Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 69884 dokumen yang sesuai dengan query
cover
Agredo Mesakh Fajar
"Pada beberapa tahun terakhir ini, kebakaran hutan menjadi kejadian yang semakin parah dan menyebabkan korban serta merugikan banyak sekali masyarakat sekitar hutan yang terbakar. Penelitian ini mengimplementasikan sistem jaringan sensor nirkabel dengan menggunakan protokol 802.15.4 zigbee dengan perangkat Arduino Uno Nano. Dalam penelitian ini perangkat yang digunakan untuk mengimplementasian protokol 802.15.4 adalah perangkat XBee dengan versi series 2. Selain itu perangkat sensor yang digunakan adalah DHT-22 yang berfungsi sebagai sensor kelembapan dan suhu dan juga sensor MQ-2 yang berfungsi sebagai monitor pemantau konsentrasi asap di udara.
Penelitian ini akan memantau lingkungan dimana sensor diletakkan, kondisi lingkungan yang dipantau adalah suhu udara, tingkat kelembapan udara dan juga konsentrasi asap pada udara. Dalam penelitian ini akan dianalisis kualitas dari sistem ini. Dalam proses pengiriman data didapatkan sistem ini memiliki tingkat akurasi yang lebih tinggi jika diimplementasikan pada kondisi LOS Line of Sight dengan tingkat akurasi 90,40 dibanding NLOS Non Line of Sight yang sebesar 89,60 . Sistem ini lebih sedikit mengkonsumsi daya pada kondisi LOS Line of Sight dengan perbandingan perbedaan lama waktu baterai dapat bertahan yaitu 25 detik untuk interval 5 detik, 58 detik untuk interval 10 detik dan 77 detik untuk interval 20 detik.

n recent years, forest fires have become increasingly severe and cause casualties and harm many communities around burning forests. This research implements wireless sensor network system using 802.15.4 zigbee protocol with Arduino Uno Nano device. In this study the device used to implement the 802.15.4 protocol is the XBee device with the 2nd version of the series. In addition, the sensor device used is DHT 22 that serves as a humidity sensor and temperature and also MQ 2 sensor that serves as a smoke concentration monitoring monitor on the air.
This study will monitor the environment in which the sensors are laid, the monitored environmental conditions are air temperature, humidity level and also airborne smoke concentration. In this research will be analyzed the quality of this system. In the process of data transmission obtained this system has a higher level of accuracy if implemented in LOS Line of Sight with an accuracy of 90.40 compared to NLOS Non Line of Sight of 89.60 and also for power consumption. This system consumes less power under LOS Line of Sight conditions with comparison of the length of time the battery can last for 25 seconds for 5 seconds, 58 seconds for 10 second intervals and 77 seconds for 20 second intervals.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desy Dwi Purnomo
"Kesehatan adalah bagian penting kehidupan manusia yang dikenal dalam dunia kesehatan sebagai vital signs yaitu tekanan darah, suhu badan, tingkat pernapasan, denyut nadi. Perkembangan teknologi sensor, mikrokontroler, perangkat lunak pengolahan data, telekomunikasi (komunikasi nirkabel, internet dan smartphone), sudah dimanfaatkan untuk meningkatkan kualitas hidup manusia. Sebuah sistem pemantau kesehatan dibuat untuk memantau kondisi dari kesehatan manusia sehingga pasien dan ahli kesehatan tidak harus bertemu secara langsung tetapi bisa saling berhubungan menggunakan internet. Teknologi komunikasi nirkabel yang telah digunakan antara lain ZigBee, Xbee, Bluetooth, WLAN untuk transfer data hasil ukur sensor ke sebuah sistem penerima baik berupa PC lokal atau smartphone serta sistem server database yang terhubung dengan internet sehingga bisa diakses dari manapun selama masih ada koneksi internet.
