Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 153083 dokumen yang sesuai dengan query
cover
Agung Satrio Wibowo
"Penelitian berfokus pada analisis penerapan double stage absorption system untuk meningkatkan kinerja Pembangkit Listrik Tenaga Panas Bumi Kamojang Unit V. Panas yang diambil berasal dari abandoned well sekitar Kamojang yang masih memiliki tekanan 400 kPa. Terdapat beberapa analisis yang dilakukan yaitu analisis exergy pada kondisi operasi, optimasi efisiensi exergy, optimasi biaya dan optimasi multi objektif. Perhitungan dilakukan dengan program Matlab, dan optimasi optimtool. Tekanan operasi saat ini menghasilkan efisiensi exergy 44.93. Optimasi single objektif sistem gabungan menghasilkan efisiensi exergy sebesar 52.66 , biaya 3558400. Optimasi single objektif biaya menghasilkan exergy 51.55 dengan biaya 2514000 dan Optimasi objektif menghasilkan efisiensi 48.64 dengan biaya 2913700 dengan parameter optimum tekanan scrubber 782.64 kPa, beda temperatur air pendingin 3.12°C, temperatur evaporator 7.6°C, temperatur desorber 120.08°C, temperatur condenser 44.9°C, temperatur absorber 43.79°C.

This study focusses on implementation of double stage absorption to improve performance of Kamojang 5 GPP rsquo s. Heat recovery used for optimization, utilized from abandoned well that still have 400 kPa saturation pressure. There are several optimization conducted in this study, there are exergetic efficiency, annual cost, and multi objective optimization. Calculations are conducted by using MATLAB, and optimtool function. The wellhead pressure operational condition has exergetic efficiency 42.4. Exergetic optimization of integrated system has 54.7 exergetic efficiency and system cost 3558400. Economic optimization has exergetic efficiency 44.3 and system cost 2598100. While, multiobjective optimization has exergetic efficiency 51.9 and system cost 2861900 with optimum parameters scrubber pressure 782.64 kPa, temperatur delta of cooling water 3.12°C, evaporator temperature 7.6°C, desorber temperature 120.08°C, condenser temperature 44.9°C, and absorber temperature 43.79°C."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68287
UI - Skripsi Membership  Universitas Indonesia Library
cover
Septian Khairul Masdi
"Pada penelitian ini dilakukan lima jenis analisis pada PLTP Kamojang Unit 4, antara lain analisis exergy pada kondisi operasional, optimasi efisiensi exergy, optimasi ekonomi, optimasi exergoeconomic dengan tekanan wellhead sebagai variabel, dan optimasi steam ejector dengan aliran motive steam sebagai variabel. Perhitungan dilakukan dengan bantuan MATLAB. Karakteristik termodinamika uap panas bumi diasumsikan sama dengan karakteristik air yang didapatkan dari REFPROP. Tekanan wellhead 10 bar saat ini menghasilkan efisiensi exergy 31,91%. Optimasi efisiensi exergy menghasilkan tekanan wellhead 5,06 bar, efisiensi exergy 47,3%, dan biaya sistem US $3.957.100. Optimasi ekonomi menghasilkan tekanan wellhead 11 bar, efisiensi exergy 22,13%, dan biaya sistem US $2.242.200. Optimasi exergoeconomic menghasilkan 15 titik optimum. Optimasi steam ejector menghasilkan aliran motive steam 34,41 𝑘𝑔 𝑠 lebih kecil dari aliran operasional saat ini 40,61 𝑘𝑔 𝑠.

This study presents five analysis at Unit 4 Kamojang Geothermal Power Plant are exergy analysis at operational condition, exergy efficiency optimization, economic optimization, exergoeconomic optimization with wellhead pressure as a variable, and steam ejector optimization with mass flow of motive steam as a variable. Calculations are conducted by using the MATLAB. Thermodynamics characteristic of geothermal fluid assumed as water characteristic which get from REFPROP. Wellhead pressure operational condition 10 bar has exergy efficiency 31.91%. Exergy efficiency optimization has wellhead pressure 5.06 bar, exergy efficiency 47.3%, and system cost US$ 3,957,100. Economic optimization has well pressure 11 bar, exergy efficiency 22.13%, and system cost US$ 2,242,200. Exergoeconomic optimization has 15 optimum condition. Steam ejector optimization has mass flow of motive steam 34.41 𝑘𝑔 𝑠 smaller than the operational condition 40.61 𝑘𝑔 𝑠."
