Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 183048 dokumen yang sesuai dengan query
cover
Robby Muliadi
"Skripsi ini membahahas studi analisis kinerja dari mesin propulsi kapal LNG Tanker menggunakan Combined cycle yang komponennya terdiri dari Turbin gas, Turbin uap, dan Heat recovery steam generator HRSG . Langkah pertama adalah menentukan hambatan tipikal dari kapal LNG Tanker 125.000 m3 menggunakan software ldquo;Maxsurf Resistance 20 rdquo; kemudian dirancang sistem propulsi untuk memenuhi kebutuhan daya dari hambatan tersebut menggunakan software ldquo;Cycle Tempo 5.0 rdquo; dari hasil simulasi didapatkan daya maksimum sistem sebesar 28122.23 kW dengan konsumsi bahan bakar 1.173 Kg/s dan effisiensi sistem sebesar 48.49 pada kondisi muat, kapal dapat mencapai kecepatan 20.67 knot.

This study explains about performance analysis of a propulsion system engine of an LNG Tanker Ship using Combined Cycle which the components are Gas Turbine, Steam Turbine and Heat Recovery Steam Generator. The first step is to determine the general resistance of an LNG Tanker Ship 125.000 m3 by using Maxsurf Resistance 20 then designing the propulsion system to fulfill the necessary power from the resistance by using Cycle Tempo 5.0 software. The simulation results can indicate the maximum power of system about 28122.23 kW with the fuel consumption about 1.173 Kg s and the system efficiency about 48.49 in full loaded condition, the ship speed can reach up to 20.67 knot."
Depok: Universitas Indonesia, 2017
S68162
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Fawzi
"ABSTRAK
Energi listrik merupakan kebutuhan masyarakat. Seiring berjalannya waktu, kebutuhan listrik semakin meningkat. Heat Recovery Steam Generator HRSG merupakan salah satu alat yang sangat penting dalam PLTGU. Kegagalan atau kerusakan pada HRSG tentu menjadikan unit PLTGU tidak efektif dalam menghasilkan listrik. Pada Penelitian ini dengan menggunakan metode FMEA Failure Mode and Effect Analysis bertujuan untuk menentukan, mengklasifikasikan dan menganalisa mode kegagalan. Sebagai hasil dari perkalian S severity , O occurrence , dan D detection sehingga diperoleh RPN Risk Priority Number . Hasil FMEA diperoleh 10 mode kegagalan kritis dari 26 mode kegagalan yang terjadi. Urutan RPN tertinggi adalah 245 Pada Superheater dengan mode kegagalan : bocor pada tube , RPN 216 Pada economizer dengan mode kegagalan bocor pada tube , kemudian RPN 210 Pada Superheater dengan mode kegagalan : bocor pada U-Bend , dan tujuh kegagalan lainnya. Tindakan penanganan risiko dilakukan untuk kesepuluh mode kegagalan tersebut.