Pada tesis ini, penulis mengusulkan rancang bangun sistem pemantauan denyut nadi dan suhu tubuh manusia yang portabel dimana data hasil ukur dapat diakses melalui web secara online dan android smartphone. Sistem pemantau ini terdiri dari sistem pengirim yang menggabungkan sensor nadi (Finger Sensor), sensor suhu, mikrokontroler Arduino , Mini LCD, memori SD Card, WiFi (2,4 GHz) dan sistem penerima yang terdiri dari sistem server database menggunakan Hosting server dan android smartphone dengan aplikasi Java. Pengujian dilakukan dengan membandingkan alat ini dengan OMRON, EKG,Thermometer dan menggunakan akses SSID WiFi berbeda-beda. Error alat dibandingkan dengan OMRON 2,3%, EKG 1,39%, Thermometer Digital 2%. Delay time sistem masih >1detik sehingga harus dikembangkan lebib lanjut untuk perbaikan delay time agar bisa disebut sebagai instrument realtime.

Health is an important part of human life which is well known in the medical world as vital signs ie. blood pressure, body temperature, respiration rate, pulse rate/heart rate. The Improvement technology in sensor ,microcontrollers, data processing software, telecommunications (wireless communication, internet and smartphones), has been utilized to improve the quality of human life. A health monitoring system created to monitor the status of human health so that patients and health practitioners should not meet in person, but can communicate using the Internet. Wireless communication technology that has been used ie. ZigBee, XBee, Bluetooth, WLAN for transfering data from the sensor system to a receiver system either local PC or smartphone, and the system database server connected to the Internet that can be accessed from anywhere as long as internet is available.
In this thesis, the author proposed the design of portable pulse rate and human body temperature monitoring system which measuring data can be accessed via web online and android smartphone.. This monitoring system consists of a sender system that combines a pulse sensor (Finger Sensor), temperature sensors, Arduino microcontroller, Mini LCD, SD Memory Card, WiFi (2.4 GHz) and a receiver system that consists of a system using a database server using Hosting server and android smartphone with Java applications. Validation is done by comparing this tool with OMRON, ECG, Thermometer and also using different SSID when accessing WiFi network. Error Oof this tool compared with OMRON 2.3%, 1.39% compared with ECG, 2% compared with Digital Thermometer. Delay time of this system still mre than 1s so that delay time should be improved in the future in order to be an realtime system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T45405
UI - Tesis Membership  Universitas Indonesia Library
cover
Rahmat Ramadhani
"Era smart home sudah dimulai. Presentase penduduk Indonesia di masa yang akan datang yang didominasi oleh kelompok usia produktif menjadi potensi pasar dari industri smart home. Oleh karena itu, dalam penelitian ini akan dirancang dan dibuat suatu sistem smart home yang meminimalkan peran pengguna. Sistem Smart Home ini merupakan sistem yang mengembangkan teknologi smart home yang telah ada, dimana sistem akan menghidupkan AC dan lampu ketika pemilik rumah memasuki radius tertentu dari rumah. Walaupun begitu, sistem ini juga dapat mengontrol AC dan lampu secara manual.
Sistem ini dirancang menggunakan Arduino Mega dan GSM Shield dengan Aplikasi Android sebagai interface yang dapat diakses oleh user. Pada pengujian didapatkan bahwa delay sistem pengendali manual sebesar 8 detik dengan standar deviasi sebesar 3,3 detik. Nilai ini dikatakan cukup baik bila dibandingan dengan delay produk sejenis Leviton DZS15 yang memiliki delay berkisar 5-10 detik. Namun nilai ini dikatakan cukup buruk bila dibandingkan produk sejenis GE 12722 Z-Wave Wireless Lighting Control yang memiliki delay berkisar 0,5 detik. Perbedaan delay ini dapat disebabkan perbedaan teknologi yang digunakan dimana GE 12722 Z-Wave menggunakan teknologi Z-Wave sedangkan dalam penelitian ini digunakan teknologi GPRS.