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56473
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizki Forest
"Pemanfaatan panas buang yang berasal dari pembangkit listrik tenaga panas bumi atau geothermal dapat dimanfaatkan kembali untuk membantu optimisasinya. Pemanfaatan panas buang yang keluar dari separator pada pembangkit listrik tenaga geothermal dapat dimanfaatkan sebagai sumber panas absorption chiller untuk mendinginkan air pendingin di condenser. Dengan demikian pembangkitan yang didapat akan lebih besar karena terjadi vacuum yang lebih besar di condenser sebagai efek penurunan temperatur condenser. Dari hasil yang didapat, air panas yang keluar dari separator sebesar 17.38 kg/s, memiliki potensi sebesar 4 MW dengan maksimum kapasitas absorption chiller sebesar 1035 TR. Kapasitas sebesar ini hanya mampu menurunkan temperatur air pendingin inlet condenser sebesar 0.34°C. Penambahan steam sebanyak 20 kg/s pada aliran air panas yang akan masuk ke generator sebagai pemanas memberikan penurunan temperatur air pendingin inlet condenser sebesar 3.1 - 3.87°C dengan kapasitas absorption chiller sebesar 7759 - 9439 TR pada COP 0.6. Untuk itu perlu dilakukan simulasi dan kajian absorption chiller secara heat balance dan mass balance untuk mengetahui bagaimana pengaruhnya, analisa sebab, dan analisa variasi-variasi yang memungkinkan. Penggunaan sejumlah steam dari aliran utama mungkinkan untuk mendapatkan hasil yang lebih memungkinkan untuk menurunkan temperatur air pendingin untuk mendinginkan condenser.

Heat recovery from geothermal power plant used helping its optimization. Heat recovery that come out from separator in geothermal power plant can be used as heater for absorption chiller to decrease cooling water in condenser. Therefore, electricity can be generated more than usual. This happened because pressure in condenser more vacuum and the temperatur decrease. As the result, hot water from separator is 17.38 kg/s. It has 4 MW potential for generation in generator absorption chiller. From the hot water, the absorption chiller has 1035 TR capacity and decrease cooling water temperature to power plant condenser up to 0.34°C. Steam 20 kg as additional with hot water in generator, temperature decrease of cooling water to power plant condenser as 3.1 - 3.7°C. It capacity become 7759 - 9439 TR at COP 0.6. Therefore, we need to simulate and study of absorption chiller in heat and mass balance to know the effect, cause analysis, and other possible variations analysis. Use amount of steam from steam main pipe, bring trough to get result which more possible to decrease cooling water to condense steam in condenser."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58168
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arief Surachman
"Dalam rangka upaya memenuhi target pemerintah yaitu pengembangan pembangkit listrik tenaga panas bumi PLTP pada tahun 2025 ditargetkan sebesar 7.242 MW, maka tentu saja akan diperlukan data tentang desain PLTP yang paling optimal yang dapat diterapkan pada seluruh kondisi sumber panas bumi. Dengan demikian, diperlukan panduan desain yang dibuktikan secara ilmiah untuk pembangunan PLTP. Dalam dekade terakhir ini, banyak peneliti yang menganalis atau merancang sistem energi dengan menggabungkan antara analisis energi, exergy dan thermoekonomik. Hal ini dimaksudkan dalam upaya peningkatan efisiensi serta mengurangi kerugian-kerugian yang ditimbulkan oleh ketidakefisienan sistem.
Melalui analisa yang komprehensif dengan menggabungkan analisa energi, exergy, exergoeconomics serta exergoenvironment, maka diharapkan dapat menjadi panduan desain yang paling optimum dengan mempertimbangkan segala aspek, baik aspek teknologi, ekonomi dan lingkungan yang dapat diaplikasikan untuk berbagai kondisi sumber panas bumi di Indonesia. Untuk itulah pada disertasi ini dilakukan analisa dan optimasi 3E exergy,economic,environment. Pemodelan dan optimasi sistem PLTP dilakukan menggunakan software EES dan diintegrasikan dengan MATLAB.
Dari hasil analisis 3E, dapat diketahui bahwa komponen seperti turbin dan cooling tower merupakan komponen yang menyumbang nilai exergy destruction, total cost dan exergoenvironment yang paling besar dibandingkan komponen lainnya.