ABSTRAK
Nowadays, Electricity is an important needs people. By the time, people needs of electricity increasing. Heat Recovery Steam Generator HRSG has important role as a part of PLTGU stands for Integrated Gasification Combined Cycle Plants . HRSG rsquo s failures or damages surely impact on ineffectively electricity producing by PLTGU. This research, using Failure Mode and Effect Analysis FMEA , aims to determine, classify, and analyze failure modes. As the result of S Severity , O Occurrence , and D Detection multiplication, RPN Risk Priority Number would be achieved. FMEA result shows that 10 critical failure modes occurs from 26 failure modes. The highest RPN is 245 in Superheater with failure mode tube leakage , after that is RPN 216 in Economizer with failure mode tube leakage , then RPN 210 in Superheater with failure mode U Bend leakage , and the seven other failures. Risk Treatments are being held for the 10 failure modes."
2017
S67830
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sultan Alif Zidane
"Kebutuhan energi yang terus meningkat setiap tahunnya membuat manusia perlu menggunakan alternatif sumber energi lain yaitu gas bumi, dimana cadangan gas bumi Indonesia adalah 142.72 TSCF pada 2017. Karena LNG merupakan sumber energi yang murah dan ramah lingkungan maka sistem propulsi kapal angkut juga akan menggunakan bahan bakar LNG. Penelitian ini bertujuan untuk mengetahui kelayakan sistem propulsi berbahan bakar full LNG untuk kapal small scale LNG Carrier dengan sistem kombinasi gas elektrik steam turbin (COGES). Kelayakan sistem propulsi rancangan akan ditentukan oleh daya yang dihasilkan sistem, luaran emisi yang dihasilkan, serta kelayakan ekonomi sistem. Data yang digunakan diperoleh dari simulasi menggunakan software Cycle-Tempo 5.1 dan juga untuk data emisi diperoleh dari simulasi menggunakan software SimaPro. Penelitian ini menunjukan dengan input kalor yang sama 50000 kJ, sistem COGES, sistem DFDE, sistem Diesel daya luaran yang dihasilkan berturut-turut adalah 14 kWh, 6.6 kWh, dan 6.4kWh sehingga sistem COGES memiliki keunggulan dibandingkan dengan sistem lainnya. Dengan efisiensi sistem COGES 30.1% (elektikal) dan 61.79% (mekanikal). Sistem COGES juga memiliki luaran emisi CO2 yang lebih kecil dibandingkan sistem lainnya dengan komposisi 24% (COGES); 25% (DFDE); 51% (Diesel). Kemudian untuk keekonomian sistem propulsi COGES memiliki nilai NPV yang positif, IRR di kisaran 21% - 72% dan PBP di kisaran 4.06 tahun – 1.39 tahun.

Energy needs that continue to increase every year make people need to use alternative energy sources, namely natural gas, where Indonesia's natural gas reserves are 142.72 TSCF in 2017. To meet natural gas needs, distribution from natural gas sources to consumers to regions is required. remote areas, one of which uses an LNG carrier ship. Because LNG is a cheap and environmentally friendly energy source, the propulsion system of the transport ship will also use LNG as fuel. This study aims to determine the feasibility of a full LNG-fueled propulsion system for small-scale LNG Carrier vessels with a combination gas electric steam turbine system (COGES). The feasibility of the design propulsion system will be determined based on the power generated by the system, the output emissions generated, and the economic feasibility of the system. The data used were obtained from simulations using Cycle-Tempo 5.1 software and also for emissions data obtained from simulations using SimaPro software. The results of this study show that with the same heat input of 50000 kJ, the COGES system, the DFDE system and the Diesel system of the output power produced are 14 kWh, 6.6 kWh, and 6.4 kWh, so that the COGES system has advantages compared to other systems. With COGES system efficiency of 30.1% (electrical) and 61.79% (mechanical). The COGES system also has a lower CO2 emission output than other systems with a composition of 24% (COGES); 25% (DFDE); 51% (Diesel). Then for the economy of the propulsion system COGES design has a positive NPV value, IRR in the range of 21% - 72% and PBP in the range of 4.06 years - 1.39 years."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bondan Adinugroho
"Kebutuhan listrik dan uap air di Fasilitas Gas Processing Kilang LNG Arun sebesar 158.400.000 kWh/tahun dan uap air 180 ton/jam (TPH) dihasilkan dari 3 (tiga) unit Gas Turbine Generator (GTG) dan 3 (tiga) unit Heat Recovery Steam Generator (HRSG) di Unit pembangkit U-90 di Perta Arun Gas (PAG). Permasalahan dari pembangkitan listrik dan uap saat ini adalah kebutuhan bahan bakar yang besar yaitu 13,14 MMSCFD untuk memproses 30 MMSCFD gas sales. Ketersediaan suku cadang (usang), dan beberapa kali terjadi gangguan operasi (blackout) juga menjadi permasalahan pembangkit eksisting. Tujuan dari penelitian ini adalah untuk memisahkan dari GTG dan HRSG eksisting dan membangun unit pembangkitan baru di Fasilitas Gas Processing Kilang LNG Arun dengan unit pembangkitan listrik dan uap air yang lebih efisien dan tingkat avai;abilitas yang tinggi. Penggantian dilakukan dengan berbagai alternatif yaitu pembelian unit GTG & HRSG + Boiler baru, pembelian unit Gas Engine Generator (GEG) & HRSG + Boiler baru, dan penyambungan listrik ke PLN (Perusahaan Listrik Negara) + Boiler. Salah satu hasil dari penggantian pembangkit adalah dengan penggunaan GTG & HRSG + Boiler baru akan memerlukan bahan bakar gas sebesar 12,88 MMSCFD, dimana terdapat efisiensi gas sebesar 0,26 MMSCFD, dan dengan penambahan biaya pembelian unit dan biaya pemeliharaan akan mendapatkan tarif pembangkitan listrik sebesar 0,221 $/kWh dan tarif pembangkitan uap air sebesar 0,0019 $/ton/tahun dengan metode keeokonomian cash flow. Penggantian GTG dan HRSG eksisting akan lebih ekonomis jika dilakukan kegiatan penurunan uap air di Fasilitas Gas Processing Kilang Arun, hal ini dikarenakan alternatif pembangkitan pengganti membutuhkan konsumsi bahan bakar gas untuk menghasilkan uap air lebih besar dibandingkan dengan pembangkitan listrik.

