Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 164298 dokumen yang sesuai dengan query
cover
Afdhal Hanafi
"Limbah kulit durian dipilih menjadi bahan baku pembuatan karbon aktif sebagai adsorben gas buang CO dan hidrokarbon karena mengandung selulosa yang tinggi serta diproduksi dalam jumlah yang tinggi yaitu mencapai 700 ribu ton per tahun. Metode aktivasi limbah kulit durian dilakukan malalui aktivasi kimia dan fisika. Aktivasi kimia menggunakan H3PO4 sebagai activating agent sedangkan aktivasi fisika menggunakan N2. Karbon aktif hasil aktivasi kimia fisika ini akan dimodifikasi dengan MgO agar kapasitas adsorpsi dalam menyerap CO dan hidrokarbon dapat meningkat. Karakterisasi yang digunakan adalah uji bilangan iod, SEM dan EDX untuk mengetahui luas permukaan, topografi dan kandungan pada karbon aktif.
Melalui pengujian bilangan iod didapatkan luas permukaan terbaik dengan modifikasi MgO pada rasio 70:30 yaitu sebesar 1149,48 m2/g. Untuk aktivasi kimia fisika, modifikasi MgO rasio 80:20 dan modifikasi MgO rasio 90:10 berturut turut didapatkan luas permukaan sebesar 798 m2/g, 890,23 m2/g dan 859,91 m2/g. Persen penurunan konsentrasi CO dan hidrokarbon terbaik yaitu dengan menggunakan karbon aktif hasil modifikasi MgO rasio 70:30 dengan panjang tabung adsorpsi 5 cm yaitu sebesar 99,14 untuk CO dan 87,73 untuk hidrokarbon.

Durian Shell waste is selected as raw material for making activated carbon as CO and hydrocarbon adsorbent because it contains high cellulose and produced in high number until 700 thousand tons per year. The activation method of durian shell by using chemical and physical acvtivation. Chemical activation using H3PO4 as activating agent and physical activation using N2. The activated carbon from chemical physical activation will modified by MgO to increase adsorption capacity in adsorbing CO and hydrocarbon. Characterization of active carbon used iod number, SEM and EDX to know surface area, topography and the content of activated carbon.
The best surface area from testing iod number is activated carbon with modified MgO ratio 70 30 that have a surface area of 1149.48 m2 g. For the activation of chemical physical, MgO modified ratio 80 20 and MgO modified 90 10 respectively obtained a surface area of 798 m2 g, 890.23 m2 g and 859.91 m2 g. the capacity adsorption is the best by using activated carbon modified MgO ratio 70 30 with 5 cm tube adsorption that is 99.14 for CO and 87.73 for hydrocarbons. Keywords CO and hydrocarbon gases, activated carbon, activation method, modified active carbon, characterization of activated carbon."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S66931
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alyssa Ulfatun Jannah
"Sektor transportasi merupakan penyumbang terbesar pencemaran udara, di mana emisi gas buang CO, CO2, dan HC berdampak negatif terhadap kesehatan dan lingkungan. Karbon aktif dapat digunakan sebagai adsorben gas buang kendaraan bermotor (sepeda motor). Bonggol jagung berpotensi digunakan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan lignoselulosa yang tinggi. Pembuatan karbon aktif bonggol jagung dilakukan melalui tahap preparasi dan dehidrasi, aktivasi kimia pertama menggunakan larutan KOH 20% b/v dengan perbandingan massa sampel terhadap larutan 1:4 selama 24 jam, karbonisasi pada suhu 500℃ selama 2 jam dan diayak dengan ukuran 60 mesh, dilanjutkan dengan aktivasi kimia kedua menggunakan variasi KOH 1% b/v, 3% b/v, dan 5% b/v dengan rasio dan waktu yang sama seperti aktivasi kimia pertama. Sampel yang didapatkan kemudian diaktivasi fisika menggunakan gas N2 0,15 NL/menit pada suhu 600℃ selama 1 jam. Karbon aktif yang didapatkan, kemudian diimpregnasi menggunakan larutan MgO 1 M dengan variasi rasio massa sampel terhadap volume larutan adalah 1:5, 1:10, dan 1:15. Proses aktivasi kimia dua tahap berpengaruh memperbesar karakterisasi iodin yang dihasilkan, sedangkan impregnasi MgO akan menurunkan karakterisasi iodin yang dihasilkan dan meningkatkan efektivitas penjerapan gas buang. Sampel dengan karakterisasi iodin terbaik didapatkan pada sampel AK2F 5% dengan luas permukaan 1142,77 m2 /gr, sedangkan sampel dengan efektivitas penurunan gas buang terbaik didapatkan pada sampel impregnasi 1:10 dengan penurunan gas buang CO, CO2, dan HC sebesar 52,05%, 56,80%, dan 73,96%. Berdasarkan hal tersebut, karbon aktif bonggol jagung dapat dijadikan alternatif adsorben dalam adsorpsi gas buang emisi kendaraan bermotor (sepeda motor).