In order to reach the government 39;s target of building geothermal power plant PLTP in 2025 of 7,242 MW, then it will need data about the most optimal PLTP design that can be applied to all geothermal conditions. Thus, the design required for the construction of PLTP. In the last decade, many researchers have analyzed and discussed energy systems with energy, exergy and thermoeconomic analyzes. This is necessary in an effort to increase and reduce the losses caused by system inefficiencies.
Through a comprehensive analysis with energy analysis, exergy, exergoeconomics and exergoenvironment, it is expected to be the most optimal design with good aspects, economics and environment that can be used for various geothermal conditions in Indonesia. For analysis, it was conducted 3E exergy, economy, environment analysis on this dissertation. By using EES software and integrated with MATLAB, the PLTP system can be modeled and optimized.
From the results of 3E analysis, it can be seen that components such as turbines and cooling towers are the components that contribute the largest value of total exergy destruction, total cost and exergoenvironment compared to other components.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2483
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ahmad Faqih
"Banyak aplikasi dan proses-proses di industri yang membutuhkan temperatur pendinginan sangat rendah, bahkan bidang biomedis membutuhkan cold storage yang mampu mendinginkan hingga temperatur -80°C. Penggunaan sistem refrigerasi siklus tunggal pada aplikasi temperatur sangat rendah menjadi tidak ekonomis karena tinggi nya rasio tekanan dan juga menghasilkan efek pendinginan yang tidak efektif karena rendah nya tekanan evaporasi, sehingga digunakan sistem refrigerasi cascade. Penggunaan refrigeran alamiah, seperti campuran karbon dioksida dan hidrokarbon merupakan alternatif dari penggunaan refrigeran yang mengandung bahan perusak lapisan ozon dan pemanasan global. Pada penelitian ini, dilakukan analisis termodinamika untuk menentukan komposisi campuran karbon dioksida dan hidrokarbon yang optimum. Selanjutnya, dilakukan optimisasi secara termoekonomi untuk menentukan kondisi operasi yang optimum dari sistem refrigerasi cascade, dimana peningkatan efisiensi exergy merupakan sasaran optimisasi secara termodinamika, sedangkan meminimumkan pengeluaran biaya tahunan merupakan sasaran optimisasi secara ekonomi.

There are many industrial applications and processes in which ultra-low temperature is necessary, even the biomedical preservation that needs cold storage providing temperature about -80°C. The use of single cycle refrigeration system for ultra-low temperature application is economically unacceptable caused by the high pressure ratio and results the ineffective evaporating effect as the low evaporating pressure, hence the cascade refrigeration system is applied. Natural refrigerants, such as carbon dioxide and hydrocarbon will be the alternative solutions of the used of ozon depleting and global warming effect refrigerants. In this research, thermodynamic analysis is applied to decide the optimum composition of the mixtures between carbon dioxide and hydrocarbon. Furthermore, thermoeconomic optimization results the optimum operating conditions of the cascade refrigeration system where the increasing of exergetic efficiency is the thermodynamic objective, while the minimization of the annual cost is the economic objective."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43282
UI - Skripsi Open  Universitas Indonesia Library
cover
Panjaitan, Mangasi Natanael
"Potensi geotermal Indonesia mencapai sekitar 28,1 GWe, dan sebagian besar terdapat di Sumatra. Akan tetapi, kondisi infrastruktur saluran transmisi di Sumatra yang belum memadai tidak memungkinkan pemanfaatkan PLTP demi penyediaan listrik penduduk. Lalu, Peraturan Pemerintah nomor 1 tahun 2014 tentang Pelaksanaan Kegiatan Pertambangan Mineral dan Batubara (minerba) menuntut pembangunan smelter (suatu industri dengan konsumsi energi yang sangat besar) harus segera terealisasikan. Melihat keadaan ini, potensi geotermal dapat dimanfaatkan sebagai salah satu alternatif untuk memenuhi kebutuhan energi industri smelter, yakni dengan membangun PLTP yang terintegrasi langsung dengan smelter. Jenis smelter yang paling cocok adalah smelter aluminium karena jenis smelter tersebut dominan menggunakan proses elektrolisis. Tetapi selama proses, terdapat losses yang mempengaruhi efisiensi masing-masing sistem. Suatu analisis diperlukan untuk mengidentifikasi posisi-posisi dan alasan terbentuknya losses tersebut. Metode yang digunakan untuk menganalisis kedua sistem PLTP dan Smelter pada penelitian ini adalah metode analisis energi dan eksergi berdasarkan pada Hukum Termodinamika I dan II. Tujuan dari penelitian ini adalah mendapatkan hasil perhitungan energi dan eksergi untuk mengetahui efisiensi smelter dan pembangkit siklus single-flash sehingga selanjutnya dapat dianalisis untuk merekomendasikan perbaikan sistem agar efisiensi termal PLTP sebagai pemasok listrik dan efisiensi eksergi dari sistem smelter Aluminium dapat meningkat. Hasil penelitian menunjukkan bahwa Siklus geotermal Single-flash memiliki efisiensi eksergi sebesar 31%, dengan exergy losses terbesar terjadi pada kondensor (233.58 MJ) dan reinjeksi brine (176.85 MJ) dan Smelter Aluminium memiliki efisiensi sebesar 18.45%, dengan exergy losses terbesar terjadi pada Digester (35.69 MJ), Rotary kiln (31.05 MJ), dan elektrolisis cell (79.25 MJ).