The demand for electricity and steam at the Arun LNG Refinery Gas Processing Facility is 158,400,000 kWh / year and 180 tons / hour of water vapor (TPH) is produced from 3 (three) units of Gas Turbine Generator (GTG) and 3 (three) units of Heat Recovery Steam Generator (HRSG) at the U-90 generating unit at Perta Arun Gas (PAG). The problem with electricity and steam generation today is the large fuel requirement, namely 13.14 MMSCFD to process 30 MMSCFD of gas sales. The availability of spare parts (obsolete), and several times the operation interruption (blackout) is also a problem in the existing plant. The purpose of this research is to separate from the existing GTG and HRSG and build a new generation unit at the Arun LNG Refinery Gas Processing Facility with a more efficient electricity and steam generation unit and a high level of availability. Replacement is carried out with various alternatives, namely the purchase of a new GTG & HRSG + Boiler unit, the purchase of a new Gas Engine Generator (GEG) & HRSG + Boiler unit, and connecting electricity to PLN (State Electricity Company) + Boiler. One result of the replacement of the generator is that with the use of GTG & HRSG + the new boiler will require a gas fuel of 12.88 MMSCFD, where there is a gas efficiency of 0.26 MMSCFD, and with the addition of unit purchase costs and maintenance costs will get electricity generation tariff of 0.221 $ / kWh and steam generation tariff of 0.0019 $ / ton / year using the cash flow economic method. Replacement of the existing GTG and HRSG will be more economical if steam reduction activities are carried out at the Arun Refinery Gas Processing Facility, this is because the alternative generation of replacement requires higher gas fuel consumption to produce steam compared to electricity generation."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Ridho
"Sebuah kapal hydrofoil dengan kecepatan tinggi diperlukan untuk menjadi alat transportasi terkini sebagai sarana transportasi penumpang antar pulau. Ketika kapal meningkatkan kecepatannya, hydrofoil memproduksi gaya angkat sehingga lambungnya terangkat dan keluar dari air dan menyebabkan pengurangan gesekan dan peningkatan dalam kecepatan. Skripsi ini membahas tentang analisis kinerja mesin propulsi kapal hidrofoil dengan menggunakan penggerak waterjet pada kapal hydrofoil dimulai dari perhitungan hambatan, pemilihan mesin penggerak, hingga pemilihan waterjet yang sesuai. Didapatkan dari data perhitungan bahwa main engine yang digunakan untuk menjadi mesin penggerak utama kapal adalah turbin gas yang memiliki daya 4000 kW dan putaran 14200 RPM. Sedangkan untuk pemilihan waterjet, yang digunakan adalah Waterjet dari Wartsilla dengan putaran maksimum 2000 RPM.

