Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 48833 dokumen yang sesuai dengan query
cover
Elsa Ramayeni
"ABSTRAK
Sintesis Hydrogenated FAME H-FAME menggunakan katalis NiMo/Karbon adalah salah satu metode untuk meningkatkan stabilitas oksidasi Biosolar. Biosolar merupakan bahan bakar mesin diesel berupa campuran biodiesel FAME dengan solar, oleh karena itu stabilitas oksidasi Biosolar sangat dipengaruhi oleh komponen biodiesel. Selama proses penyimpanan, biodiesel dapat terdegradasi sehingga tidak memenuhi standar yang berlaku, hal ini karena kestabilan oksidasi yang rendah. Reaksi hidrogenasi parsial akan memecah ikatan tak jenuh pada FAME Fatty Acid Methyl Ester yang merupakan komponen kunci penentuan sifat oksidatif. Perubahan komposisi FAME dengan reaksi hidrogenasi parsial diprediksi mengubah stabilitas oksidasi sehingga tidak menimbulkan deposit yang dapat merusak sistem injeksi mesin diesel, sistem pompa, dan tanki penyimpanan. Sumber biodiesel berasal dari minyak nabati Kemiri Sunan. Komoditas minyak Kemiri Sunan merupakan yang terbesar diantara produksi minyak nabati lainnya, selain itu minyak Kemiri Sunan memiliki FFA Free Fatty Acid yang rendah

ABSTRACT
Synthesis of Hydrogenated FAME H FAME using NiMo Carbon catalyst is one of methods to increase oxidation stability of Biosolar. Biosolar is a trademark of engine diesel fuel, which is a mixture of biodiesel FAME and petroleum diesel Solar , so its oxidation stability can be affected by the biodiesel component. During the storage process, biodiesel can be degraded, so it does not comply with applicable standards, it is because biodiesel has low oxidation stability. Partially hydrogenation reactions that would break the unsaturated bonds of FAME, which is the key component of determining the oxidative properties. Changes in the composition of FAME Fatty Acid Methyl Ester with partially hydrogenation reaction is predicted to change the oxidation stability so it does not produce deposits that can damaged the diesel engine injection systems, pumping systems and storage tanks. Sources of biodiesel derived from Kemiri Sunan oils, the oil commodity of Kemiri Sunan is the largest among production of other vegetable oils. Kemiri Sunan oils have a FFA Free Fatty Acid are low "
2017
S67188
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Jamaludin
"ABSTRACT
Pemerintah Indonesia menargetkan pada tahun 2020 konsentrasi biodiesel dalam campuran bahan bakar minyak jenis solar Biosolar harus mencapai angka 30. Namun, untuk saat ini konsentrasi biodiesel yang lebih dari 20 bersifat tidak stabil dan mudah teroksidasi. Untuk meningkatkan stabilitas oksidasi perlu dilakukan modifikasi komponen biodiesel. Salah satu caranya yaitu dengan reaksi hidrogenasi parsial. Hidrogenasi parsial memecah sebagian ikatan tak jenuh pada biodiesel yang merupakan komponen kunci penentuan sifat oksidatif. Hidrogenasi parsial dengan kondisi operasi tekanan 10 bar, suhu 150 OC, rasio katalis 5 berhasil menurunkan bilangan iodin yang semula 113,35 menjadi 101,54 dengan stabilitas oksidasi H-FAME sebesar 880 menit. Katalis yang digunakan untuk Hidrogenasi Parsial adalah NiMo/Zeolit.

