Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 150118 dokumen yang sesuai dengan query
cover
Grano Prabumukti
"Sumber mata air panas memiliki potensi untuk menghasilkan tenaga terutama di daerah off grid PLN terpencil . Ada dua siklus biner yang dapat digunakan untuk menghasilkan tenaga dari sumber panas suhu rendah yaitu siklus Kalina dan ORC. Fluida kerja yang digunakan adalah Propana, Propena, R1234yf dan R407a untuk ORC dan Ammonia 85 untuk Siklus Kalina. Simulasi masing-masing siklus untuk tiap fluida kerja dilakukan dengan menggunakan software UNISIM untuk menghasilkan nilai effisiensi dan LCOE dengan mengubah kondisi operasi tekanan masuk turbin, suhu sumber panas dan laju alir sumber panas. Tren nilai effisiensi berbanding terbalik dengan tren nilai LCOE pada pengaruh tekanan masuk turbin. Nilai effisensi terbaik berbeda bergantung pada suhu sumber panas. R1234yf dan Propena dengan konfigurasi basic ORC menghasilkan effisiensi terbaik untuk rentang suhu sumber panas 60oC - 99oC. Dari data simulasi, dapat dibentuk persamaan regresi untuk melakukan pemetaan dari tiap lokasi sumber mata air panas. Dari lokasi hotspring, didapat rentang nilai daya 2,1 kWe - 61,3 kWe dan nilai LCOE 99,4 /kWh -15.9 /kWh. Lokasi hotspring APSGA 2, Losseng 2, Beang, Kawah Sirung, Pamandian, Kadidia, Pulu 1, Sajau 3 dan Sajau 2 berpotensi untuk dikembangkan lebih lanjut karena memiliki nilai LCOE lebih rendah dari pembangkit diesel termurah.

Hotsprings have the potential to generate power, especially in off grid areas of PLN. There are two binary cycles that can be used to generate power from low temperature heat source, Kalina Cycle and ORC. The working fluids used are Propane, Propene, R1234yf and R407a for ORC and Ammonia 85 for Kalina Cycle. The simulation of each cycle for each working fluid is done by using UNISIM software to produce efficiency and LCOE values by changing turbine inlet pressur, heat source temperature and heat source flow rate. Efficiency value trends are inversely proportional to the trend of LCOE values on the influence of turbine inlet pressure. The best value of efficiency differs depending on the temperature of the heat source. R1234yf and Propena with ORC basic configuration produce the best efficiency for hoto temperature range 60oC 99oC. From the simulation data, regression equation can be formed to mapping from each hot springs location. From the hotspring location, there is a range of power values of 2.1 kWe 61.3 kWe and a LCOE value of 99.4 kWh 15.9 kWh. The hotspring locations of APSGA 2, Losseng 2, Beang, Sirung Crater, Pamandian, Kadidia, Pulu 1, Sajau 3 and Sajau 2 have the potential to be developed in the future as they have lower LCOE value than the cheapest diesel generators.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67681
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dipippo, Ronald
Amsterdam: Elsevier, 2008
621.44 DIP g
Buku Teks  Universitas Indonesia Library
cover
Maulana Rifaldi
"Pemanfaatan hasil panas buang suatu sistem pembangkit dapat meningkatkan nilai efisiensi sistem. Siklus Kalina dapat menyediakan solusi untuk membangkitkan daya dari hasil buangan panas pada suatu sistem pembangkit listrik ataupun dari sumber panas bumi dengan temperatur rendah. Untuk mempelajari aplikasi dan perancangan sistem termal yang menggunakan Siklus Kalina digunakan suatu aplikasi pemodelan sistem energi. Proses studi ini dilakukan dengan pembuatan simulasi sistem yang dibantu oleh software Cycle Tempo 5.0 untuk mengetahui efisiensi dan energi yang dapat dibangkitkan dari suatu sumber panas.
