Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 39380 dokumen yang sesuai dengan query
cover
Andira Rozawati
"Pada skripsi ini telah dirancang penambahan algoritma menggunakan sistem Support Vector Machine atau SVM untuk meningkatkan akurasi sistem Simple-O yang berbasis LSA. Akurasi dari sistem Simple-O saat ini masing kurang mendekati nilai penilaian manusia. Simple-O merupakan suatu sistem penilaian ujian esai menggunakan algortima Latent Sematic Analysis yang dikembangkan oleh Departemen Teknik Elektro Universitas Indonesia. Untuk menjalankan algoritma SVM atau Support Vector Machine digunakan input yang berupa nilai slice ,pad, dan fnorm yang didapatkan dari hasil keluaran sistem Simple-O. SVM akan membagi klasifikasi nilai hasil keluaran Simple-O menjadi enam kelas dan menjadi dua kelas. SVM menghasilkan akurasi 45,8 untuk klasifikasi nilai tipe enam kelas dan 90,4 untuk klasifikasi tipe dua kelas.

In this thesis, an addition of new algorithm using Support Vector Machine has been designed to increanse the accuracy of Sistem Penilaian Esai Otomatis Simple O based on Lantent Sematic Analysis. The accuracy of Simple O is less accurate if compared to the value of human rater. Simple O it self is an application to grade an essay writing exam using Latent Sematic Analysis algorithm that has been developed in Departement of Electrical Engineering Universitas Indonesia. SVM or Suppor Vector Machine used the output of Simple O system, slice, pad and fnorm, as inputs. SVM will divide output data from Simple O system into six class and two class. The accuracy of SVM is 45,8 for six class classification and 90,4 for two class classification."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67433
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dealitha Winata
"Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia telah mengembangkan Sistem Penilaian Esai Otomatis Simple-O berbasis Latent Semantic Analysis LSA sejak tahun 2007. Pada awalnya, Simple-O hanya dikembangkan untuk mengoreksi ujian esai berbahasa Indonesia, namun kali ini dikembangkan untuk mengoreksi ujian esai berbahasa Jepang. Simple-O hanya menggunakan algoritma LSA saat pertama kali dikembangkan. Beberapa tahun setelahnya, Simple-O mulai dikembangkan menggunakan algoritma LSA dilengkapi dengan algoritma klasifikasi seperti Learning Vector Quantization LVQ dan Support Vector Machine SVM. Simple-O juga mulai dikembangkan menggunakan algoritma lain seperti Winnowing.
Pada skripsi ini akan dijelaskan tentang pengembangan sistem penilaian esai otomatis Simple-O untuk ujian esai berbahasa Jepang menggunakan algoritma LSA untuk pemrosesan kata, serta menggunakan algoritma Support Vector Machine SVM untuk klasifikasinya. Algoritma SVM merupakan suatu algoritma pembelajaran yang berfungsi untuk menentukan bidang pemisah hyperplane dari sekumpulan data baik yang linearly separable, maupun yang non-linearly separable. SVM akan memisahkan data nilai hasil proses LSA ke dalam dua kelas untuk variasi kelas pertama, dan akan memisahkan data nilai hasil proses LSA ke dalam sembilan kelas untuk variasi kelas kedua. Jenis kernel dan parameter juga divariasikan untuk menemukan jenis kernel, parameter, dan jumlah kelas yang tepat. Hasil dari analisis dan pengujian yang telah dilakukan, apabila menggunakan jenis kernel, parameter, dan variasi kelas yang tepat, SVM mampu menghasilkan akurasi sebesar 100.