The transportation sector is the largest contributor to air pollution, where exhaust emissions of CO, CO2, and HC have a negative impact on health and the environment. Activated carbon can be used as an adsorbent for exhaust gases of motor vehicles (motorcycles). Corncob has the potential to be used as a raw material for making activated carbon because it has a high lignocellulose content. The manufacture of corncob activated carbon was carried out through the preparation and dehydration stage, the first chemical activation using a 20% w/v KOH solution with a sample ratio to a 1:4 solution for 24 hours, carbonization at a temperature of 500℃ for 2 hours and sifted with a size of 60 mesh, followed by the second chemical activation using a KOH variation of 1% w/v, 3% w/v, and 5% w/v with the same ratio and time as the first chemical activation. The samples obtained were then activated by physics using N2 gas of 0.15 NL/min at a temperature of 600℃ for 1 hour. The activated carbon obtained, then impregnated using a solution of MgO 1 M with variations in the ratio of sample mass to solution volume are 1:5, 1:10, and 1:15. The two-stage chemical activation process has an effect on enlarging the characterization of iodine produced, while mgo impregnation will decrease the characterization of the iodine produced and increase the effectiveness of exhaust gas absorption. The sample with the best iodine characterization was obtained in sample AK2F 5% surface area of 1142.77 m2 /gr, while the sample with the best exhaust gas reduction effectiveness was obtained in impregnatation samples of 1: 10 with a decrease in CO, CO2, and HC exhaust gases by 52.05%, 56.80%, and 73.96%. Based on this, corncob activated carbon can be used as an alternative adsorbent in the adsorption of exhaust gas emissions from motor vehicles (motorcycles)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Edma Nadhif Oktariani
"Meningkatnya kebutuhan akan transportasi mengakibatkan meningkatnya pencemaran udara akibat emisi gas buang kendaraan bermotor dalam bentuk gas-gas berbahaya seperti karbon monoksida (CO) dan hidrokarbon (HC). Untuk mengatasi ini, limbah sekam padi dipilih menjadi bahan baku pembuatan karbon aktif sebagai adsorben gas buang CO dan hidrokarbon karena mengandung selulosa yang tinggi. Metode aktivasi limbah sekam padi dilakukan malalui aktivasi kimia dan fisika. Aktivasi kimia menggunakan NaOH dan KOH sebagai activating agent sedangkan aktivasi fisika menggunakan N2. Karbon aktif hasil aktivasi kimia fisika ini akan dimodifikasi dengan MgO agar kapasitas adsorpsi dalam menyerap CO dan hidrokarbon dapat meningkat. Karakterisasi yang digunakan adalah uji bilangan iod, SEM, dan EDX. Dari uji bilangan iodin diperoleh luas permukaan karbon aktif teraktivasi kimia KOH 75% sebesar 1851,52 m2/g. Berikutnya, karbon aktif termodifikasi MgO diuji kapasitas adsorpsinya. Dari hasil uji emisi gas buang diperoleh karbon aktif dengan modifikasi MgO 1% memperoleh hasil terbaik dengan mampu mengadsorpsi gas CO sebesar 90,54% dan gas HC sebesar 62,84%.

