan, yaitu pengerasan regangan dan penguatan presipitasi.

Aluminium is a light and ductile material that has the second most use in industry after iron and steel. One of the aluminium that has a wide application is the Al-Mg-Si alloy which classified as aluminium 6xxx series. Although it has many advantages, Al-Mg-Si alloy has a disadvantage, which is its low hardness value compared to other aluminium series. Therefore, increasing the hardness value of Al-Mg-Si alloys can be done through cold working and ageing treatment. The two processes can be combined to produce a treatment known as T8 heat treatment. This research combined the cold rolling method which was carried out after solution treatment followed by ageing of the Al-1Mg-0.54Si alloy (wt. %) which was produced through squeeze casting process. Cold rolling was varied to 5, 10, and 20 % deformation. Meanwhile, ageing was carried out at 180 °C for up to 200 h. Characterization included compositional testing, hardness testing, metallographic testing, SEM - EDS (Scanning Electron Microscope - Energy Dispersive Spectroscopy) testing, and XRD (X-Ray Diffraction) testing. The results demonstrated that the higher the deformation, the longer the grain elongated, and after ageing resulted in an increase in peak hardness which was achieved in a shorter time. This was demonstrated by the Al-Mg-Si alloy after 20 % deformation and ageing at 180 °C for 30 min, which produced the maximum hardness value. This suggests the presence of two strengthening mechanisms, which included strain hardening and precipitation strengthening."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Danny Taufik Bahar
"Jenis paduan aluminium yang gencar dikembangkan adalah Al-Zn-Mg (Seri 7xxx) dengan sifat mekanis paling baik di antara paduan aluminium lainnya. Peningkatan sifat mekanis tersebut dapat dilakukan dengan menambahan unsur minor ke dalam paduan, seperti Cr. Selain itu, sifat mekanis paduan aluminium seri 7xxx dapat ditingkatkan dengan melakukan laku pelarutan pada temperatur tertentu diikuti oleh pencelupan cepat dan diakhiri dengan pengerasan penuaan. Sifat mekanis akan ditentukan oleh temperatur laku pelarutan yang digunakan. Penelitian ini mempelajari pengaruh temperatur laku pelarutan pada karakteristik paduan Al-4.58Zn-1.47Mg-1.66Cr (%berat).
Sampel dibuat melalui proses pengecoran dengan metode squeeze casting diikuti homogenisasi pada temperatur 400 oC selama 4 jam untuk menyeragamkan butir. Proses laku pelarutan dengan variasi temperatur 220, 420, dan 490 oC dilakukan selama satu jam dan diikuti oleh pencelupan cepat menggunakan air. Lalu, dilakukan pengerasan penuaan pada temperatur 130 oC selama 48 jam dengan tujuan untuk menghasilkan presipitat. Karakterisasi yang digunakan berupa pengamatan struktur mikro dengan mikroskop optik dan SEM-EDS, pengujian kekerasan (HRB dan HB), pengujian XRD (X-Ray Diffraction), dan DSC (Differential Scanning Calorimetry).