Department of Electrical Engineering in Universitas Indonesia has developed an automatic essay grading system Simple O based on Latent Semantic Analysis LSA since 2007. At first, Simple O was developed for giving score to essay with Indonesian language, but now Simple O is developed for giving score to essay with Japanese language. Simple O used to be developed using LSA algorithm only. A few years later, Simple O began to be developed using LSA algorithm and some classification algorithm such as Learning Vector Quantization LVQ and Support Vector Machine SVM. Simple O began to be developed using another algorithm too such as Winnowing algorithm.
This thesis will explain about development of automatic essay grading system Simple O for essay with Japanese language using LSA as word processing algorithm, and SVM as classification algorithm. SVM is a learning algorithm for determining hyperplane from set of linearly separable data as well as non linearly separable data. SVM will separate output data of LSA into two class for the first class variation and will separate output data of LSA into nine class for the second class variation. Kernel type and parameter will be varied too to find the right kernel, parameter, and number of classes. From the results of analysis and test that have been done, SVM is able to obtain accuracy of 100 if the system uses the right kernel, parameter, and number of classes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanifah Khairunnisa
"ABSTRAK
Dalam penelitian ini, Sistem Penilaian Esai Ototmatis (Simple-O) dirancang menggunakan algoritma Latents Semantic Analysis (LSA), Term Frequency-Inverse Document Frequency, dan algoritma Support Vector Machine (SVM). Algoritma LSA digunakan untuk mengolah kata-kata yang merepresentasikan kata-kata dalam teks menjadi matriks. Algoritme SVM digunakan untuk mengklasifikasikan esai jawaban siswa berdasarkan topiknya. TF-IDF digunakan untuk menimbang setiap kata dalam teks yang akan menjadi input SVM. Dari penelitian ini ketepatan penggunaan jawaban dosen sebagai jawaban referensi adalah 72,01% dan ketepatan penggunaan kata kunci sebagai jawaban referensi adalah 69,5%.

ABSTRACT
In this study, the Automatic Essay Assessment System (Simple-O) was designed using the Latents Semantic Analysis (LSA) algorithm, Term Frequency-Inverse Document Frequency, and the Support Vector Machine (SVM) algorithm. The LSA algorithm is used to process words that represent words in the text into a matrix. The SVM algorithm is used to classify student essays based on their topic. TF-IDF is used to weigh each word in the text that will become SVM input. From this research, the accuracy of using lecturers' answers as reference answers was 72.01% and the accuracy of using keywords as reference answers was 69.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dyah Lalita Luhurkinanti
"ABSTRACT
Algoritma winnowing merupakan algoritma yang berbasiskan fingerprint untuk mendeteksi tingkat kemiripan teks. Penelitian ini akan membahas pengembangan sistem penilai otomatis SIMPLE-O yang dikembangkan Departemen Teknik Elektro berbasis algoritma winnowing dan diterapkan untuk bahasa Jepang. Pada input bahasa Jepang diterapkan proses romanisasi untu mengubah karakter ke bentuk romaji. Penelitian dilakukan untuk mencari parameter terbaik dengan nilai akurasi atau agreement with human rater tertinggi. Dari hasil percobaan diketahui jika parameter untuk tiap-tiap input disesuaikan, secara keseluruhan sistem dapat memiliki rata-rata akurasi nilai total seluruh data hingga 90.92 dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91 dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19 hingga 100.

