Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 109398 dokumen yang sesuai dengan query
cover
Ratna Wulandari
"Logam tanah jarang memiliki peranan yang cukup penting dalam perkembangan teknologi saat ini. Banyak aplikasi-aplikasi elektronik yang menggunakan unsur logam tanah jarang karena logam tanah jarang memiliki efisiensi yang tinggi dan peforma yang baik. Salah satu unsur logam tanah jarang yang banyak digunakan yaitu neodimium. Neodimium biasanya terdapat dalam bentuk oksida pada mineral monasit atau bastenit. Aplikasi yang sering memakai neodimium sebagai material utamanya yaitu magnet permanen. Magnet permanen berbasis neodimium mampu menghasilkan koersivitas yang tinggi dan mampu menyimpan energi yang sangat besar. Sintesis neodimium oksida menjadi logam neodimium dapat dilakukan dalam beberapa cara, salah satunya yaitu dengan metode reduksi difusi. Kelebihan menggunakan metode ini yaitu prosesnya yang mudah. Metode ini merupakan sintesis neodimium dalam bentuk oksida maupun klorida dengan penambahan logam alkali tanah sebagai reduktornya, bisa dalam bentuk logam murni atau hidrida. Neodimium oksida karbonat dengan berat 448,38 mg ditambahkan dengan kalsium hidrida sebagai reduktornya dengan perbandingan antara neodimium oksida karbonat dengan kalsium hidrida adalah 1:1 dan 1:2. Selanjutnya campuran tersebut dikompaksi dan dilanjutkan dengan proses reduksi difusi pada suhu 800°C selama 4 jam dalam aliran gas argon. Setelah itu didinginkan dalam dapur dan dilanjutkan dengan pencucian untuk menghilangkan produk sampingan yang terbentuk lalu dikeringkan pada suhu 200°C selama 2 jam. Kemudian sampel reduksi dilakukan pengujian XRF, XRD dan SEM-EDS. Hasil pengujian tersebut menunjukkan bahwa sampel dengan perbandingan 1:1 lebih baik hasilnya dilihat dari mikrostruktur yang terbentuk butirnya lebih granular dan halus serta recoverynya mencapai 82,2 dibandingkan dengan perbandingan 1:2 dengan recovery 62,4.

This time, rare earth metals have an important role in the development of technology. Electronic applications use rare earth metals because it has high efficiency and good performance. One of the most commonly used rare earth metals is neodymium. Neodymium is usually present in form of oxide in monasite or bastenite minerals. Application that often use of neodymium as the main material is a permanent magnet. Neodymium based permanent magnets are capable of producing high coercivity and storing enormous energy. Synthesis of neodymium oxide to neodymium metal can be done in several ways, one of them is by reduction diffusion method. The advantage of using this method is the easy process. This method is synthesis of neodymium in the form of oxide or chloride with the addition of alkaline earth metal as its reductor, either in the form of pure metal or hydride. 448.38 mg neodymium oxide carbonate was added with calcium hydride as its reductor by comparison between neodymium oxide carbonate and calcium hydride was 1 1 and 1 2. The mixture was compacted, it is heated by reduction diffusion process at temperature of 800°C for 4 hours in an argon gas stream. After that it is cooled in the furnace, it is washed to remove the impurities that are formed and then dried at 200°C for 2 hours. Then the reduction's sample was tested of XRF, XRD and SEM EDS. The result of the test shows that the sample with 1 1 ratio is better result seen from microstructure formed more granular and fine grain and its recovery reaches 82,2 compared with ratio 1 2 with recovery 62,4.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67902
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Farah Thufaila