Suatu campuran fluida ammonia-water dimanfaatkan sebagai fluida kerja dalam proses sistem siklus Kalina (KCS) 34. Untuk memperoleh daya dan efisiensi maksimum yang dihasilkan sistem dilakukan proses optimasi pada fraksi massa campuran fluida kerja ammonia-water dan tekanan keluar turbin. Dari hasil pemodelan dan simulasi maka didapatkan suatu sistem operasi termal yang memiliki nilai tertinggi pada konfigurasi efisiensi dan daya terbaik.

The utilization of waste heat produce by power plant system will gain the efficiency value for the system it self. Kalina cylce system gives a solution to generate power from wasted heat or from geothermal with low temperature. The modeling application on energy system is use to study the design of thermal system that using Kalina cycle. The study of this process is done by using Cycle Tempo 5.0, a simulating software, to get the data of the efficiency and the energy that could be generate from heat source.
An ammonia-water mixture is use as a working fluid on Kalina cycle system (KCS) 34. to get maximum power output and maximum efficiency, the system will be optimize on the mass fraction of working fluid, ammoniawater, and also the turbine output pressure. The result of the simulation is to get the best performance of KCS 34 that have high power output and efficiency.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S37335
UI - Skripsi Open  Universitas Indonesia Library
cover
Russel, Fhillipo
"Gunung Karang merupakan gunung api yang belum pernah meletus. Skripsi ini membahas mengenai wilayah potensi panas bumi berdasarkan karakteristik fisik wilayah di Gunung Karang. Metode yang digunakan adalah geokimia dengan mengambil sampel mata air dan metode SIG dalam mengolah penentuan spasial dalam wilayah potensi panas bumi di Gunung Karang. Wilayah potensi panas bumi di Gunung Karang terbagi menjadi tiga yaitu tinggi, sedang dan rendah. Wilayah potensi panas bumi dengan kelas tinggi memiliki luas wilayah 24.16 Km2 dan berada di wilayah mata air panas Cisolong dan Banjar 2. Karakteristik fisik yang mempengaruhi potensi panas bumi dalam penelitian ini adalah kerapatan patahan.

Gunung Karang is a volcano, but never being erupted. This research about geothermal potential based on characteristics of region on Gunung Karang. Method used in this research is geochemistry by take a sample of hot springs combined with GIS for the determination of its territory. Region of Gunung Karang there are three is a high potential, normal potential and low potential. Region of high geothermal potential has an area 24.16 Km2 and where its on Cisolong rsquo s hot spring and Banjar 2 hot spring. Kawah rsquo s hot spring has a normal potential. Physical characteristics significant to geothermal is index of the fault.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S67466
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Surachman
"Dalam rangka upaya memenuhi target pemerintah yaitu pengembangan pembangkit listrik tenaga panas bumi PLTP pada tahun 2025 ditargetkan sebesar 7.242 MW, maka tentu saja akan diperlukan data tentang desain PLTP yang paling optimal yang dapat diterapkan pada seluruh kondisi sumber panas bumi. Dengan demikian, diperlukan panduan desain yang dibuktikan secara ilmiah untuk pembangunan PLTP. Dalam dekade terakhir ini, banyak peneliti yang menganalis atau merancang sistem energi dengan menggabungkan antara analisis energi, exergy dan thermoekonomik. Hal ini dimaksudkan dalam upaya peningkatan efisiensi serta mengurangi kerugian-kerugian yang ditimbulkan oleh ketidakefisienan sistem.
Melalui analisa yang komprehensif dengan menggabungkan analisa energi, exergy, exergoeconomics serta exergoenvironment, maka diharapkan dapat menjadi panduan desain yang paling optimum dengan mempertimbangkan segala aspek, baik aspek teknologi, ekonomi dan lingkungan yang dapat diaplikasikan untuk berbagai kondisi sumber panas bumi di Indonesia. Untuk itulah pada disertasi ini dilakukan analisa dan optimasi 3E exergy,economic,environment. Pemodelan dan optimasi sistem PLTP dilakukan menggunakan software EES dan diintegrasikan dengan MATLAB.