ABSTRACT
Winnowing Algorithm is a fingerprint based algorithm for detecting similarity between texts. This research will talk about the development and application of automatic essay grading system SIMPLE O, developed by Department of Electrical Engineering with winnowing algorithm for Japanese language. On the Japanese language input, romanization is implemented to change the input to romaji. The purpose of this research is to find the best parameter with the highest accuracy or agreement with human rater. The result of the conducted experiment shows that with customized parameter for each input, the average of total score for all students is 90.92 with accuracy for each student is up to 99.91 and accuracy for each problem ranged from 60.19 to 100."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Suci Salimah Giani
"Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis LSA untuk memberikan penilaian secara objektif terhadap esai berbahasa Indonesia. Data keluaran sistem penilaian esai otomatis, Simple-O, berbasis LSA adalah nilai slice, nilai pad, dan nilai esai tersebut. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan persamaan kata pada sistem penilaian esai otomatis terhadap keakuratan penilaian. Terdapat nilai pad dan slice yang digunakan untuk melihat kemiripan antara teks jawaban mahasiswa dengan teks jawaban referensi. Selain itu, nilai pad dan slice juga akan digunakan sebagai input untuk algoritma Support Vector Machine SVM . Untuk melihat pengaruh penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O, maka dilakukan enam skenario pengujian terhadap penggunaan persamaan kata untuk kata kunci. Dalam hal ini, kata kunci merupakan kumpulan kata-kata yang dipilih dari jawaban dimana kata-kata tersebut yang mempunyai nilai. Masing-masing skenario memiliki lima variasi jawaban dengan persentase penggunaan persamaan kata pada kata kunci yang berbeda-beda, mulai dari 100 , 80 , 60 , 40 , 20 , dan 0 . Terdapat tiga nilai yang dianalisis untuk melihat tingkat akurasi penilaian oleh sistem penilaian esai otomatis, Simple-O, yakni nilai esai, nilai pad, dan nilai slice. Hasil dari pengujian dan analisis yang telah dilaksanakan adalah: peningkatan rata-rata akurasi penilaian program Simple-O setelah mengalami penambahan persamaan kata sebesar 18 dari 72 menjadi 90 , rata-rata koefisien korelasi antara penilaian oleh human rater dan program Simple-O bernilai 0.85, serta penurunan rata-rata perolehan nilai pad senilai 1.51 dari 32.35 menjadi 30.84 dan nilai slice senilai 1.01 dari 31.85 menjadi 30.84, sehingga mengindikasikan adanya peningkatan akurasi penilaian oleh program Simple-O setelah mengalami penambahan persamaan kata pada database sistem penilaian esai otomatis, Simple-O.

Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis LSA to provide objective assessment of an essay in Bahasa Indonesia. The output data of automated essay grading system with LSA algorithm, Simple O, are pad value, slice value, and the essay rsquo s scores. This thesis will discuss and provide analysis of the influence of synonym importation in automated essay grading system over assessment accuracy. There are pad and slice values, which are used to observe the similarity between students rsquo answers in essay and the reference answers in essay as well. In addition, pad and slice values will also be used as input for Support Vector Machine SVM algorithm. To see the influence and difference of adding word equations into the database of automated essay grading system, Simple O, six testing scenarios are tested against the use of word equations for keywords. In this case, keyword is a collection of selected words from the answers which those words that has a value. Each of the scenario has five answer variations with different percentage of word equations usage on keywords, ranging from 100 , 80 , 60 , 40 , 20 , and 0 . There are three values to be analyzed to see the assessment accuracy level by automated essay grading system, Simple O, they are essay 39 s score, pad values, and slice values. The results of analysis and test that has been done is the average of assessment accuracy of Simple O program after adding word equations increases 18 , from 72 to 90 , the average of correlation coefficient between assessment by human rater and Simple O program is worth 0.85, also the average value of pad decreases 1.51, from 32.35 to 30.84, and the average value of slice decreases 1.01, from 31.85 to 30.84, thus it indicates an improvement of assessment accuracy level results by Simple O program after adding word equations to the database of automated essay grading system, Simple O."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68829
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aaliyah Kaltsum
"ABSTRAK
Pada penelitian ini dilakukan penerapan Support Vector Machine dan LSA
Metode tersebut dibahas dan dipelajari lebih lanjut untuk merancang Sistem Penilaian Esai Otomatis (Simple-O). Simple-O merupakan sistem yang saat ini dikembangkan oleh UI Jurusan Teknik Elektro yang bertujuan untuk menilai esai secara otomatis. Support Vector Machine, yang merupakan algoritma pembelajaran yang diawasi, dipelajari selanjutnya untuk meningkatkan tingkat akurasi dalam Simple-O bersama dengan metode LSA yang digunakan Bahasa pemrograman Python. Dari hasil tes rata-rata tertinggi skor akurasi yang diperoleh sistem sebesar 88.06% dengan masukan kalimat kanji, katakana, hiragana dan nilai TDM siswa jawaban yang mencerminkan frekuensi kemunculan kata kunci dalam dokumen.