"Telah dilakukan proses reduksi-difusi neodimium dari serbuk sintesis neodimium oksida karbonat Nd2O CO3 2 . Pada bahan ini, proses reduksi-difusi diawali dengan melakukan preparasi dengan mencampur serbuk sintesis Nd2O CO3 2 dengan CaH2 sebagai reduktor dengan penggerusan manual. Sampel awal lalu dikarakterisasi menggunakan XRD dan STA untuk mengetahui senyawa apa saja yang ada pada Nd2O CO3 2 dan dapat mengetahui perilaku sampel terhadap temperatur. Hasil dari uji STA memperlihatkan bahwa proses reduksi terjadi secara eksotermis dan mengalami tiga kali proses dekomposisi, yaitu dekomposisi molekul air, dekomposisi Nd2O CO3 2 menjadi Nd2O2CO3 dan dekomposisi Nd2O2CO3 menjadi Nd2O3. Sampel kemudian dipanaskan hingga 800oC dengan kecepatan 5oC/menit lalu di-holding pada temperatur 800oC selama 2 jam. Hasil reduksi lalu dikarakterisasi dengan XRD. Hasilnya memperlihatkan bahwa logam neodimium dengan fase alpha banyak terdeteksi di kedua sampel, diikuti dengan masih terdapatnya senyawa Nd2O3 dan CaCO3. Terbentuknya CaCO3 ini disebabkan oleh terbentuknya CaO dari reaksi antara CaH2 dengan oksigen yang ada di lingkungan tempat uji. Jumlah puncak logam neodimium sama untuk kedua sampel, namun jumlah puncak Nd2O3 terbanyak adalah sampel perbandingan 1:2.

Reduction Diffusion process R D for Neodymium from synthetic powder Nd2O CO3 2 has been carried out. In the process, it was begun by mixing synthetic powder Nd2O CO3 2 with CaH2 as reductor by manual milling. The mixture was characterized using XRD and STA to analyze every compound that contained on Nd2O CO3 2 synthetic powder and determine the behavior of sample towards temperature. The result showed that the R D process occured as an exoterm reaction and three steps of decomposition was performed decomposition of water, decomposition of Nd2O CO3 2 into Nd2O2CO3 and decomposition of Nd2O2CO3 into Nd2O3. The reduction was heated with 5oC minute up to 800oC and was holding for 2 hours. XRD was performed after the reduction process had been done. The result showed that alpha phase of neodymium metal is detected in both sampels, followed by the presence of Nd2O3 and CaCO3 compounds. The formation of CaCO3 is caused by the formation of CaO from the reaction between CaH2 with oxygen present in the test site environment. The number of neodymium metal peaks is the same for both samples, but the highest number of Nd2O3 peaks is the 1 2 ratio.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69406
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Yusuf Abdillah
"Magnet neodyimium iron boron (NdFeB) adalah magnet permanen mutakhir yang memiliki fasa magnetik Nd2Fe14B dengan sifat kemagnetan superior dibandingkan dengan magnet permanen jenis lainnya. Sifat intrinsik fasa magnetiknya yang super serta material terbuat dari besi (iron) yang ketersediaannya di alam cukup berlimpah menjadikan magnet NdFeB banyak mendapat perhatian para peneliti dan diminati oleh industri. Telah diketahui bahwa semua logam tanah jarang dapat membentuk fasa RE2Fe14B (RE: rare earth). Bila RE adalah dysprosium (Dy), medan anisotropi fasa Dy2Fe14B luar biasa besar sehingga material magnetik berbasis fasa Dy2Fe14B secara intrinsik berpotensi memiliki koersivitas tinggi. Nilai koersivitas magnet permanen, juga ditentukan oleh mikrostrukturnya seperti grain dengan ukuran setara dengan grain berdomain tunggal serta fasa kedua berperan sebagai decoupling agent. Pada penelitian ini dipelajari efek subsitusi parsial atom Dy oleh atom Nd terhadap koersivitas magnet permanen. Komposisi material magnet yang dipelajari adalah berbasis komposisi Sumitomo yaitu Dy15-xNdxFe77B8 (at%) dengan x = 1, 2, 3 dan 5 suatu komposisi yang kaya dengan elemen RE dan boron. Metode sintesis yang diterapkan adalah metode metalurgi serbuk dari alloy yang difabrikasi dengan cara peleburan menggunakan vacuum arc melting furnace. Hasil evaluasi kurva magnetisasi sampel magnet Dy15-xNdxFe77B8 memperlihatkan koersivitas sebesar 1600 kA/m atau 20 kOe dapat dicapai. Nilai koersivitas tersebut menurun dengan bertambahnya fraksi atom Nd. Penurunan koersivitas ini juga diiringi dengan peningkatan nilai remanen. Meskipun loop histeresis yang diperoleh berasal dari loop minor, dapat disimpulkan bahwa peningkatan nilai koersivitas magnet permanen Dy15-xNdxFe77B8 ditentukan oleh fraksi Dy dan ukuran grain. Ukuran grain yang halus cenderung meningkatkan nilai koersivitas magnet, Demikian juga dengan efek subsitusi, semakin besar fraksi atom Dy pada magnet Dy15-xNdxFe77B8, semakin tinggi nilai nilai koersivitasnya. Semakin besar fraksi atom Nd pada magnet Dy15-xNdxFe77B8, semakin besar nilai remanennya.