ABSTRACT
Indonesian Government targets that by 2020 the concentration of biodiesel in diesel fuel mix Biosolar have to reach 30. However, the current issue is that more than 20 biodiesel concentration is unstable and easily oxidized. To improve oxidation stability it is necessary to modify the biodiesel component. One way is by partial hydrogenation reaction. Partial hydrogenation breaks up some unsaturated bonds in biodiesel which is a key component of the determination of oxidative properties. Partial Hydrogenation at 10 bar, 150 oC, and catalyst ratio 5 can decrease iodine number of unsaturated bond from 113,35 to 101,54 g I2 100g with oxidation stability of H FAME for 880 minutes. The catalyst that used in Partial Hydrogenation is NiMo Zeolith."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teguh Budi Santoso
"Biodiesel merupakan bahan bakar alternatif yang aplikasinya pada mesin masih terkendala karena memiliki keterbatasan diantaranya stabilitas oksidasi yang rendah sehingga berpengaruh kepada kualitas penyimpanan biodiesel. Salah satu solusi untuk mengatasi masalah ini adalah dengan proses hidrogenasi parsial. Pada proses hidrogenasi parsial, FAME direaksikan dengan hidrogen dan katalis untuk memecah ikatan tak jenuh. Penggunaan katalis nikel yang disangga pada alumina (Ni/Al2O3) lebih menguntungkan karena harganya yang murah dan mempunyai aktivitas katalitik yang tinggi. Reaksi hidrogenasi parsial dilakukan pada reaktor trickle bed dengan hidrogen pada fase gas, katalis pada fase padat, dan FAME pada fase cair. Penggunaan reaktor jenis ini memiliki kelebihan yaitu jatuh tekanan yang rendah (pressure drop), kehilangan katalis yang rendah, tidak memiliki elemen yang bergerak, dan biaya perawatan yang rendah. Penelitian ini bertujuan untuk merancang sistem reaktor tiga fasa dan uji kinerja reaktor trickle bed untuk hidrogenasi parsial Biodiesel. Hasil penelitian menunjukkan bahwa reaktor trickle bed berhasil memecah ikatan tak jenuh ganda (C19:2) pada rantai ikatan FAME menjadi ikatan tak jenuh tunggal (C19:1) dan ikatan jenuh (C19:0). Konversi biodiesel terbesar (8,93 %) diperoleh dengan kondisi operasi: tekanan hidrogen 7 bar, laju alir hidrogen 250 ml/menit dan laju alir biodiesel 0,667 ml/menit.

Biodiesel is an alternative fuel whose application to the engine is still constrained because it has limitations including low oxidation stability which affects the quality of biodiesel storage. One solution to overcome this problem is the partial hydrogenation. In the partial hydrogenation, FAME is reacted with hydrogen and a catalyst to break down unsaturated bonds. The use of nickel catalyst supported on alumina (Ni/Al2O3) is more advantageous because the price is low and has high catalytic activity. Partial hydrogenation reactions were carried out on trickle bed reactor. The use of this type of reactor has advantages such as low catalyst loss, no moving elements, and low maintenance costs. The research investigated partial hydrogenation of fatty acid methyl esters in a trickle-bed reactor. The result showed that the partial hydrogenation of polyunsaturated FAMEs in a trickle bed reactor had break down the polyunsaturated bond (C19:2) on the FAME into a monounsaturated bond (C19:1) and saturated bond (C19:0) and the best conversion of polyunsaturated FAMEs is 8.93% achieved with reaction condition: H2 pressure 7 bar, H2 flow rate 250 ml/min and biodiesel flow rate 0.667 ml/min."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53230
UI - Tesis Membership  Universitas Indonesia Library
cover
Niken Atmi Sutrisniningrum
"Kurangnya stabilitas oksidasi biodiesel menyebabkan banyak kendala dalam pemanfaatannya. Untuk mengatasi hal ini, stabilitas oksidasi biodiesel perlu ditingkatkan melalui proses hidrogenasi parsial yang dapat dilakukan dalam reaktor multifasa. Reaktor Slurry Bubble Column, salah satu jenis reaktor multifasa, yang telah banyak digunakan dalam proses hydrotreating, berpotensi untuk menyelenggarakan proses ini dalam sistem kontinyu. Akan tetapi, belum ada penelitian yang mempelajari penggunaan reaktor Slurry Bubble Column untuk mengubah biodiesel menjadi H-FAME melalui proses hidrogenasi parsial. Oleh karena itu, tujuan penelitian adalah untuk mengembangkan model matematis reaktor Slurry Bubble Column 2 dimensi axis-symmetric untuk proses hidrogenasi parsial. Model yang akan dibangun didasarkan pada persamaan kontinuitas untuk transport massa dan transport energi dengan modifikasi koefisien dispersi, juga penurunan tekanan dan distribusi katalis di sepanjang sumbu reaktor dan disimulasikan pada COMSOL MultiPhysic 5.4. Dalam penelitian ini, digunakan model kasus dasar reaktor kolom berbentuk silinder vertikal dua dimensi. Reaktor ini beroperasi pada 500 kPa, suhu saluran masuk 150 ° C. Umpan terdiri dari metil linoleat murni yang mewakili biodiesel dan hidrogen murni. Kecepatan gas masuk adalah 0,02 m/s, dan kecepatan cairan masuk adalah 0,00025 m/s. Hasil simulasi menunjukkan bahwa konversi metil-linoleat adalah 76,98%, hasil H-FAME adalah 54,8% berat, dengan kemurnian 54,45% berat.