Delay pada pengendali otomatis memiliki nilai yang hampir sama dengan rata-rata sebesar 10,27 detik dengan standar deviasi sebesar 0,4 detik. Nilai yang hampir sama ini mengindikasikan baiknya performa sistem yang didukung oleh tempat pengujian yang terletak di lingkungan outdoor. Waktu instruksi yang dibutuhkan Arduino Mega mulai dari membangun koneksi, mengambil data dari server dan merubah state sebesar 6001,7 ms. Pengujian aplikasi android berdasarkan fungsi utama dan tampilan antarmuka mendapatkan nilai dari 10 responden sebesar 79,86%. Nilai ini mengindikasikan bahwa responden puas dengan fungsi utama sistem tapi sebaliknya kurang puas dengan tampilan antarmuka aplikasi android.

The era of smart home has just begun. The percentage of Indonesians will be dominated by productive populations in the future which will be an enormous market fot smart home industry. This research, furthermore, aims to develop and create a smart home system to minimize the user role. This smart home is a system developing an existing smart home technology which will switch the AC and lamps on whenever the owner is at specific radius from the house. Nevertheless, this system also can control the AC and lamps manually.
This system is designated by Arduino Mega and GSM Shield with an accessible android interface. The experiment obtained the manual control delay system was 8 seconds with standart deviation was 3.3 seconds. This delay value is quite good when compared to similar product, Leviton DZS15, which delay range was from 5-10 seconds. However, the value is quite bad when compared to similar product, 12 722 GE Z-Wave Wireless Lighting Control, which delay approximately 0.5 seconds. This delay differences can be due to the differences in technology used in the devices. The 12722 GE Z-Wave used the Z-Wave technology, while this study used GPRS technology.
Automatic control delay has values nearly equal to the average of 10.27 seconds with a standart deviation of 0.4 seconds. This similar values indicates the good performance was supported by outdoor testing environment. The instruction time needed by Arduino Mega from initiating the connection, collecting data from server and altering the state was 6001.7 ms. The test for android application based on main function and user interface was 79.86% from 10 respondents. This value indicates that respondets were satisfied with the main function of the system, however they were unsatisfied with the Android interface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S63712
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arbariyanto Mahmud Wicaksono
"Meningkatnya penggunaan pencitraan dalam bidang medis mendorong perkembangan metode dan modalitas baru yang aman, murah dan cepat. Electrical Impedance Tomography (EIT) merupakan salah satu pengembangan dalam pencitraan medis yang mampu memberikan pencitraan yang aman tanpa radiasi. Permasalahan utama dari sistem EIT adalah diperlukannya algoritma yang kompleks untuk melakukan pencitraan dengan hasil yang memiliki resolusi rendah. Penelitian diharapkan dapat menyediakan rangkaian EIT sederhana sehingga dapat dengan mudah digunakan dan dikembangkan. Penelitian dilakukan dengan cara merancang dan membangun sistem pencitraan EIT berbasis MATLAB dan Arduino yang kemudian diuji terhadap beragam skenario objek pengamatan.
Hasil pencitraan yang dihasilkan menunjukkan bahwa sistem mampu merepresentasikan berbagai variasi struktur dari objek pengamatan. Pengukuran impedansi pada sistem EIT dilakukan menggunakan metode two-point technique menggunakan 8 elektrode dan 16 elektrode pada frekuensi 50 kHz. Objek pengamatan utama pada pengujian sistem merupakan gelas acrylic yang diisi oleh air keran dengan nilai TDS (Total Dissolved Solids) sebesar 300 ppm. Sistem pencitraan EIT yang dirancang dan dibangun dapat melakukan pencitraan terhadap objek pengamatan menggunakan sistem yang sederhana.