The geothermal energy potential in Indonesia is around 28.1 GWe, where a large portion of it is in Sumatra. However, since the transmission line infrastructure in Sumatra isn?t capable to transfer this energy, utilization to provide electricity for the citizen is not possible. On the other hand, PP No.1 of year 2014, regarding Minerals and Coals Mining, demands smelter industries (industries with a massive amount of energy consumption) to be immediately built in Indonesia. Considering this situation, the geothermal energy potential can be used as an alternative to provide the need of energy of smelter industries, by building a geothermal power plant which is integrated with the smelter. An aluminum smelter is most suitable because it mainly uses electrolysis process. However, during the process, some losses occurs in each system. An analysis is needed to indentify the location where these losses occurs and their explanation. The method used to analyze both systems is an energy and exergy analysis based on First and Second Law of Thermodynamics. The purpose of this research is to obtain the calculation of energy and exergy to find out the efficiency of both smelter and single-flash cycle power plant, so it can be analyzed to give recommendations that can fix the model of single-flash cycle geothermal power plant and aluminum smelter to increase their thermal efficiency and performance. The result of this research shows that Single-flash cycle Geothermal Plant has an exergy efficiency of 31%, with largest exergy losses occurring at condenser(233.58 MJ) and brine reinjection (176.85 MJ) and Aluminum Smelter has an exergy efficiency of 18.45%, with largest exergy losses occurring at Digester (35.69 MJ), Rotary kiln (31.05 MJ), and electrolysis cell (79.25 MJ)"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S61962
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Luthfi Fitris
"Fluida panas bumi dari pembangkit listrik tenaga panas bumi (PLTP) selalu disertai oleh gas yang tidak dapat dikondensasikan/Noncondensable gas (NCG). Gas-gas ini meningkatkan tekanan kondensor, berkontribusi terhadap backpressure pada turbin, dan mengurangi produksi daya pembangkit. Untuk menghilangkan NCG dari kondenser, PLTP membutuhkan utilisasi dan optimisasi Gas Removal System (GRS). PT. X menggunakan sistem dual ejector (SJE) untuk gas removal system (GRS). Karena berbagai kondisi uap, banyak motive steam yang digunakan dan tekanan kondenser meningkat. Hal ini menyebabkan penuruan produksi daya. Namun, pembangkit PT. X memiliki liquid ring vacuum pump (LRVP) yang dapat digunakan dengan dual ejector sebagai sistem hibrida (hybrid system). Pembahasan ini bertujuan untuk optimisasi GRS dengan tujuan peningkatan produksi listrik dan didasarkan pada analisis termodinamika dan Cycle Tempo 5.0.
Hasil menunjukkan bahwa hybrid system memiliki kinerja yang lebih tinggi daripada sistem dual ejector. Dengan mempertahankan tekanan kondenser yang sama pada 0,08 bar, PLTP dengan sistem dual ejector menghasilkan daya bersih sebesar 42,9 MW sedangkan PLTP dengan hyrbid system menghasilkan daya bersih sebesar 44,5 MW. Kesimpulannya, analisis termodinamika menunjukkan bahwa hybrid system lebih cocok untuk digunakan di PT. X demi peningkatan produksi daya.

Geothermal fluids of geothermal power plants (GPP) are always accompanied by non-condensable gases (NCG). These gases do not condense inside the condenser which will increase the condenser pressure, contribute to backpressure on the turbine, and thereby decreasing the power generation of the plant. In order to remove these NCG from the condenser, GPP would need to utilize and optimize Gas Removal System (GRS). Currently PT. X utilizes a dual ejector gas removal system (GRS). Due to various steam conditions, more motive steam is needed and the condensers pressure rises up. These problems will eventually lead to lower power production. However, the GPP possesses a liquid ring vacuum pump on standby which could be utilized with the ejector as a hybrid system. This study aims to optimize the gas removal system for an improved GPPs overall power production that is based on thermodynamic analysis and uses Cycle Tempo 5.0 for modeling and simulation.