Neodymium iron boron (NdFeB) magnet is a modern permanent magnet having Nd2Fe14B hard magnetic phase with superior magnetic properties compared to other types of permanent magnet. Such Nd2Fe14B hard magnetic phase is mainly made of iron (Fe), which is abundantly available on earth, which become tha reason why many researchers and industries pay much attentions to the Nd2Fe14B phase. It is known very well that all rare earth elements can form the RE2Fe14B (RE: rare earth) phase. When the RE is dysprosium (Dy), the Dy2Fe14B phase has extremely large the anisotropy field value. Intrinsically, the magnetic materials based on Dy2Fe14B phase would have a high coercivity. The coercivity of permanent magnets is also determined by the microstructure of materials like grains with a size equivalent to a single-domain grain and the second phase which acts as a decoupling agent. In the current research works, the effect of partial substitution of Nd atoms to Dy atoms in Dy2Fe14B magnetic phase on the coercivity of permanent magnets has been investigated. The composition of the magnetic material under studied was based on the so-called Sumitomo composition. A series of Dy15-xNdxFe77B8 (at%) alloys with x = 1, 2, 3 and 5 compositions were fabricated through powder metallurgy processing. The preparation of ingots was carried by melting using a vacuum arc melting furnace. Results of magnetic evaluation of all samples have shown that the highest corcivity achieved from the Dy15-xNdxFe77B8 samples was 1600 kA/m or 20 kOe. The coercivity value decreases with increasing atomic fraction Nd. This decrease in coercivity is also accompanied by an increase in the value of the remanence. Although the obtained hysteresis loops are from minor loops, it can be concluded that the increase in the coercivity of the Dy15-xNdxFe77B8 permanent magnets is determined by the fraction of Dy and the grain size of materials. The fine grain size tends also to increase the coercivity value. The greater the Dy atomic fraction of Dy15-xNdxFe77B8 permanent magnets, the higher the coercivity value. The greater the Nd atomic fraction of Dy15-xNdxFe77B8 permanents, the greater the remanence value."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adimas Habib Iqbal
"Pengaruh unsur logam tanah jarang neodimium terhadap paduan Al-5Zn-0,5Cu diteliti dengan pengamatan mikrostruktur menggunakan mikroskop optik, pengujian Differential Scanning Calorimetry DSC, dan polarisasi siklik. Kadar samarium yang digunakan sebagai variabel adalah 0,1wt, 0,3wt, dan 0,5wt. Pengamatan mikrostruktur dilakukan untuk melihat perubahan ukuran SDAS dan pembentukan presipitat. DSC dilakukan untuk mengidentifikasi transformasi fasa dan proses solidifikasi fasa intermetalik.