The rise of imaging in medical field has boost the progress of new imaging method and modality that area safer, cheaper, and faster. Electrical Impedance Tomography (EIT) is one of such modality that provide safe medical imaging through non ionizing method. The downside of the EIT method is the complex algorithm needed to produce imaging result and low resolution. This study hope to provide a simple EIT imaging system that are easily used and developed. The proposed system designed in this study is a MATLAB and Arduino based imaging system which are then tested under several observation object scenario.
The imaging results that are produced by the system are able to represent the varying observational objects structure. Impedance measurement method that is implemented in the proposed system is a two-point technique using 8 electrode and 16 electrode with a frequency of 50 kHz. The main observation object of this system is an acrylic cup filled with tap water that has a TDS (Total Dissolved Solids) of 300 ppm. The resulting EIT imaging system is a simple system that are able to produce imaging results based on the observation object.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Desfi Nur Fikri
"ABSTRACT
Dalam penelitian ini telah dibuat sebuah sistem Tomografi berbasis gelombang mikro yang bersifat portable dengan biaya yang relatif rendah. Sistem ini terdiri dari sebuah modul akuisisi data berbasis mikrokomputer yang mendapatkan data dari PocketVNA dan sebuah sistem mekanis berbasis motor stepper yang digunakan sebagai pengendali posisi angular antena Vivaldi di sepanjang lintasan yang bergerak melingkar mengelilingi obyek uji yang diamati. Motor stepper digerakkan melalui sebuah motor driver dan sebuah Arduino board. DeepAces Vivaldi antena dapat digunakan sebagai transceiver gelombang mikro dari frekuensi 1.5 GHz sampai 9 GHz, sedangkan PocketVNA yang digunakan untuk melakukan perhitungan koefisien transmisi dan koefisien refleksi (S11 dan S12), magnitude dan fase gelombang mikro mempunyai jangkauan frekuensi 500 kHz sampai dengan 4 GHz. Pengukuran dalam penelitian ini dilakukan dalam rentang frekuensi 3-3.78 GHz dengan kenaikan frekuensi setiap 0.5 GHz, dan pengukuran dilakukan 5 kali di setiap posisi sudut, sedangkan posisi antenna digeser dengan kenaikan 5°. Obyek uji yang digunakan berupa logam besi berbentuk segi 8 dan logam besi berbentuk silinder setra nilon atau Polyehhylene. Citra hasil proses rekonstruksi berbasis algoritma simultaneous iterative reconstruction cukup secara signifikan menggambarkan bentuk dan penampang benda uji.

ABSTRACT
In this research study a Microwave-based Tomography (MWT) system that is portable with a relatively low cost has been developed. This system consists of a microcomputer-based data acquisition module that obtains data from a PocketVNA and a mechanical system based on stepper motors which are used to control the angular positions of the Vivaldi antennas along a circular path around the observed object. The stepper motors are driven through motor drivers and an Arduino board. The used Vivaldi antennas can be operated as microwave transceivers from frequency of 1.5 GHz to 9 GHz, while the PocketVNA is used to measure the transmission and reflection coefficients (S11 and S12), magnitude and phase of the microwave that have a frequency range of 500 kHz to 4 GHz. Measurements in this study were carried out in the frequency range 3-3.78 GHz with an increase in frequency of every 0.5 GHz, and measurements were executed 5 times at each angle position, while the antenna position was shifted every a 5°. The test object used was in the form of an octagonal iron metal and cylindrical metal also nylon or Polyethylene. The images of the reconstruction process based on simultaneous iterative reconstruction algorithms significantly illustrates the shape and cross section of the test object."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fitriyanti Nur Aisyah
"Prematuritas merupakan salah satu factor dari kematian bayi. Resiko yang mungkin terjadi akibat prematuritas adalah bradikardia dan takikardia, dimana terjadi kelainan pada frekuensi denyut jantung, oleh karena itu diperlukan pemantauan denyut jantung secara real time. Pada skripsi ini akan dibahas penelitian dalam membangun perangkat pemantau denyut jantung secara real time dan kontinu dengan memanfaatkan stetoskop. Perangkat ini tersusun atas stetoskop, mikrofon kondenser elektret, rangkaian pengkondisi sinyal, dan mikrokontroler Arduino UNO.