Hasil penelitian menunjukkan bahwa semakin tinggi temperatur laku pelarutan, semakin banyak fasa interdendritik yang terlarut ke dalam matriks Al. Hal ini dibuktikan dengan fraksi volume fasa interdendritik pada 220, 420, dan 490 oC setelah pencelupan cepat berturut-turut adalah 5.93, 4.3, dan 3.23%. Setelah pengerasan penuaan, didapatkan nilai kekerasan paduan yang meningkat menjadi 34.42, 72.26, dan 68.12 HRB pada temperatur 220, 420, serta 490 oC. Selain itu, penambahan Cr akan menghasilkan presipitat CrAl7 yang dapat meningkatkan kekerasan paduan melalui pengecilan SDAS dan menjadis tempat tumbuhnya presipitat penahan dislokasi."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risly Wijanarko
"Paduan Al 7XXX Al-Zn-Mg merupakan salah satu paduan aluminium yang mampu dilaku panas dan memiliki kekuatan tinggi. Paduan Al 7xxx dapat diperkuat dengan pengerasan pengendapan. Dalam proses pengerasan pengendapan, proses laku pelarutan merupakan tahapan penting dimana fasa kedua larut ke dalam matriks agar dapat bertransformasi menjadi presipitat saat proses penuaan. Selain itu, penambahan Ti dapat memperkuat paduan dengan melakukan penghalusan butir. Penelitian kombinasi laku pelarutan dengan penghalusan butir oleh Ti masih terbatas. Oleh karena itu, pada penelitian ini akan diamati pengaruh temperatur laku pelarutan terhadap struktur mikro dan sifat mekanis paduan Al-5.1Zn-2Mg dengan penambahan 0.1 berat Ti hasil squeeze casting. Paduan Al-5.1Zn-2Mg-0.1Ti hasil pengecoran dihomogenisasi pada temperatur 400 C selama 4 jam. Setelah itu, laku pelarutan dilakukan dengan variasi temperatur 220, 420, dan 490 C, dilanjutkan dengan pencelupan cepat. Selanjutnya, penuaan dilakukan pada temperatur 130 C selama 48 jam. Karakterisasi meliputi pengamatan struktur mikro menggunakan mikroskop optik, dan Scanning Electron Microscope SEM Energy Dispersive Spectroscopy EDS, pengujian kekerasan Rockwell, X-Ray Diffraction XRD, dan Simultaneous Thermal Analysis STA. Penambahan 0.1 berat Ti dapat memperbulat struktur butir paduan dan menyebabkan tegangan permukaan antarmuka matriks ?-Al menurun sehingga fasa kedua lebih mudah untuk berdifusi ke dalam matriks saat laku pelarutan. Peningkatan temperatur laku pelarutan dapat meningkatkan jumlah fasa kedua yang larut ke dalam matriks. Hal ini dapat ditunjukkan melalui fraksi volume fasa kedua dari kondisi setelah homogenisasi, yaitu 7.07 menjadi 6.74, 3.50, dan 2.75 untuk temperatur laku pelarutan 220, 420, dan 490 C. Banyaknya fasa kedua yang larut berdampak pada kekerasan yang dihasilkan setelah penuaan. Nilai kekerasan penuaan meningkat seiring dengan meningkatnya temperatur laku pelarutan, yaitu 41.68, 52.46, dan 70.98 HRB pada temperatur laku pelarutan 220, 420, dan 490 C. Selain itu, nilai kekerasan paduan dengan 0.1 berat Ti lebih tinggi dibanding paduan tanpa Ti setelah penuaan karena jumlah fasa kedua yang larut lebih besar sehingga presipitat yang terbentuk menjadi lebih banyak.