Polarisasi siklik dilakukan untuk mengetahui perilaku korosi anoda korban Al-5Zn-0,5Cu-xNd. Kehadiran unsur neodimium dapat memodifikasi bentuk presipitat pada batas butir dan memperpendek panjang SDAS. Penambahan unsur neodimium ke dalam anoda korban Al-5Zn-0,5Cu dapat menurunkan ketahanan korosi sumuran. Selain itu, penambahan neodimium sebanyak 0,1 wt, 0,3 wt, dan 0,5 wt menurunkan potensial coupling baja dari -0,661 V vs SSC menjadi masing-masing -0,884 V vs SSC, -0,754 vs SSC, dan -0,771 V vs SSC.

The effect of addition of neodymium rare earth on Al 5Zn 0.5Cu alloy was investigated with Optical Microscope OM, Differential Scanning Calorimetry DSC, and Cyclic Polarization. The content variable of neodymium tested was 0.1wt, 0.3wt, dan 0.5wt. Observation with OM was conducted to see the changes of the SDAS and the precipitate formation. DSC was used to identify the phase transformation and solidification process of intermetallic phase.
Cyclic Polarization was used to know the corrosion characteristics of Al 5Zn 0.5Cu xNd. The presence of neodymium formed precipitates on the grain boundary which made shorter SDAS. Addition of neodymium as alloying element of Al 5Zn 0.5Cu sacrificial anode may decrease pitting corrosion resistance. In addition, 0.1wt , 0.3wt , dan 0.5wt of neodymium in Al 5Zn 0.5Cu decrease the coupling potential of steel from 0,661 V vs SSC to 0,884 V vs SSC, 0,754 V vs SSC, and 0,771 V vs SSC, respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rininta Triaswinanti
"Bijih besi menjadi salah satu sumber daya mineral yang sangat berpotensial di Indonesia untuk dilakukan proses pengolahan dan diproduksi sehingga menjadi logam mineral yang memiliki nilai guna Proses pengolahan bijih besi sudah banyak dikembangkan dengan cara reduksi langsung maupun reduksi tidak langsung dimana kedua proses tersebut membutuhkan reduktor untuk mereduksi bijih besi menjadi logam murni Reduktor yang digunakan pada proses reduksi bijih besi dalam bentuk padatan seperti batu bara dan kokas maupun dalam bentuk gas seperti gas metana Pada penelitian kali ini dilakukan pengembangan proses reduksi bijih besi menggunakan reduktor biomassa yaitu cangkang kelapa sawit yang merupakan limbah dari hasil perkebunan buah kelapa sawit Dalam penelitian digunakan bijih besi laterit Kalimantan dan cangkang kelapa sawit dari sisa perkebunan di Palangkaraya Kalimantan Tengah Bijih besi direduksi ukurannya hingga membentuk partikel serbuk 18 Tujuan dalam penelitian ini adalah untuk mengetahui pengaruh variabel temperatur reduksi dengan waktu dan rasio massa yang konstan terhadap hasil reduksi bijih besi Variasi temperatur yang diuji dalam penelitian adalah 600oC 700oC 800oC 900oC dan 1 000oC Seluruh sampel diuji dalam waktu 120 menit dan rasio bijih besi dengan cangkang kelapa sawit 1 3 yang dimasukkan ke sebuah krusibel dan perlakuan reduksi langsung dilakukan di dalam muffle furnace Hasil XRD menunjukkan bahwa pada 1 000oC merupakan temperatur optimum dengan waktu reduksi selama 120 menit karena kandungan bijih besi seluruhnya berupa peak Fe metallic tanpa adanya kehadiran peak peak besi oksida lainnya.