Dari hasil analisis 3E, dapat diketahui bahwa komponen seperti turbin dan cooling tower merupakan komponen yang menyumbang nilai exergy destruction, total cost dan exergoenvironment yang paling besar dibandingkan komponen lainnya.

In order to reach the government 39;s target of building geothermal power plant PLTP in 2025 of 7,242 MW, then it will need data about the most optimal PLTP design that can be applied to all geothermal conditions. Thus, the design required for the construction of PLTP. In the last decade, many researchers have analyzed and discussed energy systems with energy, exergy and thermoeconomic analyzes. This is necessary in an effort to increase and reduce the losses caused by system inefficiencies.
Through a comprehensive analysis with energy analysis, exergy, exergoeconomics and exergoenvironment, it is expected to be the most optimal design with good aspects, economics and environment that can be used for various geothermal conditions in Indonesia. For analysis, it was conducted 3E exergy, economy, environment analysis on this dissertation. By using EES software and integrated with MATLAB, the PLTP system can be modeled and optimized.
From the results of 3E analysis, it can be seen that components such as turbines and cooling towers are the components that contribute the largest value of total exergy destruction, total cost and exergoenvironment compared to other components.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2483
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ahmad Luthfi Fitris
"Fluida panas bumi dari pembangkit listrik tenaga panas bumi (PLTP) selalu disertai oleh gas yang tidak dapat dikondensasikan/Noncondensable gas (NCG). Gas-gas ini meningkatkan tekanan kondensor, berkontribusi terhadap backpressure pada turbin, dan mengurangi produksi daya pembangkit. Untuk menghilangkan NCG dari kondenser, PLTP membutuhkan utilisasi dan optimisasi Gas Removal System (GRS). PT. X menggunakan sistem dual ejector (SJE) untuk gas removal system (GRS). Karena berbagai kondisi uap, banyak motive steam yang digunakan dan tekanan kondenser meningkat. Hal ini menyebabkan penuruan produksi daya. Namun, pembangkit PT. X memiliki liquid ring vacuum pump (LRVP) yang dapat digunakan dengan dual ejector sebagai sistem hibrida (hybrid system). Pembahasan ini bertujuan untuk optimisasi GRS dengan tujuan peningkatan produksi listrik dan didasarkan pada analisis termodinamika dan Cycle Tempo 5.0.
Hasil menunjukkan bahwa hybrid system memiliki kinerja yang lebih tinggi daripada sistem dual ejector. Dengan mempertahankan tekanan kondenser yang sama pada 0,08 bar, PLTP dengan sistem dual ejector menghasilkan daya bersih sebesar 42,9 MW sedangkan PLTP dengan hyrbid system menghasilkan daya bersih sebesar 44,5 MW. Kesimpulannya, analisis termodinamika menunjukkan bahwa hybrid system lebih cocok untuk digunakan di PT. X demi peningkatan produksi daya.

Geothermal fluids of geothermal power plants (GPP) are always accompanied by non-condensable gases (NCG). These gases do not condense inside the condenser which will increase the condenser pressure, contribute to backpressure on the turbine, and thereby decreasing the power generation of the plant. In order to remove these NCG from the condenser, GPP would need to utilize and optimize Gas Removal System (GRS). Currently PT. X utilizes a dual ejector gas removal system (GRS). Due to various steam conditions, more motive steam is needed and the condensers pressure rises up. These problems will eventually lead to lower power production. However, the GPP possesses a liquid ring vacuum pump on standby which could be utilized with the ejector as a hybrid system. This study aims to optimize the gas removal system for an improved GPPs overall power production that is based on thermodynamic analysis and uses Cycle Tempo 5.0 for modeling and simulation.