ABSTRACT
In this study, the implementation of Support Vector Machine and LSA was carried out These methods are discussed and studied further to design an Essay Assessment System Automatic (Simple-O). Simple-O is a system currently being developed by the UI Department of Electrical Engineering which aims to assess essays automatically. Support Vector Machine, which is a supervised learning algorithm, is learned furthermore to increase the level of accuracy in Simple-O along with the LSA method used Python programming language. From the highest average test results the accuracy score obtained by the system is 88.06% with input the kanji, katakana, hiragana and TDM scores of the students answers that reflect the frequency with which keywords appear in the document."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naiza Astri Wulandari
"Sistem Penilaian Esai Otomatis (Simple-O) telah dibuat menggunakan algoritma K-Means dan metode Latent Semantic Analysis (LSA). Jawaban karangan siswa pertama-tama akan diklasifikasikan ke dalam kelas-kelas sesuai dengan topik masing-masing nomor, dan akan memisahkannya dari jawaban siswa yang tidak sesuai konteks kemudian akan dilakukan proses LSA yang merepresentasikan kata ke dalam matriks, yang kemudian matriks direduksi menggunakan Singular Value Decomposition dan dilanjutkan dengan mencari norma frobenius yang merupakan nilai dari setiap soal. Pada penelitian ini dilakukan uji coba dengan menggunakan 4 skenario dan hasil penelitian SIMPLE-O menggunakan algoritma K-Means dan LSA menghasilkan akurasi rata-rata sebesar 74% yaitu hasil skenario pengujian 1

An Automatic Essay Assessment System (Simple-O) has been created using the K-Means algorithm and the Latent Semantic Analysis (LSA) method. Students' essay answers will first be classified into classes according to the topic of each number, and will separate them from student answers that do not fit the context then an LSA process will be carried out which represents the word into a matrix, which is then reduced by using Singular Value. Decomposition and continue by looking for the Frobenius norm which is the value of each question. In this study, trials were carried out using 4 scenarios and the results of the SIMPLE-O research using the K-Means and LSA algorithms produced an average accuracy of 74%, namely the results of the test scenario number 1."
Depok: FAkultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yireh Anugerah Nanang Sukabhakti
"Departemen Teknik Elektro sebelumnya sudah mengembangkan sistem penilai esai otomatis (SIMPLE-O) yang berbasis algoritma winnowing dan diterapkan pada bahasa Jepang. Sistem penilai esai otomatis tersebut menggunakan algortima winnowing yang berbasiskan fingerprint dan hashing untuk mendeteksi tingkat kemiripan teks. Sistem tersebut memiliki rata-rata akurasi nilai total seluruh data hingga 90.92% dengan akurasi nilai total perpeserta ujian dapat mencapai 99.91% dan akurasi perjawaban untuk tiap peserta ujian berkisar dari 60.19% hingga 100%. Penelitian kali ini berusaha untuk mencoba untuk menaikkan akurasi tersebut. Cara yang digunakan ialah menganti hashing yang digunakan dari Rolling Hash ke MD5 dan mengimplementasi synonym recognition. Hasil percobaan ini memiliki rata-rata tingkat akurasi 85.61% dengan akurasi perjawaban untuk tiap perserta ujian berkisar 68.44% hingga 99.96%