Iron ore become one of minerals source that very pottential in Indonesia for process to have result value metallic mineral Iron steel making process have been developed by direct reduction and indirect reduction process which both of them need solid reducing agent for reduction iron ore like coal and coke or gas reduction agent like methane gas In this research it develop renewable reduction iron ore process use biomass reductor palm kernell shell is waste from palm tree plantation The research was conducted laterite ore from Kalimantan and palm kernel shell from residue plantation in Palangkaraya Central Kalimantan Before reduction process is started iron ore must be crushing to reduce particle size forming powder particles with size about 18 The purpose of the research is to determine the effect of reduction temperature with optimum time and mass ratio to result of reduction iron ore Variation of temperature that be examined is 600oC 700oC 800oC 900oC and 1 000oC All of samples is tested in 120 minutes and mass ratio 1 3 for iron ore and palm kernell shell Mixed samples are put in crucible and reduction process take place in muffle furnace XRD results showed that in 1 000oC is optimum temperature during 120 minutes because all composition of iron ore is Fe metallic peaks without other iron oxide peaks."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Sa`Adah
"Indonesia memiliki sejumlah besar deposit bijih laterit, salah satunya dalam bentuk bijih limonit. Namun, bijih limonit jarang digunakan sebagai bahan baku pembuatan feronikel karena konsentrasi Ni relatif rendah (<1,5%) sehingga dianggap tidak menguntungkan. Feronikel umumnya dihasilkan melalui jalur tanur tiup atau tungku putar-tugku busur listrik yang membutuhkan energi yang besar (temperatur 1300-1400°C). Dengan permasalahan tersebut, penelitian ini bertujuan untuk mengolah bijih nikel laterit menjadi feronikel menggunakan suatu metode proses selektif reduksi dengan biaya (energi) yang relatif lebih rendah. Proses reduksi selektif dilakukan menggunakan muffle furnace dengan temperatur rendah dan diikuti pemisahan magnetik basah untuk mendapatkan kembali nikel dalam bentuk logam paduan (feronikel). Untuk mengurangi temperatur reduksi, Na2SO4 sebagai aditif ditambahkan ke dalam proses. Proses ini diharapkan dapat membebaskan nikel dari mineral pengganggunya sehingga akan meningkatkan kadar nikel dalam konsentrat. Proses reduksi selektif dilakukan pada rentang temperatur 950-1150°C, waktu reduksi 60-120 menit, jumlah reduktor 5-15% berat, dan 10% aditif Na2SO4.
Karakterisasi bijih laterit hasil reduksi dilakukan menggunakan X-ray Diffraction (XRD), mikroskop optik dan Scanning Electron Microscope (SEM) yang dilengkapi Energy Dispersive X-ray Spectroscopy (EDS) serta konsentrat feronikel dan tailing diidentifikasi menggunakan X-ray Fluororescene (XRF). Hasil penelitian menunjukkan seiring meningkatnya temperatur dan waktu reduksi, kadar dan perolehan nikel dari bijih nikel yang telah direduksi dengan penambahan aditif Na2SO4 lebih tinggi jika dibandingkan dengan tanpa penambahan aditif. Sedangkan semakin banyak jumlah reduktor yang ditambahkan menyebabkan kadar dan perolehan nikel menurun. Kondisi proses yang ekonomis dan efisien diperoleh pada proses reduksi selektif bijih nikel laterit dengan 10% Na2SO4 pada temperatur 1150oC selama 60 menit dengan penambahan 5% berat reduktor dimana kadar dan perolehan nikelnya adalah 6,1% dan 70,3% dengan kadar dan perolehan besi yang rendah, yaitu 56,18% dan 17,98%. Kehadiran Na2SO4 akan meningkatkan laju reduksi kinetik dan memfasilitasi pembentukan FeS yang dapat menurunkan metalisasi besi dan meningkatkan selektifitas reduksi nikel dan besi sehingga perolehan nikel meningkat, sedangkan perolehan besi menurun.

Indonesia has large amounts of laterite ore deposits, one of them in the form of limonite ore. However, limonite ore is rarely used as raw materials for produce ferronickel, since the concentration of Ni is relatively low 1,5 so it is not considered beneficial. Ferronickel is generally produced through blast furnace or electric arc furnace which required a large amount of energy temperature 1300 ndash 1400 C . With the issues, this research aims to process limonite ore into ferronickel using a selective reduction method with low cost energy . The selective reduction process was carried out in a muffle furnace with lower temperature and followed by wet magnetic separation in order to recover nickel in the form of ferronickel. To reduce the reduction temperature, sodium sulfate as an additive was added to the process. This process is expected can liberate nickel from the impurities minerals so it will increase the nickel grade in the concentrate. The selective reduction process was carried out at temperature range of 950 ndash 1150 C for 60 120 minutes, 5 15 wt. reductant, and 10 wt. additive.