The result shows that hybrid system has higher performance than the dual ejector system. By maintaining the same condenser pressure at 0.08 bar, the GPP with dual ejector system produces nett power of 42.9 MW while the GPP with hybrid system produces nett power of 44.5 MW. In conclusion, the thermodynamic analysis justifies that hybrid gas removal system is more suitable to be utilized in PT. X in order to gain higher power producion.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gama Gilang Adiarte
"Monitoring kinerja pembangkit listrik penting dilakukan untuk melihat efisiensi sistem secara keseluruhan. Kinerja dalam pembangkit listrik tenaga panas bumi dapat ditinjau dari nilai Specific Steam Consumption (SSC). Penelitian ini bertujuan untuk mengestimasi SSC dengan menggunakan pendekatan artificial intelligence berbasis algoritma Adaptive Neuro Fuzzy Inference System (ANFIS). Variabel input algoritma ini ANFIS berjumlah 10 variabel yang berasal dari sub-sistem pembangkit listrik tenaga panas bumi yakni steam supply and venting system (SSVS), turbine-generator system (TGS), steam return and condensate system (SCRS), gas removal system (GRS), dan cooling water system (CWS). Dalam penelitian ini dilakukan seleksi variabel menggunakan principal component analysis (PCA) dan genetic algorithm (GA) guna meminimalisir nilai error estimasi SSC serta menganalisis secara numerik variabel-variabel apa saja yang mempengaruhi SSC dari 10 variabel awal yang ditentukan. Evaluasi model ANFIS-PCA dan ANFIS-GA yang digunakan adalah RMSE, MAE, dan MAPE. Pada penelitian ini, algoritma hybrid ANFIS-GA dan ANFIS-PCA menghasilkan kinerja estimasi yang sama dan lebih baik dibandingkan tanpa melakukan seleksi variabel. Hasil evaluasi RMSE menunjukkan nilai 0.0298 untuk ANFIS-GA dan ANFIS-PCA serta 0.0351 untuk ANFIS tanpa seleksi variabel. Dengan hasil estimasi ini, diharapkan dapat menjadi alat monitoring SSC jika terjadi abnormalitas pada pengukuran SSC yang dapat disebabkan oleh abnormalitas pada instrument flowmeter uap.

Monitoring the performance of the power plant is important to see the overall system efficiency. The performance in geothermal power plants can be viewed from the Specific Steam Consumption (SSC) value. This research aims to estimate the SSC using an artificial intelligence approach based on the Adaptive Neuro Fuzzy Inference System (ANFIS). The ANFIS’s input variables consist of 10 variables originating from the geothermal power generation sub-system, namely the steam supply and venting system (SSVS), the turbine-generator system (TGS), the steam return and condensate system (SCRS), the gas removal system (GRS), and a cooling water system (CWS). In this study, principal component analysis (PCA) and genetic algorithm (GA) are used to minimize the estimation error value and to analyze variables affecting the SSC. The evaluations of the ANFIS-PCA and ANFIS-GA models used are RMSE, MAE, and MAPE. In this study, the ANFIS-GA and ANFIS-PCA algorithms produce the same and better estimation performance than without selecting variables. The RMSE evaluation showed a value of 0.0298 for ANFIS-GA and ANFIS-PCA and 0.0351 for ANFIS without variable selection. It is hoped that this result can become an SSC monitoring tool as a mitigation of the abnormality in the steam flowmeter instrument."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sholahudin
"Banyak proses-proses di industri yang membutuhkan temperatur pendinginan sangat rendah, bahkan bidang biomedis membutuhkan cold storage yang mampu mendinginkan hingga temperatur -80°C. Penggunaan sistem tunggal sulit diaplikasikan pada temperatur yang sangat rendah disebabkan rasio tekanan pada kompresor terlalu tinggi, sebagai gantinya digunakan sistem refrigerasi cascade. Penggunaan refrigeran alamiah seperti campuran karbon dioksida dan hidrokarbon merupakan alternatif untuk menghindari penggunaan refrigeran yang mengandung bahan perusak lapisan ozon dan pemanasan global seperti CFC dan HFC. Pada penelitian ini dilakukan optimasi campuran karbondioksida dan etana sebagai refrigeran sirkuit temperatur rendah untuk mencari nilai optimum dari segi efisiensi exergi dan biaya tahunan. Temperatur evaporator, kondenser, dan cascade dijadikan sebagai variable decision untuk menganalisa sifat- sifat termodinamika refrigeran yang berpengaruh pada efisiensi exergi dan biaya tahunan sistem. Optimasi yang dilakukan menggunakan metode optimasi multiobjektif yang mana efisiensi exergi sebagai fungsi objektif pertama dan biaya tahunan sebagai fungsi objektif kedua. Optimasi ini dilakukan untuk mencari biaya sistem yang sekecil-kecilnya dan memperoleh efisiensi exergi semaksimal mungkin.