Al 7XXX alloy is one of heat treatable aluminium alloy which has superior strength. It can be strengthened by precipitation hardening. Solution treatment in precipitation hardening sequence has an important role in which second phases will dissolve, and vacancies will be quenched in the matrix to form precipitates in the ageing process. Another strengthening can be done by the addition of Ti as grain refiner. However, there is still lack of study concerned on the combination of solution treatment with grain refining by Ti. Thus, this study is aimed to investigate the effect of solution treatment temperature on microstructure and mechanical properties of Al 5.1Zn 2Mg alloy with 0.1 wt. Ti produced by squeeze casting. As cast alloy was homogenized at 400 C for 4 h. Solution treatment was conducted at 220, 420, and 490 C, followed by rapid quenching. The alloy was subsequently aged at 130 C for 48 h. Characterization was performed by optical microscope, Scanning Electron Microscope SEM ndash Energy Dispersive Spectroscopy EDS, Rockwell hardness testing, X Ray Diffraction XRD, and Simultaneous Thermal Analysis STA. The addition of 0.1 wt. Ti resulted in rounder grains which possess lower surface tension between the Al matrix and second phase interface so that the dissolution of it will be much easier while solution treatment. Increasing solution treatment temperature leads to decreasing volume fraction of the second phases at grain boundaries. It can be known by quantitative analysis from as homogenized condition with volume fraction of 7.07 which decreased to 6.74, 3.50, and 2.75 after solution treatment at 220, 420, and 490 C, respectively. The amount of dissolved second phases will affect the final hardness after ageing process, at which the hardness was increasing with increasing solution treatment temperature. The hardness was 41.68, 52.46, and 70.98 HRB with solution treatment temperature of 220, 420, and 490 C, respectively. Besides, the hardness value of 0.1 wt. Ti added alloy was higher than that of the alloy without Ti addition. It was due to higher second phase dissolution which leads to more precipitates formed."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nuzulian Akbar Arandana
"Aluminium merupakan logam yang mudah untuk dipadukan dengan logam lain. Salah satu paduan aluminium yang sedang banyak dikembangkan adalah seri 7xxx Al-Zn-Mg karena memiliki densitas yang rendah dan sifat mekanis yang baik. Peningkatan sifat mekanis paduan tersebut dapat dilakukan dengan penambahan sejumlah unsur paduan seperti Cr yang dapat memperhalus butir. Selain itu, paduan juga dapat dikeraskan melalui proses pengerasan pengendapan dengan tahapan laku pelarutan, pencelupan cepat, dan penuaan.
Untuk memeroleh pengerasan pengendapan yang diinginkan maka tahapan laku pelarutan harus diperhatikan karena akan memengaruhi sejumlah unsur paduan yang dapat larut dan jumlah kekosongan yang terbentuk. Sementara itu, masih sedikit penelitian mengenai pengaruh kombinasi penambahan Cr dan temperatur laku pelarutan pada paduan. Oleh karena itu, penelitian ini bertujuan untuk mengetahui pengaruh penambahan Cr terhadap variasi temperatur laku pelarutan pada paduan Al-4.7Zn-1.7Mg-0.37Cr berat.
Paduan dibuat dengan metode squeeze casting. Kemudian dilakukan proses homogenisasi pada temperatur 400 C selama 4 jam. Pada paduan selanjutnya dilakukan proses laku pelarutan pada temperatur 220, 420, dan 490°C yang dilanjutkan dengan pencelupan dalam air. Setelah itu, paduan dilakukan pengerasan penuaan pada temperatur 130°C selama 48 jam. Karakterisasi yang dilakukan berupa pengamatan struktur mikro menggunakan OM Optical Microscope dan SEM-EDS Scanning Electron Microscope - Energy Dispersive Spectroscopy, pengujian kekerasan HRB dan HB, pengujian XRD X-Ray Diffraction, dan STA Simultaneous Thermal Analysis.
Hasil penelitian menunjukkan bahwa semakin tinggi temperatur laku pelarutan menyebabkan semakin banyaknya fasa interdendritik yang dapat larut dalam matriks Al. Hal ini dibuktikan dengan fraksi volume fasa interdendritik setelah laku pelarutan 220, 420, dan 490°C yang menurun menjadi 6.67, 4.55, dan 4.14 dari 6.9 setelah homogenisasi. Hasil tersebut menunjukkan bahwa penambahan 0.37 berat Cr tidak berpengaruh terhadap proses pelarutan fasa interdendritik selama laku pelarutan. Sebaliknya, intermetalik Cr seperti Al18Cr2Mg3 dan Cr,Fe Al7 yang terbentuk dapat meningkatkan kekerasan paduan. Kekerasan paduan setelah penuaan pada temperatur 130 C selama 48 jam meningkat menjadi 49.64, 52.54, dan 70.52 HRB pada variasi laku pelarutan 220, 420, 490°C.