The characterization of reduced ore was performed by using by X ray Diffraction XRD, optical microscope and Scanning Electron Microscope SEM with Energy Dispersive X ray Spectroscopy EDS and ferronickel concentrate was identified by X ray Fluororescene XRF. The results showed that as the temperature and reduction time increases, the nickel grade and recovery of the reduced ore with the addition of Na2SO4 was higher than without the additive. While the more amount of reductant added causes the nickel grade and recovery decrease. The economical and efficient process conditions were obtained in a selective reduction of laterite ore with 10 wt. Na2SO4 at temperature of 1150 C for 60 minutes and 5 wt. reductant with the nickel grade of 6.1 and nickel recovery of 70.3 and low iron grade and recovery 56,18 and 17,98 . The presence of Na2SO4 increase the kinetic reduction rate and facilitate the formation of FeS that can decrease iron metallization and increase the selectivity of nickel and iron reduction thus increase the nickel recovery, while decrease the iron recovery.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risty Hidayanti
"Indonesia memiliki cadangan bijih laterit yang kaya, namun cadangan laterit di Indonesia belum diolah secara maksimal. Hal tersebut terjadi karena proses pemurnian laterit membutuhkan biaya yang besar, hal ini dipicu oleh banyaknya energi yang dibutuhkan serta kerumitan dalam proses pemisahan logam ikutan. Dibutuhkan tahap pra-reduksi agar dapat memaksimalkan proses pemurnian nikel. Salah satu metode pra-reduksi adalah dengan melakukan reduksi karbotermik.
Pada penelitian ini akan dilakukan studi pengaruh variasi temperatur terhadap hasil reduksi karbotermik bijih laterit menggunakan cangkang kelapa sawit sebagai reduktor. Proses reduksi dilakukan dengan memanaskan bijih laterit dan cangkang kelapa sawit dengan perbandingan rasio massa 1:4 selama 60 menit di dalam melting furnace pada variasi temperatur 700oC, 800oC, 900oC dan 1000oC.
Hasil reduksi kemudian dilakukan pengujian XRF dan XRD. Berdasarkan perhitungan recovery, temperatur optimal untuk mereduksi bijih laterit dengan cangkang kelapa sawit adalah 800oC yang menghasilkan kadar NiO sebanyak 2,680.

Indonesia has rich deposit of nickel. However laterite potential in Indonesia has not been treated optimally. This happens because the refining process lateritic costly, it is triggered by the amount of energy required and the complexity of the separation process. It takes the stage of pre reduction to condition the ore to be more easily reduced and increase the metal content so that it can maximize the nickel refining process and minimizing energy usage. One method of pre reduction is to do carbothermic reduction.
This research will study the effect of temperature variation on the results of the carbothermic reduction of laterite ores using palm kernel shells as a reductant. The reduction process is done by heating the lateritic ore 270 mesh and palm kernel shells with a mass ratio of 1 4 for 60 minutes in the melting furnace at temperature variation of 700 C, 800 C, 900 C and 1000 C.