Departement of Electrical Engineering has already developed automatic essay grading system (SIMPLE-O) which utilize winnowing algorithm which is a fingerprint-based and hash-based algorithm for detecting similarity between texts. The system have result of average of total score for all students is 90.92% with accuracy for each student is up to 99.91% and accuracy for each problem ranged from 60.19% to 100%. This research will try to raise the accuracy. The proposed method is by changing the hashing used by the system from Rolling Hash to MD5 and implementing synonym recognition. The result of conducted experiment has the average of accuracy of 85.61% and the accuracy for each problem ranged from 68.44% to 99.96%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Wijaya
"Skripsi ini membahas penerapan Convolutional Neural Network dalam merancang Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar. Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar merupakan perkembangan dari Sistem Penilaian Esai Otomatis atau Simple-O yang telah dikembangkan sebelumnya oleh Departemen Teknik Elektro UI. Tujuan dari dikembangkannya Sistem Penilaian Esai Otomatis (SIMPLE-O) Berbentuk Gambar ini agar dapat menilai sebuah gambar secara otomatis sehingga dapat mempercepat proses penilaian. Rancangan yang dibuat dalam penelitian ini akan memanfaatkan machine learning untuk memprediksi nilai dari gambar yang diuji. Pembelajaran akan dilakukan dengan menggunakan dataset yang memiliki label mulai dari nilai "1" sampai "10". Untuk mendapatkan informasi fitur dari gambar, digunakan algoritma Convolutional Neural Network dimana Neural network ini termasuk ke dalam algoritma Deep Learning. Pada sistem ini sebagian besar bahasa pemrograman yang digunakan adalah Python.

This thesis discusses the implementation of Convolutional Neural Network in designing an automated essay grading system in which the essay answer is in the form of an image. This automated essay grading system is based on the Department of Electrical Engineering in University of Indonesia's research called Simple-O. The purpose of this automated essay grading system to be developed is that the images can be graded automatically and accordingly so it will make the grading process more efficient. The design made in this proposal will utilize machine learning to predict the grade for the images inputted. The learning process will be done using a labeled data set from grade "1" to "10". Feature extraction process will be done using Convolutional Neural Network, which is considered a deep learning algorithm. This system will be programmed in Python."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Aljundi
"Skripsi ini membahas mengenai pengembangan sistem ujian lisan Bahasa Jepang yang dirancang dengan mengintegrasikan automatic speech recognition dengan sistem penilaian esai otomatis. Sistem yang dikembangkan menggunakan arsitektur client-server. Client merupakan aplikasi yang dikembangkan menggunakan cross-platform framework Flutter dan dapat dijalankan pada platform web maupun Android. Back-end server pada cloud dibangun menggunakan bahasa pemrograman Python dengan database PostgreSQL serta memanfaatkan teknologi kontainerisasi dengan Docker. Sistem speech recognition yang digunakan adalah DeepSpeech dengan model di-training untuk dapat mengubah pengucapan dalam bahasa Jepang menjadi teks dengan huruf hiragana. Model yang dihasilkan memiliki rata-rata WER sebesar 20,6%. Sistem plenilaian esai otomatis yang digunakan adalah SIMPLE-O dengan metode LSA. Uji coba dilaksanakan secara online pada 36 responden dengan tingkat kefamiliaran terhadap bahasa Jepang yang bervariasi. Hasil uji coba mendapatkan nilai rata-rata sebesar 49,62 dari nilai maksimum sebesar 100. Akurasi sistem penilaian ujian lisan bahasa Jepang ini didefinisikan sebagai nilai rata-rata hasil uji coba, dibagi dengan akurasi speech recognition, yaitu sebesar 62,5%.

This thesis discusses about the development of a Japanese language verbal exam system designed by integrating automatic speech recognition with an automatic essay scoring system. The system developed uses a client-server architecture. The client is an application developed using the cross-platform framework Flutter and can be run on the web or Android platforms. Back-end servers in the cloud are built using the Python programming language with the PostgreSQL database and utilize containerization technology with Docker. The speech recognition system used is DeepSpeech with a training model to be able to convert Japanese pronunciation into text using hiragana letters. The resulting model has an average WER of 20.6%. The automatic essay scoring system used is SIMPLE-O with the LSA method. The trial was carried out online with 36 respondents with different levels of familiarity with Japanese language. The test results obtained an average score of 49.62 out of a maximum score of 100. The accuracy of the Japanese verbal exam scoring system is defined as the average value of the test results, divided by the accuracy of speech recognition, which is equal to 62.5%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>