The increasing need for transportation causes problems. The biggest problem that arises from this is the catastrophic air pollution caused by motor vehicle exhaust in the form of dangerous gases such as carbon monoxide (CO) and hydrocarbons (HC). To overcome this, rice husk was chosen to be the raw material for making activated carbon as an adsorbent for CO exhaust gas and hydrocarbons due to its high cellulose content. The activating method of rice husk waste is carried out through chemical and physical activation. In this research, chemical activation used is NaOH and KOH as activating agents while physical activation uses N2. The activated carbon from chemical activation will be modified with MgO to increase the adsorption capacity to absorb CO and hydrocarbons. The characterization used is the iodine number test, SEM, and EDX. From the iodine test, the best surface area of activated carbon is obtained in physical-chemical activated carbon with 75% KOH, which is 1841,52 m2/g. Afterwards, activated carbon that has been modified withMgO is tested for its adsorption capacity. It is found that activated carbon with 1% MgO has the best adsorption capacity which capable of adsorbing CO and HC emissions 90,54% and 62,84% respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Salma Amaliani Putri
"Karbon aktif menjadi salah satu solusi untuk mengatasi permasalahan asap rokok dan gas CO sebagai salah satu senyawa dengan persentase terbesarnya, yang sangat berbahaya bagi kesehatan. Sumber karbon aktif dapat dari beragam hal, salah satunya adalah limbah kulit durian. Limbah kulit durian dipilih karena mengandung 50-60%, lignin 5%, dan pati 5% yang potensial untuk dijadikan karbon aktif, ditambah dengan produksinya yang mencapai 746,805 ribu ton per tahunnya. Limbah kulit durian akan diolah menjadi karbon aktif teraktivasi kimia dengan variasi K2CO3 berbanding karbon aktif adalah 1:1, 3:2, dan 2:1, serta teraktivasi fisika oleh N­2 200 ml/menit selama 1,5 jam pada suhu 600oC. Karbon aktif yang telah teraktivasi kemudian dimodifikasi dengan MgO dengan variasi konsentrasi MgO 0,5%, 1%, dan 2% pada suhu 450oC selama 30 menit. Karbon aktif hasil aktivasi dan karbon aktif hasil modifikasi selanjutnya dilakukan karakterisasi dengan uji bilangan iod, uji BET, uji SEM, dan uji EDX. Sehingga didapatkan karbon aktif terbaik non modifikasi adalah variasi kimia-fisika 3:2 dengan yield sebesar 41,56% dengan bilangan iod sebesar 399,44 mg/g dan luas permukaan sebesar 694,13 m2/g. Sedangkan karbon aktif modifikasi terbaik adalah variasi kimia-fisika 3:2 MgO 2% dengan yield sebesar 97% dengan bilangan iod sebesar 625,70 mg/g dan luas permukaan sebesar 1.029,90 m2/g. Pada aplikasi adsorpsi gas CO, yang merupakan komponen dengan konsentrasi terbesar dalam asap rokok, dan asap rokok itu sendiri, diuji adsorpsi menggunakan karbon aktif modifikasi. Hasil yang didapatkan adalah karbon aktif modifikasi MgO 2% mampu mendegradasi CO terbaik dengan daya adsorpsi sebesar 3,89%/gram per menitnya dengan daya adsorpsi sebesar 0,215%. Karbon aktif tersebut juga mampu memurnikan udara dari asap rokok yang terbaik dengan daya adsorpsi sebesar 8,04%/gram per menitnya dengan daya adsorpsi sebesar 0,87%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indah Kemala
"ABSTRAK