The result of the reduction then tested using XRF and XRD. Based on the calculation of recovery, the optimal temperature for reducing the laterite ore with palm kernel shells for 60 minutes is 800oC, which produce content of NiO as much as 2,680.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cornelius Erick Arifin
"[ABSTRAK
Indonesia adalah Negara yang kaya akan sumber daya alam yang sangat melimpah dan jika cara pemanfaatannya tepat sumber daya alam dapat digunakan untuk meningkatkan kesejahteraan masyarakat Indonesia Penelitian ini merupakan salah satu bentuk riset yang bertujuan untuk memaksimalkan pemakaian sumber daya alam guna menunjang kesejahteraan masyarakat Indonesia Penelitian ini berfokuskan kepada pengembangan penggunaan reduktor pada ekstraksi bijih besi Reduktor yang dipakai pada proses kali ini adalah biomass yaitu ampas tebu mengingat Indonesia sebagai Negara tropis yang kaya akan tebu Pada penelitian kali dilakukan proses reduksi langsung bijih besi menggunakan ampas tebu sebagai reduktor pada muffle furnace Bijih besi yang digunakan adalah bijih besi laterit Kalimantan dengan ukuran 1 2 cm Hal yang ingin dicapai pada penelitian ini adalah mengetahui pengaruh temperatur oeprasi pada proses reduksi dengan temperatur operasi 700oC 800oC 900oC dan 1000oC Penelitian ini menggunakan perbandingan rasio massa bijih besi dan ampas tebu yaitu 1 2 pada temperatur operasi 700oC 800oC 900oC dan 1000oC dengan waktu proses reduksi 30 menit Bijih besi dicampur dengan ampas tebu dalam krusibel dan kemudian dimasukkan dalam furnace Hasil XRD menujukkan bahwa pada variabel temperatur 1000oC dengan waktu reduksi 30 menit dan dengan rasio massa 1 2 membentuk senyawa FeO dengan intensitas yang paling tinggi dibanding variabel lainnya
ABSTRACT
Indonesia is a country that have many natural resources if we can find out how to utilized it properly To find out how can we utilized this mineral properly we rsquo ve done some research and development activities This study focuses on the development of the reductor use for iron ore reduction process Reducing agents used in this process is bagasse considering Indonesia is tropical country that also rich in sugar cane In this study iron ore is processed by direct reduction method using bagasse as a reducing agent in the muffle furnace The iron ore is laterite ore from Kalimantan with size about 1 2 cm The research objective is to determine the effect of temperature operation at 700oC 800oC 900oC and 1000oC This study uses the mass ratio of iron ore and bagasse 1 2 at 700oC 800oC 900oC and 1000oC on 30 minutes Iron ore is mixed with bagasse in the crucible and then was put in a muffle furnace XRD results showed that the variable temperature operation at 1000 C with mass ratio iron ore and bagasse 1 2 on 30 minutes formed FeO with the highest intensity compared to other variables , Indonesia is a country that have many natural resources if we can find out how to utilized it properly To find out how can we utilized this mineral properly we rsquo ve done some research and development activities This study focuses on the development of the reductor use for iron ore reduction process Reducing agents used in this process is bagasse considering Indonesia is tropical country that also rich in sugar cane In this study iron ore is processed by direct reduction method using bagasse as a reducing agent in the muffle furnace The iron ore is laterite ore from Kalimantan with size about 1 2 cm The research objective is to determine the effect of temperature operation at 700oC 800oC 900oC and 1000oC This study uses the mass ratio of iron ore and bagasse 1 2 at 700oC 800oC 900oC and 1000oC on 30 minutes Iron ore is mixed with bagasse in the crucible and then was put in a muffle furnace XRD results showed that the variable temperature operation at 1000 C with mass ratio iron ore and bagasse 1 2 on 30 minutes formed FeO with the highest intensity compared to other variables ]"
Fakultas Teknik Universitas Indonesia, 2015
S62494
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irma Rahma Yanti
"Indonesia merupakan negara dengan cadangan sumber daya alam yang melimpah pada bidang mineral salah satuya yaitu bijih besi. Karena itu dibutuhkan proses yang memiliki optimasi yang tinggi untuk mengolah bijih besi tersebut. Salah satunya itu dengan proses reduksi langsung. Pada penelitian kali ini dilakukan proses reduksi langsung bijih besi dengan menggunakan cangkang kelapa sawit sebagai reduktornya sebagai pengganti dari batubara. Bijih besi yang digunakan merupakan bijih besi laterit dari Kalimantan.