Pengujian perangkat dilakukan dengan memasang stetoskop baik pada dada maupun punggung subjek untuk menangkap sinyal denyut jantung. Setelah itu, sinyal denyut jantung dikirim ke mikrofon elektret yang dilengkapi rangkaian pre-amplifier dengan penguatan sebesar 100 kali. Sinyal detak jantung yang masih terdapat noise selanjutnya diproses oleh pengkondisi sinyal yang terdiri dari buffer, filter frekuensi cut-off sebesar 0,48Hz dan 1,59Hz dan amplifier. Sinyal denyut jantung yang keluar dari rangkaian pengkondisi sinyal diproses dengan mikrokontroler Arduino UNO R3 dan ditampilkan pada LCD dalam beat per minute BPM.

Prematurity is one of the factors of infant mortality. Risks that may occur due to prematurity are bradycardia and tachycardia, where there are abnormalities in the frequency of heart rate. Therefore it is necessary to monitor the heartbeat in real time. In this research is discussed about building a heart rate monitoring device in real time and continuous by utilizing stethoscope. This device is composed of stethoscope, electro condenser microphone, signal conditioning circuit, and Arduino UNO microcontroller.
The experiment is done by installing a stethoscope both on the subject 39 s chest and back to capture the heartbeat signal. After that, the heartbeat signal is sent to an electro microphone equipped with a pre amplifier circuit with a gain of 100 times. The remaining heartbeat signal is then processed by signal conditioners consisting of buffers, filters cut off frequencies of 0.48Hz and 1.59Hz and amplifiers. The heartbeat signal coming out of the signal conditioning circuit is processed by Arduino UNO R3 microcontroller and displayed on the LCD in beat per minute BPM.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Muhyidin Farid
"Salah satu upaya perlindungan dari potensi bahaya radiasi di lingkungan sebagai dampak dari adanya lepasan radiasi disekitar fasilitas nuklir adalah dengan pemantauan dosis radiasi di lingkungan secara waktu nyata dan terus-menerus. Penelitian ini mengkaji sistem pemantaun radiasi di lingkungan yang telah diterapkan saat ini, kemudian mengembangkan sistem tersebut agar lebih berdayaguna dalam rangka kesiapsiagaan nuklir. Pengembangan sistem dilakukan melalui penambahan jaringan sensor nirkabel dan fitur peringatan dini.Jaringan sensor nirkabel JSN yang diaplikasikan kedalam sistem, meliputi JSN berbasis radio frekuensi RF dan general packet radio service GPRS. Faktor koreksi hasil pengukuran JSN GPRS tipe Pancake terhadap peralatan komersial JSN RF untuk pengukuran paparan radiasi lingkungan adalah 0.657, sedangkan faktor koreksi JSN GPRS tipe NaI Tl adalah 0,502. Data yang dikirim oleh perangkat deteksi gamma dikumpulkan di server yang dikelola oleh Pusat Pendayagunaan Informatika dan Kawasan Strategis Nuklir PPIKSN-BATAN. Data yang diterima server disimpan di database xmonitoring, dapat dilihat secara langsung nilai paparan radiasi di lingkungan melalui phpmyadmin. Disain website dapat dikunjungi pada alamat http: 223.25.97.90/radmon-farid/index.php. Sistem peringatan dini akan dikirimkan ke operator penanggungjawab sistem radmon, apabila parameter pembatas paparan radiasi lingkungan sebesar 0,3 ?Sv/jam terlampaui. SMS peringatan dini akan dikirimkan kepada operator sistem radmon setelah 15 - 60 detik data pengukuran paparan radiasi lingkungan diterima oleh server.