The result shows that hybrid system has higher performance than the dual ejector system. By maintaining the same condenser pressure at 0.08 bar, the GPP with dual ejector system produces nett power of 42.9 MW while the GPP with hybrid system produces nett power of 44.5 MW. In conclusion, the thermodynamic analysis justifies that hybrid gas removal system is more suitable to be utilized in PT. X in order to gain higher power producion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Setya Ismawati
"Regenerative Organic Rankine Cycle (RORC) pada siklus biner menjadi salah satu alternatif yang dapat meningkatkan performansi dan efisiensi dari siklus pada Pembangkit Listrik Tenaga Panasbumi (PLTP) yang memiliki entalpi rendah hingga menengah. Efisiensi suatu pembangkit tidak cukup hanya dilihat berdasarkan efisiensi energi (hukum I Termodinamika) saja, metode tersebut kurang mampu menggambarkan aspek-aspek penting dari pemanfaatan energi. Oleh karena itu, diperlukan kombinasi pendekatan eksergi (hukum II Termodinamika) dalam analisisnya.
Penelitian membandingkan tiga siklus biner konseptual yaitu basic ORC, RORC dan modifikasi RORC menggunakan Internal Heat Exchanger (IHE) serta menggunakan R-123 sebagai fluida kerjanya. Digunakan suatu aplikasi pemodelan sistem yang dibantu oleh software Engineering Equation Solver (EES). Hasil perhitungan termodinamika kemudian digunakan untuk mendefinisikan efisiensi energi dan eksergi pembangkit, menghitung daya netto, dan mengidentifikasikan serta menghitung besarnya degradasi eksergi yang dihasilkan.
Dari hasil perhitungan dan simulasi diperoleh RORC dengan IHE memiliki efisiensi yang lebih tinggi, baik energi maupun eksergi dan daya yang lebih besar. Siklus ini menghasilkan 18,19 % efisiensi energi, 20,49 % efisiensi eksergi, dan daya netto sebesar 596,1 kW. Kenaikan temperatur inlet turbin, penurunan tekanan kondensor, perbedaan temperatur pinch evaporator dan kondensor yang lebih kecil, serta penurunan temperatur reinjeksi menghasilkan daya netto dan efisiensi yang lebih besar.
Regenerative Organic Cycle (RORC) on binary cycle becomes one of the alternatives that can increases the performance and efficient from the cycle of Geothermal Power Plant (PLTP) which has low until average enthalpy. The efficiency of the power is not only be seen based on the energy efficiency (Thermodynamics Law I) only, that method is less able to describe the important aspects of energy utilization. Therefore, it is needed the combination of exergy approach (Thermodynamics Law II) in its analysis.
The study compared three conceptual binary cycles; basic ORC, RORC, and RORC modification using Internal Heat Exchanger (IHE) and also using R-123 as working fluid. It is used a modeling application system which is assisted by software Engineering Equation Solver (EES). The results of Thermodynamic calculations are then used to define energy efficiency and exergy power, calculate net power, and identify also quantify the resulted of exergy degradation.
From the calculation and simulation results obtained that RORC with IHE have higher efficiency, either energy or exergy and greater power. This cycle produces 18,19 % energy efficeincy, 20,49 % exergy efficiency, and net power is about 596,1 kW. The increasing of turbin inlet temperature, condencer pressure drops, the differences of pinch evaporator temperature and smaller condenser, also the descent of reinjection temperature produces net and greater efficiency.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43182
UI - Skripsi Open  Universitas Indonesia Library
cover
Dipippo, Ronald
Oxford: Butterworth-Heinemann, 2012
621.44 DIP g
Buku Teks  Universitas Indonesia Library
cover
Nur Laili
"Isu sekuritas energi nasional mengemuka akibat kebutuhan energi yang terus meningkat dari tahun ke tahun dengan pasokan utama energi berbahan bakar fosil. Pemanfaatan energi berbahan bakar fosil menimbulkan dampak lingkungan berupa emisi karbon yang tinggi. Pengembangan energi baru terbarukan yang ramah lingkungan menjadi alternatif solusi untuk permasalahan energi nasional, salah satunya energi panas bumi.
Penelitian ini mengkaji dampak lingkungan pada daur hidup pembangkit listrik tenaga panas bumi yang menggunakan teknologi flash steam system. Analisis dampak lingkungan dilakukan dengan menggunakan metode Life Cycle Assessment (LCA).