Hal yang ingin dicapai dalam penelitian ini adalah mengetahui pengaruh rasio massa yang divariasikan antara bijih besi dengan cangkang kelapa sawit, dengan besar variasi rasio yaitu 1:3, 1:2, 1:1, 2:1, dan 3:1 pada temperatur 10000C dengan waktu tahan selama 2 jam. Bijih besi tersebut dihancurkan terlebih dahulu lalu langsung dicampurkan dengan cangkang kelapa sawit. Hasil XRD menunjukan bahwa rasio 1:3 dengan cangkang kelapa sawit yang lebih banyak akan terbentuk Fe dengan intensitas tertinggi.

Indonesia is a country which has abundant natural recources in mineral sector especially in iron ore. Therefore we need a process that has high optimization to change the ore into iron. And the process is direct reduction. In this research, direct reduction was done by using palm kernel shell as the reductor as a replacement of coal. Iron ore that used in this research was Laterite from Borneo.
The aim of this research is to know the effect of variation between iron ore and palm kernel shell, and the ratio are 1:3, 1:2, 1:1, 2:1, and 3:1 in 10000C for 2 hours. That iron has crushed before then directly mix with the palm kernel shell. The result show that in 1:3 ratio will form Fe with highest intensity.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S70113
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elsa Septiyana Ratuarrum
"Indonesia mendeklarasikan target untuk mewujudkan net zero emission pada tahun 2060 mendatang. Banyak upaya yang telah dilakukan oleh pemerintah untuk mendorong ketercapaian target tersebut. Namun, beberapa sektor khususnya sektor industri masih menyumbangkan sebagian besar gas emisi-nya ke udara akibat dari limbah reaksi pembakaran dengan batubara. Amonia sebagai salah satu hydrogen carrier memiliki peluang dan potensi untuk dikembangkan menjadi solusi alternatif pengganti reduktor pembakaran batubara di sektor industri. Penelitian ini mengeksplorasi proses reduksi nikel laterit sintetik menggunakan gas amonia sebagai reduktor dan menganalisa efek variasi temperatur dan rasio reduktor terhadap fasa dan mikrostruktur. Nikel laterit sintetik diolah dari campuran oksida Fe2O3, NiO, SiO2, Al2O3, dan MgO dan dicampur dalam ball-milling yang setelahnya direduksi di dalam tube furnace. Penelitian ini menggunakan variasi temperatur di rentang 600-9000C serta rasio reduktor 1:1, 1:2, 1:3, dan 1:4. Waktu reduksi dilakukan selama 16-66 menit. Pengujian yang dilakukan diantaranya adalah XRD, OM, dan SEM-EDS. Hasil dari penelitian ini menunjukkan bahwa temperatur 9000C dengan rasio reduktor 1:4 merupakan kondisi yang optimal untuk mereduksi logam dari nikel laterit menggunakan reduktor amonia dengan persentase perolehan Fe sebesar 23% dan paduan FeNi sebesar 5%.

Indonesia has declared a target to achieve net zero emissions by 2060. Many efforts have been made by the government to facilitate the achievement of this target. However, certain sectors, particularly the industrial sector, still contribute significantly to air emissions due to combustion waste reactions with coal. Ammonia, as a hydrogen carrier, has the opportunity and potential to be developed as an alternative solution to replace coal combustion reducers in the industrial sector. This research explores the synthetic reduction process of nickel laterite using ammonia gas as a reducer and analyzes the effects of temperature and reducer ratio variations on phase and microstructure. Synthetic nickel laterite is processed from a mixture of Fe2O3, NiO, SiO2, Al2O3, and MgO oxides, mixed in a ball-milling process, and subsequently reduced in a tube furnace. The study employs temperature variations ranging from 600-900°C and reducer ratios of 1:1, 1:2, 1:3, and 1:4. Reduction times range from 16 to 66 minutes. Tests conducted include XRD, OM, and SEM-EDS analyses. The results indicate that a temperature of 900°C with a reducer ratio of 1:4 is the optimal condition for reducing metals from nickel laterite using ammonia reducer, achieving a 23% yield of Fe and a 5% FeNi alloy."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>