Biodiesel`s lacks of oxidation stability presents many constraints in its utilization. To enhance this property, biodiesel needs to be upgraded through partial hydrogenation process which can be carried out in a multiphase reactor. Slurry bubble column, a type of multiphase reactor, which has been widely used in hydro-treating process, has potential to perform this process in a continuous system. However, no previous studies had shown the usage of slurry bubble column for upgrading biodiesel to H-FAME via partial hydrogenation process. Therefore, this study purpose was to develop a two-dimensional axis-symmetric reactor model for this process. The model was based on equation of continuity on mass transport and energy transport with dispersion coefficient, also pressure drop and catalyst distribution along the reactor axis and simulated on COMSOL MultiPhysic 5.4. In this study, a base case model, two-dimensional, axis-symmetry, vertical cylinder-shape slurry bubble column reactor was used. This reactor operated in 500 kPa, inlet temperature of 150 °C. The feed consisted of pure methyl-linoleate as biodiesel representation and pure hydrogen. The inlet gas velocity was 0.02 m/s, and the inlet liquid velocity was 0.00025 m/s. Simulation results show that the conversion of methyl-linoleate was 76,98%, H-FAME yield was 54.8% wt, with 54.45% wt purity. Keywords: Biodiesel, Partial Hydrogenation, H-FAME, Slurry Bubble Column Reactor, dispersion model, COMSOL, multiphase, Methyl Linoleate."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T52941
UI - Tesis Membership  Universitas Indonesia Library
cover
Arya Irfandika
"Penggunaan biodiesel sebagai campuran solar di Indonesia terus bertambah yang hingga 20 pada saat ini karena keberhasilan dan manfaatnya. Sehingga pada tahun 2015, Menteri ESDM mengeluarkan mandatori tentang pencampuran biodiesel pada bahan bakar solar pada angka 30 untuk tahun 2020 hingga seterusnya. Pencapaian mandatori ini membutuhkan biodiesel dengan tingkat kestabilan yang lebih baik dan alternatif sumber minyak nabati non-pangan lain apabila kebutuhan minyak kelapa sawit untuk bahan bakar tidak dapat dipenuhi karena dibutuhkan sebagai bahan pangan. Hydrogenated Fatty Acid Methyl Ester H-FAME memiliki tingkat kestabilan oksidasi yang lebih baik dibandingkan dengan biodiesel saat ini, sehingga berpotensi untuk memenuhi mandatori tersebut. Berdasarkan penelitian ini, diperoleh bahwa kondisi operasi optimal pembuatan H-FAME relatif rendah, yaitu pada suhu 100-140 oC dan tekanan 6-10 bar. Selain itu, diperoleh juga bahwa 3 jenis alternatif minyak nabati non-pangan utama yang paling baik untuk menggantikan minyak kelapa sawit sebagai bahan bakar di Indonesia adalah minyak kemiri sunan, kosambi dan nyamplung secara berurutan. Pada saat ini, produksi H-FAME baru dilakukan dalam skala pilot plant, sehingga penelitian ini dapat digunakan sebagai acuan untuk scale-up produksi H-FAME ke skala industri di Indonesia.