Penelitian ini ditujukan untuk menghasilkan karbon aktif berbahan dasar kulit durian untuk pengaplikasiannya dalam mengadsorpsi pewarna Methylene Blue. Pada penelitian ini H3PO4 dipakai sebagai aktivator dengan variasi rasio impregnasi 1/1, 2/1, dan 3/1. Aktivasi dilakukan pada suhu 600oC selama 1 jam. Kulit durian dicuci dan dikeringkan menggunakan oven pada suhu 150oC selama 5 jam. Uji bilangan iodin terhadap sampel hasil penelitian menunjukkan bahwa karbon aktif dengan rasio impregnasi 2/1 memiliki daya serap iodin terbesar, yaitu 454.5 mg/g namun karbon aktif rasio 3/1 memiliki %removal terhadap Methylene Blue yang paling besar. Karbon aktif dari kulit durian dengan rasio impregnasi 1/1, 2/1, dan 3/1 secara berturut-turut memiliki %removal sebesar 5.25%, 80.3%, dan 90.35%. Adsorpsi pewarna Methylene Blue oleh karbon aktif kulit durian ini dilakukan dengan variasi rasio impregnasi, massa karbon aktif, konsentrasi awal Methylene Blue, dan waktu kontak

ABSTRACT
This research aimed to produce durian shell-based activated carbon for its application in the adsorption of Methylene Blue. In this research, H3PO4 was used as an activator with a variety of impregnation ratio which are, 1/1, 2/1, and 3/1. Activation was done at a temperature of 600oC for 1 hour. Durian shell was washed and dried using an oven at 150oC for 5 hours. Iodine number showed that the active carbon with impregnation ratio of 2/1 has the highest number which is 454.5 mg/g, but the activated carbon with impregnation ratio of 3/1 has the biggest % removal of the Methylene Blue dye. Activated carbon from durian shell with impregnation ratio of 1/1, 2/1, and 3/1 respectively have % removal of 5.25%, 80.3% and 90.35%. Methylene Blue dye adsorption by durian shell-based activated carbon was done by varying the impregnation ratio, the mass of activated carbon, the initial concentration of Methylene Blue, and the contact time."
2016
S64619
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Fadillah Utama Putera
"Isu lingkungan mengenai pemanasan global dan penipisan ozon merupakan faktor pendorong inovasi ramah lingkungan. Oleh karena itu, dikembangkanlah alat pendingin adsorpsi menggunakan metanol yang ramah lingkungan sebagai refrigeran dan karbon aktif sebagai adsorben. Sistem ini menggunakan metanol sebagai refrigeran yang memiliki karakteristik zero ozone depletion potential (ODP) dan zero global warming potential (GWP). Faktor yang paling penting dalam upaya peningkatan kapasitas pendinginan adalah dengan meningkatkan perpindahan panas dan massa di dalam adsorber/desorber dengan cara memperbesar luas bidang perpindahan panas adsorben dan mengembangkan material adsorben baru yang memiliki nilai laju penyerapan yang tinggi.
Alat pengujian adsorpsi yang dibuat terdiri dari adsorber dan adsorbat storage yang disatukan dalam sebuah sistem dan variasi bentuk karbon aktif untuk mengetahui karakteristik proses adsorpsi dan efek pendinginan. Pengujian dilakukan dengan menggunakan metanol sebanyak 120 ml dan karbon aktif sebanyak 100 gr selama proses adsorpsi 60 menit. Perbedaan temperatur terendah yang dicapai di adsorbat storage adalah 6ºC yaitu saat adsorben divariasikan bentuknya dengan menggunakan jaring yang bertujuan untuk memperbesar luas permukaan adsorben dengan mass transfer lebih tinggi.

Environmental issues about global warming and ozone depleting are the factors stimulating green innovation. Therefore, adsorption refrigeration system has been developed with methanol as a green refrigerant and activated carbon as adsorbent. Methanol is a refrigerant which have characteristic zero ozone depletion potential (ODP) and zero global warming potential (GWP). Important factor to increase cooling capacity is increase heat transfer and mass inside of adsorber with increase face of heat transfer of adsorbent and improve new material for adsorbent which has high rate adsorption value.