One effort to protection from increasing of potentially environmental radiation hazards as impact of radiation discharge around nuclear facilities by environmental radiation monitoring in real time and continuously. This research focus on radiation monitoring sistem, then develop this sistem more efficiently for nuclear preparedness. This system was developed through addition of wireless sensor networks and early warning features. Wireless sensor networks WSN was applied to this system, including WSN based on radio frequency RF and general packet radio service GPRS. The correction factor of WSN GPRS Pancake type measurement results compare to WSN RF commercial equipment for environmental radiation exposure is 0.657, and correction factor for WSN GPRS NaI Tl type is 0.502. Data has been collected on the servers, who manage by Center for Informatics and Nuclear Strategic Zone Utilization BATAN Serpong. The value of doserate data was received of the server will be viewed on the graph of the website, with address 223.25.97.90 radmon farid index.php. This system will be sent to the radmon operator, if the parameters of threshold environmental radiation level was exceeded from 0.3 Sv h. after 15 60 seconds of measurement data of environmental radiation exposure received by the server. SMS early warning will be delivered to the operator this system, after 15 60 seconds environmental radiation exposure measurement was received."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T47352
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoga Purna Tama
"Perkembangan teknologi sensor terus meningkat pesat seiring dengan kebutuhan aplikasinya. Salah satunya adalah sensor berbasis MEMS seperti mikrokantilever, yaitu sensor yang menggunakan pendeteksi perubahan sifat mekanis sebagai transducer. Penelitian terhadap penggunaan sensor mikrokantilever relatif luas seperti di bidang kimia, fisika, biologi, lingkungan, dan kedokteran. Terdapat dua metode pengukuran deteksi objek pada sensor mikrokantilever, yaitu mode statis yang mengukur langsung defleksi yang terjadi, dan ada pula mode dinamis yang mengukur pergeseran frekuensi resonansi karena deteksi objek tertentu. Pada mode dinamis, proses menentukan frekuensi resonansi dilakukan dengan cara mengatur function generator secara manual dan mengamati pergeseran frekuensi resonansi dengan menggunakan Oscilloscope. Tujuan riset ini adalah untuk membuat sistem yang mampu secara otomatis menggeser frekuensi yang diberikan ke mikrokantilever dan mempermudah pengambilan data sehingga data dapat langsung terkomputerisasi. Sistem antarmuka menggunakan mikrokontroller Arduino Uno yang digunakan sebagai Digital to Analog Converter (DAC) sekaligus menjadi Analog to Digital Converter (ADC). Sebagai DAC, mikrokontroller akan memberikan tegangan PWM yang dikonversi menjadi tegangan analog dan dihubungkan dengan rangkaian Voltage Control Oscillator (VCO) sehingga mampu menggetarkan mikrokantilever. Sebagai ADC, Arduino akan mengolah data hasil konversi frekuensi yang dilakukan oleh IC LM2907 dan hasil konversi amplitudo yang dilakukan oleh rangkaian dengan prinsip penyearah. Nilai tegangan hasil konversi tersebut akan menjadi nilai masukan pada pin input analog Arduino Uno. Untuk tampilan grafik digunakan perangkat lunak Processing dan Labview. Sistem ini telah diujicobakan untuk pendeteksian gas, yang hasilnya dapat mendeteksi perubahan frekuensi resonansi secara otomatis serta mampu menampilkan data secara realtime. Perbandingan data dengan metode manual menunjukkan bahwa sistem yang dikembangkan telah bekerja dengan normal.