Aluminium is a metal that can be easily alloyed with other metals. One of them is the 7xxx Al Zn Mg series which are the most developed series due to their low density and good mechanical properties. Their mechanical properties can also be strengthened by adding some microalloying element such as Cr which can refine the grain of the alloy. Aside from that, heat treatment such as precipitation hardening through solution treatment, quenching, and ageing can also be done to strengthen its properties. Solution treatment temperature may affect the amount of dissolved interdendritic phase and the number of vacancy, thus it has to be considered in case of getting the desired properties after the precipitation hardening.
Meanwhile, there are very few research on the combined effects of addition of Cr and solution treatment temperature on the properties of this alloy. Therefore, this research is aimed to investigate the effect of Cr and variation of solution treatment temperature on the properties of Al 4.7Zn 1.7Mg 0.37Cr wt. alloy.
The alloy was fabricated by squeeze casting process. Then it was homogenized at 400 C for 4 hours. Three samples were then solutionized at 220, 420, and 490 C for 1 hour and followed by rapid quenching in water. Ageing was then conducted at 130 C for 48 hours. Characterization included microstructure observation by using OM Optical Microscope and SEM EDS Scanning Electron Microscope Energy Dispersive Spectroscopy , hardness testing HRB and HB, XRD X Ray Diffraction, and STA Simultaneous Thermal Analysis.
The results showed that the higher solution treatment temperature increased the dissolution of interdendritic phase to the Al matrix. It was shown by the decreasing of interdendritic volume after solution treatment at 220, 420, and 490°C which became 6.67, 4.55, and 4.14 after 6.9 in the homogenized alloy. The results showed that the 0.37 wt. Cr addition had no effect on the dissolution process of the interdendritic phase. However, the formation of Cr intermetallic such as Al18Cr2Mg3 and Cr,Fe Al7 increased the hardness of the alloy. The hardness of the alloy after ageing at 130°C for 48 hours was increased to 49.64, 52.54, and 70.52 HRB in 220, 420, 490°C solutionized alloy respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ruther Gadhu
"Selongsong peluru dibuat dari cartridge brass, yang terdiri dari 28-30% wt. % Zn. Proses fabrikasi selongsong peluru terdiri dari : canai dingin, deep drawing, dan annealing. Deformasi yang terjadi pada proses fabrikasi selongsong peluru melebihi 70%. Cartridge brass memiliki 3 mekanisme deformasi: slip (deformasi 20%), twin ( 40%), dan shear (> 40%). Bi mulai digunakan untuk menggantikan Pb dalam kuningan karena racun yang lebih rendah.Pada penelitian ini, Cu-29Zn-0.6Bi dilakukan pengecoran gravitasi, dihomogenisasi dengan temperatur 800 °C selama 2 jam, dan dicanai dingin dengan variasi deformasi 20, 40, dan 70%. Pada 70%, proses anil dilakukan pada temperatur 350, 400, dan 450 °C. Semua sampel lalu dikarakterisasi nilai kekerasan dan struktur mikronya. Meningkatnya % deformasi akan menghasilkan peningkatan kekerasan. Pada deformasi 70%, ditemukan adanya retak permukaan. Segregasi Bi terdapat baik di dalam butir maupun batas butir.Bi meningkatkan kekerasan pada cartridge brass dengan mekanisme grain boundary strengthening (pengecilan ukuran butir) dan dispersoid strengthening. Nukleasi pada temperatur 350 °C dimulai pada shear band dan batas butir, dan selesai pada 400 °C, sedangkan grain growth terjadi pada 450 °C (semua dalam 15 menit). Bi mempercepat proses rekristalisasi cartridge brass.