The utilization of biodiesel as a mixture with the diesel fuel in Indonesia keeps increasing until 20 because of its success and benefits. That is why in 2015, the Minister of Energy and Mineral Resources made a regulation about the 30 biodiesel blending concentration in bio solar fuel for 2020 and the following year. This mandatory needs a better oxidation stability biodiesel to be achieved and non edible vegetable oil alternative to replace palm oil when the palm oil demand for biofuel source surpass the supply because of palm oil usage in food sector. Hydrogenated Fatty Acid Methyl Ester H FAME has a better oxidation stability compared to current biodiesel, with a potential to fulfill the mandatory. Based from this research, it is known that the operating conditions of H FAME manufacture is relatively low, which are 100 140 oC and 6 10 bar. Moreover, it is known that the top 3 non edible oil that could replace the palm oil as biofuel source in Indonesia are kemiri sunan, kosambi and nyamplung oil respectively. Until now, the production capacity of H FAME is still on a pilot plant scale, so this research can be used as a reference of H FAME production to scale up into industrial scale in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67302
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan Ryan Pratama
"Tujuan dari penelitian ini adalah untuk mengembangkan model dua dimensi axisimmetri untuk reaksi hidrogenasi FAME menjadi H-FAME, dan untuk mendapatkan hubungan antara parameter proses dan geometri dengan kinetika reaksi dari reaksi hidrogenasi dalam reactor slurry bubble column. Penelitian ini diawali dengan studi literatur dari biodiesel, kinetika hidrogenasi, reaktor slurry bubble column dan pemodelan. Model ditentukan dan dikembangkan untuk melakukan simulasi. Model ini akan diverifikasi untuk memeriksa konvergensi model, hasil dari simulasi ini kemudian dianalisa. Model matematis yang dipertimbangkan adalah neraca momentum, neraca massa fasa cair, fasa gas dan fasa padat dan neraca energi. Hasil yang diperoleh adalah suatu model slurry bubble column reactor berbentuk silinder tegak dengan ukuran diameter 2.68 m dan tinggi 7.14 m, dengan kondisi operasi: tekanan gas masuk 5 atm, suhu umpan 400 K, kecepatan superfisial 0.01 m/s dan loading katalis 0.2 kg/m3. Dari hasil simulasi kasus dasar, ditemukan bahwa konversi cis-metil oleat mencapai 86,3, hasil perolehan metil stearat mencapai 89,4, dan kemurnian metil stearat mencapai 45,8.

The purpose of this research is to develop a two dimensional axisymmetric model for the hydrogenation reaction of FAME into H FAME and to obtain the relations between process and geometric parameters with reaction kinetics of hydrogenation reaction inside slurry bubble column reactor. The research begins with literature study of biodiesel, hydrogenation kinetics, slurry bubble column reactor and modelling. The model is then determined and developed to perform simulation. Model will be verified to check the model convergence, the simulation result is then analyzed. Mathematical models considered are momentum balance, mass balance liquid phase, gas phase and solid phase and energy balance. The result obtained is a vertical slurry bubble column reactor model with a diameter of 2.68 m and height of 7.14 m, with operating conditions inlet gas pressure 5 atm, feed temperature 400 K, superficial velocity 0.01 m and loading catalyst 0.2 kg m3. From the base case simulation results, it was found that the conversion of cis methyl oleate reached 86.3, yield of methyl stearate reached 89.4, and purity of methyl stearate reached 45.8.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risya Utaviani Putri
"ABSTRAK
Green diesel merupakan bahan bakar nabati generasi kedua yang memiliki potensi untuk menjawab kebutuhan energi baik dalam negeri maupun dunia. Proses yang digunakan untuk memproduksi green diesel adalah hidrolisis sebagai pre-treatment dan hidrodeoksigenasi menggunakan katalis NiMo/Al2O3. Hidrolisis akan mengubah trigliserida pada bahan baku, yaitu minyak jelantah menjadi free fatty acid FFA yang selanjutnya dikonversi menjadi green diesel melalui hidrodeoksigenasi. Hidrolisis minyak jelantah dilakukan pada suhu 200oC dan tekanan 16 bar dengan rasio volume air dan minyak sebesar 1:1. Waktu reaksi divariasikan dari 1 hingga 3 jam. Kondisi operasi optimum hidrolisis, yaitu pada waktu 3 jam mampu menghasilkan FFA sebanyak 73,89 . Untuk proses hidrodeoksigenasi dilakukan variasi kondisi operasi, yaitu pada suhu 375oC dan tekanan 12 bar yang dapat menghasilkan green diesel dengan konversi 80,24 , selektivitas 53,37 , dan yield 19,26 , serta pada suhu 400oC dan 15 bar yang dapat menghasilkan green diesel dengan konversi 82,15 selektivitas 69,58 , dan yield 68,87 .