The development of sensor technology increases rapidly in line with the needs of the application. One is a mechanical sensor such as microcantilever sensor, which uses change in its mechanical properties as a transducer. Research in the use of microcantilever sensors is relatively broad in fields such as chemistry, physics, biology, environment and medicine. There are two methods of measuring object detection, i.e., static mode which measures the deflection that occurs immediately, and dynamic mode which measures the shift in the resonance frequency due to the detection of a specific object. So far, resonance frequency shift is generally monitored by using the oscilloscope and function generator manually. The purpose of this research is to design a system which is capable to sweep the frequency given to microcantilever automatically and also facilitate the retrieval of data in digital form, so that the data can be directly computerized. In this research the system interface uses an Arduino microcontroller. The microcontroller is used as a Digital to Analog Converter (DAC) as well as a Analog to Digital Conveter (ADC). The DAC function is used to sweep the frequency automatically. The PWM output from Microcontroller is connected to a Voltage Control Oscillator (VCO) which will oscillate the microcantilever. In the other hand, the ADC function is used to read sensor output. The principle, the value of the frequency of an electronic circuit sensor system is converted into a voltage value using the IC LM2907, while the amplitude value will be converted using an Amplitude to Voltage Converter circuit. These voltage values become the value entered in the analog pin Arduino Uno. In programming, the voltage value is converted into a frequency and amplitude value. To display the data in graphical form, we use software named Processing and Labview. The system has been tested for gas detection. The result shows that the system successfully detect resonance frequency shift automatically and display the data in realtime. The data comparison with manual method also suggest that the system works normally.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59867
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tito Alvi Nugroho
"Letak geografis Indonesia berada di dalam jalur ring of fire yang merupakan daerah dengan jumlah gunung berapi aktif terbanyak di dunia. Dengan kondisi geografis tersebut menempatkan Indonesia dalam posisi yang cukup rentan terhadap kejadian bencana alam salah satunya yaitu tanah longsor. Untuk mencegah berkurangnya korban akibat bencana tanah longsor di Indonesia, diperlukan suatu sistem peringatan dini jika terjadi tanah longsor.
Penelitian ini adalah implementasi dari sistem berbasis Jaringan Sensor Nirkabel menggunakan protokol IEEE 802.15.4 yaitu ZigBee untuk membangun sebuah sistem peringatan dini terhadap bencana tanah longsor. Dalam penelitian ini, sistem terdiri dari dua bagian yaitu bagian sistem end point yang ditempatkan pada daerah rawan longsor dan sistem koordinator yang ditempatkan pada pusat kendali. Sistem end point memiliki pusat kendali menggunakan Arduino Nano dengan sensor accelerometer untuk mengecek kondisi tanah apabila terjadi longsor. Sistem koordinator memiliki pusat pemrosesan menggunakan Raspberry Pi.
Implementasi dari protokol ZigBee menggunakan modul XBee yang akan membentuk jaringan sensor nirkabel antara koordinator dan end point. Performa sistem dalam melakukan fungsionalitas peringatan dini pada keadaan line of sight memiliki tingkat keberhasilan 90 dan pada keadaan dengan penghalang memiliki tingkat keberhasilan 70.
Dalam pengiriman data rata-rata jeda waktu dalam keadaan line of sight adalah 0,63 detik dan dalam keadaan dengan penghalang non line of sight adalah 0,58 detik. Rata-rata penggunaan energi pada sistem dalam keadaan line of sight adalah 0,00074Wh dan 0,00071Wh dengan menerapkan metode penghemat daya. Rata-rata penggunaan energi pada sistem dalam keadaan dengan penghalang non line of sight adalah 0,00074Wh dan 0,00070Wh dengan menerapkan metode penghemat daya. Pada penelitian ini, penerapan metode current level control dapat menghemat daya sebanyak 4,05 pada keadaan line of sight dan 5,4 pada keadaan non line of sight.

Indonesia 39 s geographical location lies within the ring of fire that is the region with the largest number of active volcanoes in the world. Indonesia is one of the most vulnerable country to landslide disaster. To prevent the increasing number of casualties caused by landslide disaster in Indonesia, an early warning system is needed.