Experimental device adsorption consists of adsorber and adsorbat storage as a system and variation of activated carbon to understand characteristic of adsorption process and refrigeration effect. Experimental is done using 120 ml of methanol and 100 gr of activated carbon during adsorption procees 60 minutes. Lowest temperature difference achieved on adsorbat storage is 6ºC which is when apply variation form of activated carbon using net in order to expand surface area with higher mass transfer.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
S50944
UI - Skripsi Open  Universitas Indonesia Library
cover
Ghina Ivana Mieldan
"Kopi merupakan salah satu minuman yang sering dikonsumsi masyarakat. Namun, efek negatif kafein seringkali menjadi perhatian, sehingga kopi dekaf menjadi alternatif. Kopi dekaf dapat dibuat menggunakan proses dekafeinasi salah satunya adalah Swiss Water Process yang efektif tanpa senyawa kimia dan menggunakan karbon aktif sebagai adsorben. Karbon aktif merupakan nanomaterial yang efektif sebagai adsorben dan dapat dibuat dari biomassa seperti ampas kopi yang tersedia melimpah seiring meningkatnya konsumsi kopi. Karbon aktif dapat ditingkatkan kapasitas adsorpsi dengan menggunakan aktivator kimia untuk aktivasi seperti K2CO3. Penggunaan aktivator K2CO3 untuk meningkatkan luas permukaan spesifik karbon aktif yang lebih aman dibandingkan KOH. Sintesis karbon aktif dilakukan dengan K2CO3 pada rasio massa 2:1, 1:1, dan 1:2, pada suhu 800 °C selama satu jam. Penelitian ini bertujuan untuk menyintesis karbon aktif dari limbah biomassa ampas kopi dan mengaplikasikannya dalam dekafeinasi kopi. Karakterisasi karbon aktif menggunakan BET, SEM-EDS, dan bilangan iodin. Kadar kafein pasca dekafeinasi diuji dengan HPLC. Karbon aktif dari ampas kopi dan K2CO3 dengan rasio 1:1 menunjukkan luas permukaan terbesar, 1052 mg/g, meski yield-nya paling rendah, 18%. Karbon aktif ini mampu mengurangi kafein hingga 99% pada kopi arabika dalam 30 menit dan 95% pada kopi robusta dalam 2 jam.

Kopi merupakan salah satu minuman yang sering dikonsumsi masyarakat. Namun, efek negatif kafein seringkali menjadi perhatian, sehingga kopi dekaf menjadi alternatif. Kopi dekaf dapat dibuat menggunakan proses dekafeinasi salah satunya adalah Swiss Water Process yang efektif tanpa senyawa kimia dan menggunakan karbon aktif sebagai adsorben. Karbon aktif merupakan nanomaterial yang efektif sebagai adsorben dan dapat dibuat dari biomassa seperti ampas kopi yang tersedia melimpah seiring meningkatnya konsumsi kopi. Karbon aktif dapat ditingkatkan kapasitas adsorpsi dengan menggunakan aktivator kimia untuk aktivasi seperti K2CO3. Penggunaan aktivator K2CO3 untuk meningkatkan luas permukaan spesifik karbon aktif yang lebih aman dibandingkan KOH. Sintesis karbon aktif dilakukan dengan K2CO3 pada rasio massa 2:1, 1:1, dan 1:2, pada suhu 800 °C selama satu jam. Penelitian ini bertujuan untuk menyintesis karbon aktif dari limbah biomassa ampas kopi dan mengaplikasikannya dalam dekafeinasi kopi. Karakterisasi karbon aktif menggunakan BET, SEM-EDS, dan bilangan iodin. Kadar kafein pasca dekafeinasi diuji dengan HPLC. Karbon aktif dari ampas kopi dan K2CO3 dengan rasio 1:1 menunjukkan luas permukaan terbesar, 1052 mg/g, meski yield-nya paling rendah, 18%. Karbon aktif ini mampu mengurangi kafein hingga 99% pada kopi arabika dalam 30 menit dan 95% pada kopi robusta dalam 2 jam."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mega Puspitasari
"ABSTRAK