ABSTRACT
Green diesel is a second generation of biofuel that has a potential to answer the energy needs either in Indonesia or in the world. The process used to produce green diesel are hydrolysis as a pre treatment and hydrodeoxygenation by using NiMo Al2O3 catalyst. Hydrolysis will change the triglycerides in the raw material, which is waste cooking oil into free fatty acid FFA and then converted into green diesel through hydrodeoxygenation. Hydrolysis of waste cooking oil carried out at temperature of 200oC and pressure of 16 with water and oil volume ratio of 1 1. Time is varied from 1 to 3 hours. The optimum condition of hydrolysis, which is at 3 hours can produce FFA as much as 73.89 . For hydrodeoxygenation, variations in operating condition used are 375oC with pressure of 12 bar that can produce green diesel with conversion of 80.24 , selectivity of 53.37 , and yield of 19.26 , also 400oC with pressure of 15 bar that can produce green diesel with conversion of 82.15 , selectivity of 69.58 , and yield of 68.87 . "
2017
S67176
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nathasya Pamata
"Dewasa ini, biodiesel hadir sebagai bakar alternatif yang ramah lingkungan dan dapat diperbaharui. Pada penelitian ini, dilakukan sintesis biodiesel dari minyak biji kemiri (Aleuritus moluccana) hasil ekstraksi dengan metode ultrasonokimia. Metode ultrasonokimia menawarkan cara alternatif dalam usaha untuk meningkatkan efektifitas reaksi transesterifikasi (sintesis biodiesel) antara minyak dengan metanol. Untuk mendapatkan hasil yang lebih optimal, juga dilakukan optimasi kondisi reaksi transesterifikasi dengan memvariasikan beberapa faktor yang mempengaruhi reaksi transesterifikasi seperti perbandingan mol minyak & metanol, jumlah katalis, serta waktu & suhu reaksi. Dari percobaan, didapatkan kondisi optimal sintesis biodiesel dari minyak biji kemiri adalah pada penggunaan mol minyak : mol metanol = 1:9, katalis KOH 1% berat minyak, waktu reaksi 40 menit pada suhu 37oC, dimana konversi minyak biji kemiri menjadi metil ester mencapai 89,24 %."
Depok: Universitas Indonesia, 2008
S30371
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Farizan
"

Transesterifikasi adalah reaksi kimia yang digunakan untuk mengubah minyak hewani menjadi biodiesel yang dapat digunakan. Pada penelitian ini, bahan bakar biodiesel disintesis dari lemak sapi dalam reaktor menggunakan katalis CaO yang disintesis dari cangkang telur bebek. Katalis CaO berbasis limbah disintesis dari cangkang telur bebek melalui proses kalsinasi pada suhu 900 OC selama 2 jam. Transesterifikasi dilakukan pada suhu 55 OC pada 6 sampel dengan variasi penggunaan jumlah katalis (1.5 wt%, 6.5 wt%, dan 10 wt%) serta variasi katalis CaO komersial dan limbah. Katalis yang disintesis dari cangkang telur itik menghasilkan kadar Kalsium Oksida (CaO) sebesar 93.2%. Hasil pengujian sampel terbaik diperoleh untuk biodiesel dengan katalis 6.5% berbahan dasar limbah dan 10% katalis komersial. Untuk biodiesel dengan katalis berbasis limbah 6.5%, rendemen 90.75%, densitas 855.1 kg/m3, viskositas 5.73 mm2/cst, keasaman 1.69 mg-KOH/g, dan bilangan yodium 30.87 g-I2/100g. Untuk biodiesel dengan katalis berbasis limbah 10%, rendemen 90.81%, densitas 860.5 kg/m3, viskositas 6.52 mm2/cst, keasaman 2.03 mg-KOH/g, dan bilangan yodium 27.51 g-I2/100g. Angka keasaman standar tidak tercapai dimana maksimumnya adalah 0.5 mg-KOH/g.