This research is an implementation of Wireless Sensor Network based system using IEEE 802.15.4 protocol ZigBee to build an early warning system to landslide disaster. In this research, the system consists of two parts, namely the end point system that is placed in landslide prone areas and coordinator system that is placed in the control center. The control center of the end point system is Arduino Nano with accelerometer sensor to check the soil condition in case of landslide. The coordinator system has a processing center, Raspberry Pi. The implementation of the ZigBee protocol uses the XBee module which will form a wireless sensor network between the coordinator and the end point. System performance in performing early warning functionality in line of sight state has a success rate of 90 and in circumstances with barrier having 70 success rate.
In the average data transmission time lag in line of sight state is 0,63 seconds and in a state with a barrier non line of sight is 0,58 seconds. The average energy use of the system in line of sight states is 0,00074Wh and 0,00071Wh by applying power saving algorithm. The average use of energy in the system in a state with a barrier non line of sight is 0,00074Wh and 0,00070Wh by applying power saving algorithms. In this study, the application of current level control method can save power as much as 4,05 in line of sight and 5,4 in non line of sight.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67182
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amelinda Arum Widyasari
"Pada skripsi ini dirancang sistem lampu jalan pintar nirkabel berbasis ZigBee (Smart Wireless Street Lighting, SWSL) yang menggunakan sumber tenaga surya dan jaringan listrik Perusahaan Listrik Negara sebagai sumber daya cadangan. SWSL menggunakan sistem embedded dengan kontroler yang dilengkapi sensor cahaya dan sensor gerak untuk mengaktifkan lampu sesuai kondisi lingkungan. SWSL beroperasi secara otomatis sehingga memerlukan sistem monitoring agar diketahui kondisi dan kerusakan lampu berdasarkan data sensor arus dan tegangan. Untuk memudahkan pengawas, terdapat fitur pengendalian jarak jauh dan penghitungan konsumsi energi SWSL. ZigBee merupakan protokol teknologi nirkabel IEEE 802.15.4 yang bersifat terbuka pada frekuensi 2.4 GHz. Aplikasinya memungkinkan untuk proses monitoring dan kontrol, sehingga dapat dikombinasikan dengan sensor dan kontroler.
Dari hasil pengujian didapatkan bahwa ZigBee dapat terintegrasi dengan SWSL dan aplikasi monitoring sehingga data dapat dikirimkan sejauh 60 m dengan persentase paket terkirim utuh sebesar 21.4% pada kondisi lingkungan LOS pada RSSI sebesar -89 dBm. Ukuran maksimum paket data untuk sekali transmisi adalah 150 karakter atau 9.6 kilo byte. Pada kondisi NLOS jarak maksimum pengiriman hanya sampai pada 10 meter dengan maksimum RSSI -89 dBm. Kapasitas baterai memiliki daya tahan hingga 3 hari dan kesalahan pada sistem dapat terdeteksi dengan parameter terkirimnya email otomatis dan berubahnya indikator pada aplikasi.

This paper designed a wireless smart street lighting system based on ZigBee (Smart Wireless Street Lighting, SWSL) which uses solar power source and the power grid state electricity company as a backup power. SWSL used embedded system controller with a light sensor and motion sensor to activate the lights in accordance with the different occasions. SWSL is operates automatically so , SWSL expected to have monitoring system in order to know the conditions and failure based on data current and voltage sensors. To facilitate supervisors, there is a remote control features and energy consumption calculation. ZigBee is an IEEE 802.15.4 wireless protocol technology that is open at a frequency of 2.4 GHz. Its application allows for process monitoring and control, so it can be combined with sensors and controllers.
From the test results showed that ZigBee can be integrated with SWSL and monitoring applications so the data can be transmitted as far as 60 m with the percentage of packets sent intact by 21.4% in the LOS environment on the RSSI of -89 dBm. The maximum size for a single data packet transmission is 150 characters or 9.6 kilo bytes. In NLOS conditions of delivery are only up to a maximum distance of 10 meters with a maximum at -89 dBm RSSI. The capacity of the battery has a durability of up to 3 days and errors in the system parameters can be detected by automatic email deliveries and changes in indicators on the application.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55450
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>