Plastik jenis polietilen yang terdiri dari 1000 atom karbon, kebanyakan diproduksi sebagai kantong plastik yang biasa digunakan hanya sekali pakai lalu menjadi sampah plastik. Banyak sampah plastik tidak terangkut dan menjadi sumber pencemar udara karena dimusnahkan dengan cara dibakar atau dibuang ke badan air atau tanah. Salah satu upaya penanggulangan sampah plastik adalah dengan memanfaatkannya menjadi bahan baku pembuatan karbon aktif. Karbon aktif dari sampah plastik kantong kresek memiliki luas permukaan terbaik dengan agen pengaktivasi aseton 1M sebesar 352,55 m2/g. Penyisipan TiO2 pada karbon aktif mampu meningkatkan luas permukaan sebesar 370,86 m2/g. Karbon aktif berbahan baku sampah plastik dapat digunakan sebagai media penyerap gas CO dan HC pada emisi gas buang kendaraan bermotor. Dari hasil penelitian diketahui bahwa media karbon aktif yang dipasang sepanjang 3 cm, 4 cm dan 5 cm pada tabung adsorpsi memberikan hasil penurunan konsentrasi gas CO masing-masing sebesar 53,74 , 61,35 dan 67,40 , sementara HC sebesar 44,02 , 57,78 dan 59,91 . Pada karbon aktif termodifikasi TiO2 dengan variasi panjang yang sama memiliki efisiensi penurunan konsentrasi gas CO sebesar 58,31 , 69,57 dan 74,83 , HC sebesar 48,18 , 60,40 dan 67,10 . Dari hasil penelitian dapat diketahui bahwa media karbon aktif sepanjang 5 cm dengan penyisipan TiO2 lebih efektif dalam menurunkan konsentrasi gas CO dan HC.

ABSTRACT
Plastics polyethylene comprising 1000 carbon atoms, mostly produced as plastic bags are used only disposable then became trash. Many plastic waste is not transported and be a source of air pollutants since destroyed by fire or discharge into water bodies or soil. One of the plastic waste reduction efforts is to use it as raw material for the preparation of activated carbon. Activated carbon from plastic bags has the best surface area by chemical activation with acetone 1M of 352.55 m2 g. The insertion of TiO2 on activated carbon can increase the surface area by 370.86 m2 g. Activated carbon from plastic waste can be used to adsorbe of CO and HC from motor vehicle exhaust emissions. The result of this research, to make active carbon with 3 cm, 4 cm and 5 cm length in the adsorption tube can be reduce concentrations of CO are 53,74 , 61,35 and 67.40 , while HC are 44.02 , 57.78 and 59.91 . Activated carbon with the modified TiO2 with the same length variation has the efficiency of CO gas concentration reduction of 58.31 , 69.57 and 74.83 , while HC are 48.18 , 60.40 and 67.10 . From the research results can be known the medium of active carbon along the 5 cm with the insertion of TiO2 more effective in reduction the concentration of CO and HC."
2017
S66932
UI - Skripsi Membership  Universitas Indonesia Library
cover
Randy Anggriany
"Penelitian ini dilakukan untuk mengetahui pengaruh karbon aktif berbahan dasar tempurung kelapa sawit dengan bahan pengaktif ZnCl2 terhadap penurunan konsentrasi gas CO serta penjernihan asap kebakaran. Proses aktivasi dilakukan secara kimia dan fisika. Karbonisasi dilakukan pada suhu 400oC selama 2 jam lalu dilanjutkan dengan aktivasi kimia dengan ZnCl2 dengan konsentrasi 25%. Aktivasi fisika dilakukan dengan mengalirkan gas N2 selama 1 jam pada suhu 850 ºC dan dilanjutkan dengan mengaliri gas CO2 selama 1 jam pada suhu 850 ºC.
Penelitian ini menghasilkan karbon aktif yang memenuhi Standar Industri Indonesia dengan luas permukaan sebesar 743 m2/gram, kadar air 14,5%, dan kadar abu total 9,0%. Selain itu karbon aktif yang dihasilkan juga dapat diaplikasikan untuk mengadsorpsi gas CO dari hasil kebakaran dengan persen adsorpsi gas CO sebesar 11,3% pada ukuran partikel 50-37 μm.