Bullet case is made of cartridge brass, which consists of 28-30% content of Zinc. Bullet case's fabrication consists of cold rolling, deep drawing, and annealing. Deformation which occurs in bullet case?s fabrication gets higher than 70%. Cartridge brass has 3 deformation mechanism: slip (20% deformation), twin (40% deformation), and shear (> 40% deformation). Bi is used nowadays to substitute Pb in cartridge Brass due to lower toxicity. In this research, Cu-29Zn-0.6Bi is gravity casted, homogenized at 800 °C for 2 hours, and then cold rolled with variation of percent deformation 20, 40, and 70%. At 70% cold rolled cast is annealed with temperatures 350, 400 and 500 °C. The samples then are characterized for hardness properties and structures.Increasing % deformation generates higher hardness. In 70% deformation, a crack is found on a surface. Bi segregation tends to be immersed both in bulk grain or grain boundaries.Bi increases cartridge brass? hardness with grain boundary strengthening (grain refining), and dispersoid strengthening. Nucleation in 350 °C started at shear bands region and grain boundaries, finished in 400 °C; besides, grain growth occurred in 450 °C (all in 15 minutes). Bi exceeds recrystallization process in cartridge brass."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62198
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elisabeth Nadya Hale
"Paduan Al-Zn-Mg (Seri 7xxx) umumnya diperkuat melalui perlakuan penuaan, dengan pembentukan presipitat. Selain itu, paduan dapat diperkuat pula dengan penambahan 0.4 % berat Ti yang akan memperhalus butir. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh Ti dalam penguatan presipitasi paduan Al-4.4Zn-1.6Mg-0.4Ti (% berat) pada berbagai temperatur. Paduan ini diproses melalui pengecoran dengan proses squeeze casting, homogenisasi pada temperatur 400 oC selama 4 jam, laku pelarutan dengan variasi temperatur 220, 420, dan 490 oC selama 1 jam, pencelupan air, lalu dilakukan penuaan pada temperatur 130 °C selama 48 jam. Karakterisasi yang dilakukan berupa pengamatan struktur mikro menggunakan mikroskop optik, dan Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), pengujian kekerasan Rockwell, X-Ray Diffraction (XRD), dan Differential Scanning Calorimetry (DSC). Penambahan 0.4 % berat Ti selain memperhalus dan membulatkan butir, menurunkan tegangan permukaan antarmuka matriks dan fasa kedua, dan pelarutan fasa kedua menjadi lebih mudah. Banyaknya fasa kedua yang larut berpengaruh dengan kekerasan setelah laku pelarutan dan penuaan. Kekerasan akhir setelah penuaan dengan laku pelarutan 220, 420, dan 490 oC sebesar 38.26, 63.76, dan 63.36 HRB. Nilai kekerasan tersebut lebih tinggi daripada paduan tanpa Ti karena pelarutan fasa kedua yang lebih banyak menyebabkan pembentukan presispitat yang lebih banyak pula
Al-Zn-Mg alloys (7xxx series Al alloys) are commmonly hardened with ageing treatment, to form precipitates. To further increase the strength, Ti is added to decrease the grain size. The objective of this study is to investigate the role of Ti in the precipitation strengthening of Al-4.4Zn-1.6Mg-0.4Ti (wt.%) alloy. The alloy was fabricated by squeeze casting process. Then, the alloy was homogenized at 400 oC for 4 hours, solution treated at 220, 420, and 490 oC for 1 h followed by water quenching, then aged at 130 oC for 48 h. Characterization was performed by optical microscope, Scanning Electron Microscope (SEM) – Energy Dispersive Spectroscopy (EDS), Rockwell hardness testing, X-Ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC). The addition of 0.4 wt. % Ti resulted finer and rounder grains which possess lower surface tension between the α-Al matrix and second phase interface to dissolves second phases easier during solution treatment. The amount of dissolved second phases will affect the final hardness after ageing to 38.26, 63.76, and 63.36 HRB with solution treatment temperature of 220, 420, and 490 °C, respectively. Besides, the hardness value of 0.4 wt. % Ti added alloy was higher than that of the alloy without Ti addition. It was due to higher second phase dissolution which leads to more precipitates formed."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>