Many industrial processes that require low refrigeration temperatures, even the field of biomedicine require cold storage which can cool up to temperature -80 °C. The use of a single refrigeration system is difficult to apply at very low temperatures due to the pressure ratio of compressor is too high. Instead for this application, cascade refrigeration system is used. The use of natural refrigerants, such as carbon dioxide and hydrocarbon mixture is an alternative to avoid the use of refrigerants that contain ozone depleting and global warming such as CFCs and HFCs. Ethane is a hydrocarbon refrigerant that can perform cooling to -80 ° C, but due to it has highly flammable nature, so it is mixed with the carbon dioxide to reduce the flammable nature. In this research, optimization of mixture of carbon dioxide and ethane as a refrigerant in low temperature circuit is run to find the optimum value in terms of exergi efficiency and total annual cost of the system. Temperature of the evaporator, condenser, and a cascade condenser are used as a decision variable to analyze the thermodynamic properties of refrigerants that affect the exergi efficiency and total annual cost of the system. Optimization is run by using multi-objective optimization method which exergi efficiency as the first objective function and total annual cost as the second objective function. This optimization is performed to find the cost of the system is minimum and exergi efficiency is maximum.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S45472
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boma Wibowo
"Pada suatu pembangkit listrik tenaga panas bumi (PLTP), kondensor merupakan alat yang berfungsi untuk mengkondensasikan uap sisa yang keluar dari turbin. Kondensat yang dihasilkan kemudian didinginkan melalui menara pendingin atau cooling tower sebelum dialirkan kembali ke dalam kondensor sebagai air pendingin. Penurunan tekanan vakum di dalam kondensor saat proses kondensasi memberikan perbedaan entalpi yang semakin besar pada turbin. Jika terjadi kenaikan tekanan kondensor maka energi listrik yang dihasilkan akan semakin berkurang. Tekanan dan suhu menjadi variabel yang mempengaruhi kinerja dari kondensor tersebut. Kedua variable ini sangat bervariasi dan sulit dikontrol karena dipengaruhi oleh keadaan lingkungan sekitar. Suhu cooling water sangat dipengaruhi oleh suhu disekitar pembangkit dan kinerja dari cooling tower. Untuk mengetahui pengaruh kedua variabel ini terhadap kinerja kondensor, maka perlu dilakukan analisa kinerja kondensor. Analisa kinerja kondensor dilakukan dengan melihat data lapangan yang diperoleh dari control room unit 2 milik PT. Indonesia Power UBP Kamojang. Penulisan ini difokuskan pada analisa kinerja kondensor dengan tipe direct contact spray jet yang berkaitan dengan pengaruh tekanan dan suhu yang nantinya akan mempengaruhi kinerja kondensor tersebut.
On a geothermal power plant (PLTP), the condenser is a equipment that serves to condensing the remaining steam coming out of the turbine. The resulting condensate is then cooled via cooling tower before going back into the condenser as cooling water. Vacuum pressure drop inside the condenser when condensation give an increasingly large enthalpy differences on the turbine. In case the condenser pressure increases then the energy is electricity generated will be reduced. Pressure and temperature become variables that affect the performance of the condenser. This two variable is highly variable and difficult to be controlled because it is influenced by the state of the environment. The temperature of the cooling water was strongly influenced by the temperature of the surrounding plants and the performance of the cooling tower. To know the influence of these variables on performance of the condenser, then it needs to be done analysis of the performance of the condenser. Analysis of the performance of the condenser is done by looking at the field data obtained from the control room of unit 2 belongs to PT Indonesia Power. UBP Kamojang. The writing is focused on the analysis of the performance of the condenser with direct contact type spray jet with regard to the influence of pressure and temperature which will affect the performance of the condenser."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65000
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>