This research was conducted to determine the effect of activated carbon made from coconut palm with ZnCl2 as activating agent to decrease the concentration of CO gas and fire fumes purification. The activation process is done chemically and physically. Carbonization was carried out at 400oC for 2 hours and then followed by chemical activation with ZnCl2 at concentrations of 25%. Physical activation is done by flowing N2 gas for 1 hour at 850ºC and followed by flowing CO2 gas for 1 hour at 850ºC.
This research produces activated carbon which follows Indonesian Industry Standard with surface area 743 m2/gram, water content 14.5%, and total ash content 9.0%. The activated carbon produced can also be applied to adsorb CO gas from the fire with the percent adsorption of CO gas by 11.3% in the particle size of 50-37 μm.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46908
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Mulia
"ABSTRAK
Produk bioetanol sebagai bahan bakar alternatif masih perlu ditingkatkan kemurniannya sehingga memenuhi standar fuel grade ethanol 95%v/v. Pada prosesnya, etanol hasil fermentasi memiliki kemurnian 5-12%b/b. Salah satu metode pemurnian yang dapat digunakan adalah adsorpsi yang memiliki efisiensi energi baik. Media adsorben akan mengalami kejenuhan dalam waktu tertentu, sehingga perlu dilakukan regenerasi adsorben. Penelitian ini membahas pengaruh regenerasi adsorben terhadap proses pemurnian tahap awal dari campuran etanol-air menggunakan proses adsorpsi kontinu pada unggun tetap. Material adsorben yang diuji dalam penelitian ini adalah karbon aktif Calgon bekas yang telah diregenerasi dengan metode pemanasan oven drying dengan temperatur 115°C. Digunakan campuran etanol-air dengan kemurnian etanol 10%v/v dan 50%v/v. Uji adsorpsi dilakukan dengan kondisi operasi suhu dan tekanan ruangan, serta laju alir 10 mL/menit melalui kolom adsorpsi unggun tetap secara kontinu selama 5 jam hingga adsorben karbon aktif jenuh. Hasil dari penelitian ini diolah dan disajikan dalam bentuk kurva breakthrough yang menunjukkan performa adsorpsi. Hasil kemurnian etanol tertinggi sebesar 59,04%v/v pada konsentrasi awal etanol 50%v/v dan 27,12%v/v pada konsentrasi awal etanol 10%v/v. Kinerja adsorben teregenerasi mengalami penurunan sekitar 10% setelah dilakukan regenerasi, dengan kapasitas adsorpsi 0,156 pada konsentrasi awal etanol 50%v/v dan 0,225 pada konsentrasi awal etanol 10%v/v.

ABSTRACT
Bioethanol product as an alternative fuel needs enhancement of purity to meet the standard of 95%v/v. In the process, the ethanol produced from fermentation has purity of 5-12%w/w. One of the purification methods that can be used is adsorption that has good energy efficiency. However, regeneration on spent adsorbents is needed in consideration of economic aspects. This study discusses the effects of regenerated adsorbents in the initial-stages purification process of ethanol-water mixture in fixed-bed continuous adsorption. Spent Calgon activated carbon is regenerated using oven drying method with the temperature of 115°C. This study is using ethanol purity of 10%v/v and 50%v/v. The research is carried out under operating conditions of atmospheric temperature and pressure, and flow rate of 10 mL/minutes through a fixed-bed continuous adsorption column for 5 hours until the adsorbent is saturated. The results of this study are presented in breakthrough curves that shows the adsorption performance. The highest ethanol purity yield of 59.04%v/v for ethanol initial concentration 50%v/v, and 27.12%v/v for ethanol initial concentration 10%v/v. The adsorption performance is decreased about 10% after the regenerated adsorbents is in use with adsorption capacity of 0.156 for ethanol initial concentration 50%v/v and 0.225 for ethanol initial concentration 10%v/v.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>