Transesterification is a chemical reaction used to convert animal oils into usable biodiesel. In this study, biodiesel fuel was synthesized from beef tallow in a reactor using a CaO catalyst which also synthesized from duck eggshells. Waste-based CaO catalyst synthesized from duck eggshells through a calcination process at 900 OC for 2 hours. Transesterification carried out at a temperature of 55 OC on 6 samples with variations in the use of the amount of catalyst (1.5 wt%, 6.5 wt%, and 10 wt%) as well as variations of commercial and waste based CaO catalysts. The catalyst synthesized from duck eggshells obtained a yield of 93.2% amount of Calcium Oxide (CaO). The synthesized biodiesel also tested for its chemical and physical properties to fulfill the Indonesian National Standard (SNI). The best sample test results were obtained for biodiesel with 6.5% catalyst from waste-based and 10% catalyst from commercial. For biodiesel with 6.5% waste-based catalyst, 90.75% yield, 855.1 kg/m3 density, 5.73 mm2/cst viscosity, 1.69 mg-KOH/g acidity, and 30.87 g-I2/100g iodine number. For biodiesel with 10% waste-based catalyst, 90.81% yield, 860.5 kg/m3 density, 6.52 mm2/cst viscosity, 2.03 mg-KOH/g acidity, and 27.51 g-I2/100g iodine number. The standard acidity number is not reached where the maximum is 0.5 mg-KOH/g.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Yubaidah
"Tujuan penelitian ini yang pertama adalah untuk mengetahui komposisi campuran biodiesel sawit-jatropha-castor yang terbaik dari segi kualitas dengan cara mengoptimalkan beberapa parameter kunci karakteristik kimia fisik seperti stabilitas oksidasi, viskositas dan bilangan setana. Karena bahan baku biodiesel Indonesia adalah sawit yang merupakan bahan pangan, sehingga perlu dicampur dengan bahan non pangan agar ketersediaannya terjamin. Selain itu juga untuk memperbaiki cold flow properties dari biodiesel sawit.
Dan tujuan yang kedua adalah untuk mengetahui pengaruh stabilitas oksidasi biodiesel dan komposisi asam lemak terhadap emisi gas buang yang dihasilkan. Pengujian stabilitas oksidasi dilakukan dengan metode accelerated oxidation stability test dengan bahan baku biodiesel sawit, biodiesel jatropha dan biodiesel castor.
Dari hasil penelitian diperoleh komposisi yang terbaik untuk campuran sawit-jatropha adalah untuk 60 - 100% biodiesel sawit. Dimana stabilitas oksidasinya masih memenuhi syarat EN 14214 yaitu minimum 6 jam. Dengan pemakaian biodiesel emisi HC, CO, NOx dan smoke yang dihasilkan menunjukkan kecenderungan untuk turun.

This research has two goals. The first is study of the blending of palm-jatrophacastor biodiesel to get the best quality key properties characteristics such as oxidation stability, viscosity and cetane number. Due to Indonesian feedstock biodiesel is palm edible oil, so the interest in using jatropha curcas and ricinus communis (castor oil) as feedstock for the production of biodiesel and blend with palm biodiesel. The benefit of jatropha and castor biodiesel to increase cold flow properties of palm biodiesel.
The second goal is to study oxidation stability and fatty acid effects chain lenght and number of double bond on emission NOx, Carbon Monoxide, Hydro Carbon and smoke, that produced on biodiesel combustion process. The oxidation test had been controlled by accelerated conditions on palm?jatropha biodiesel blend.
The result showed that the optimum quality obtainable at 60% until 100% of palm composition. Compared to the diesel fuel, biodiesel showed lower NOx, smoke and hydrocarbon emission. And the CO emission is slightly reduced.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T25964
UI - Tesis Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>