Hasil penelitian menunjukkan ada empat dampak potensial utama yaitu perubahan iklim, penipisan sumber daya abiotik, acidification dan eutrophication, serta dampak tambahan berupa kebisingan. Fase yang menimbulkan dampak terbesar pada daur hidup PLTP adalah fase kondensasi dan pendinginan.
Hasil analisis juga menunjukkan bahwa keempat dampak yang ditimbulkan tidak melebihi standar baku mutu menurut peraturan pemerintah yang berlaku. Hasil analisis lebih lanjut menunjukkan bahwa PLTP dengan teknologi yang berbeda akan menimbulkan jenis dampak yang berbeda pula.

National energy security issues arise due to the increasing energy needs from year to year with the main supply of fossil fuel energy. Utilization of fossil fuel energy have environmental impacts such as carbon emissions. Development of new renewable energy to be environmentally friendly alternative energy solutions to national problems, one of which geothermal energy.
This study examines the impact of the environment on the life cycle geothermal power plant that uses the technology of flash steam system. Environmental impact assessment carried out by using Life Cycle Assessment (LCA).
The results showed there are four main potential impacts of climate change, depletion of abiotic resources, acidification and eutrophication, as well as additional impacts such as noise. Phases that have the greatest impact on the life cycle geothermal power plant is condensing and cooling phases.
The analysis also showed that the four impacts do not exceed the quality standard by the applicable government regulations. Further analysis of the results shows that geothermal power plants with different technologies will give rise to different types of impacts.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T38718
UI - Tesis Membership  Universitas Indonesia Library
cover
Adrian Danar Wibisono
"Total kapasitas terpasang PLTP (Pembangkit Listrik Tenaga Panas Bumi) di Indonesia baru mencapai 1.341 MW, sekitar 4.8% dari seluruh potensi panas bumi yang ada. Salah satu penyebab terbesar masalah tersebut adalah masalah keekonomian dari PLTP. Penelitian ini ingin menemukan cara agar PLTP skala kecil dapat menjadi salah satu alternatif yang diperhitungkan bagi sumber listrik lokal pada tingkat harga yang kompetitif dengan sumber-sumber lain di tingkat konsumen.
Dalam penelitian ini, kapasitas PLTP skala kecil akan divariasikan sebesar 1 MW, 2 MW, 3 MW, 4 MW, dan 5 MW, dengan interval variasi dari suhu uap panas bumi berkisar antara 100°C sampai 340°C dan variasi kecepatan alir (flowrate) uap panas bumi berkisar antara 300 kg/s sampai 1000 kg/s.
Analisis dilakukan dengan melakukan perhitungan Biaya Pokok produksi (BPP) serta penilaian kelayakan investasi pengusahaan PLTP berdasarkan Internal Rate of Return (IRR), Net Present Value (NPV), dan Analisis Sensitivitas atas sumur panas bumi yang sebelumnya dinilai tidak ekonomis oleh satu dan lain sebab.

The total installed capacity of geothermal power plants in Indonesia reached 1,341 MW, approximately 4.8 % of the existing geothermal potential. One of the biggest causes of such problems is economic of electricity from geothermal power plants.
This study wants to find ways to make small-scale geothermal power plants could be an alternative source of electricity that is taken into account for local at a rate competitive with other sources at the consumer level. In this study, small-scale geothermal power plant capacity will be varied at 1 MW, 2 MW, 3 MW, 4 MW and 5 MW. While the interval of variation of temperature geothermal steam 100°C to 340°C ranges. While the range of variation of the flow velocity (flowrate) geothermal steam ranged from 300 kg/s to 1000 kg/s.
The analysis was performed by calculating the cost of electricity production and valuation of investment feasibility is based on the Internal Rate of Return ( IRR ), Net Present Value ( NPV ), and Sensitivity Analysis for marginal geothermal steam well.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55176
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>