An hydrofoil ship with high speed needs to be the latest transportation vehicle on sea. When the ship increases the speed, the hydrofoil produce lift so that the hull of the ship is lifted out of the water and decreases the friction causes the increases of speed. This thesis explains the analysis performance of propulsion engine with the waterjet system as the propulsor starts with drag calculation, prime mover and waterjet selection. From the calculation data, it can be conclude that gas turbine with 4000 kW is the prime mover and waterjet with 2000 RPM maximum speed is the propulsor system."
Depok: Universitas Indonesia, 2017
S67914
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elsa Widowati
"Dalam penelitian ini disimulasikan post firing section dalam HRSG dengan pembakar duct burner, bahan bakar syngas serta oksigen yang berasal dari Thermal Exhaust Gas (TEG) menggunakan computational fluid dynamics dengan program COMSOL Multiphysics. Model menggunakan neraca massa dilengkapi dengan laju reaksi kinetik, neraca momentum aliran turbulen k-ɛ, dan neraca energi. Dibuat variasi geometri ruang bakar, kecepatan syngas, konsentrasi O2 dalam TEG, serta suhu masukan fluida. Berdasarkan simulasi, baffle dan kecepatan alir sygas menjadi faktor penentu bentuk nyala. Kecepatan alir syngas sebesar 8 m/s merupakan nilai yang paling optimum sebab api tidak menempel pada pembakar dan suhu rata-rata yang dihasilkan mencapai 1.500 K. Baffle dengan kemiringan 30o memberikan profil nyala terbaik sebab tidak menyebabkan akumulasi panas di sudut baffle. Konsentrasi O2 serta suhu masukan syngas dan TEG menunjukkan pengaruh terhadap suhu maksimum yang dicapai namun tidak terlalu berpengaruh terhadap bentuk nyala. Suhu tertinggi sebesar 3.151 K dicapai dengan konsentrasi O2 14%. Suhu nyala lebih dipengaruhi oleh perubahan konsentrasi O2 dibandingkan oleh perubahan suhu masukan fluida. Suhu 3.151 K juga dicapai dengan mengkondisikan rasio TEG dan syngas pada stoikiometri.

In this research, post firing section in HRSG was simulated with duct burner as burner, syngas as fuel, and oxygen that came from Thermal Exhaust Gas (TEG) using computational fluid dynamics by program COMSOL Multiphysics. The model is being used with kinetics reaction rate, mass balance, momentum balance, turbulent k-ɛ fluid flow, and energy balance with variation of furnace geometry, syngas inlet velocity, O2 concentration in TEG, and also fluids inlet temperature. Based on simulation result, baffle and syngas inlet velocity relative to TEG velocity do affect flame shape. Syngas velocity 8 m/s is the most optimum since the flame did not stick the burner and distributed temperatur reach 1.500 K. Baffle slope 30o gives best profile for no accumulation occurred. Oxygen concentration as well as syngas and TEG input temperature give impact to the maximum temperature but not to the flame shape. Highest temperature 3.151 K can be achieved by using 14% O2 concentration. Flame temperature influenced more by O2 concentration change rather than fluids inlet temperature. Temperature 3.151 K also can be achieved by putting TEG and syngas in stoichiometry.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54858
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1994
S36314
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pradha Pahlevi Thamaryan
"ABSTRAK
Turbin uap adalah suatu penggerak yang mengubah energi potensial menjadi energi kinetik dan energi kinetik ini selanjutnya diubah menjadi energi mekanik dalam bentuk putaran poros turbin. Poros turbin langsung atau dengan bantuan elemen lain, dihubungkan dengan mekanisme yang digerakkan. Tergantung dari jenis mekanisme yang digerakkan, turbin uap dapat digunakan pada berbagai bidang industri, seperti untuk pembangkit listrik. Potensi energi yang dihasilkan dari uap sangat besar, tetapi pada proses konversinya menjadi energi listrik akan didapatkan pengurangan jumlah energi karena berbagai faktor. Tujuan penulisan ini adalah untuk mengetahui nilai daya yang bekerja pada sudu turbin dengan menganalisa dinamika fluidanya dan membandingkannya dengan potensi energi aktual yang didapatkan dari data aktual kinerja miniatur PLTU yang telah dilakukan pengujian sebelumnya. Perhitungan pada sudu turbin dilakukan dengan menggunakan segitiga kecepatan, perhitungan yang dilakukan menggunakan beban 150 Watt dan 250 Watt dan dibatasi pada 3600 rpm. Hasil dari perhitungan ini menunjukkan bahwa energi potensial yang dikonversi menjadi energi listrik cukup kecil atau dapat dikatakan relatif kecil efisiensinya.

ABSTRACT
Steam turbine is a moving tool which converts potential energy to kinetic energy then this kinetic energy is converted to mechanical energy in shaft rotations form. Turbine shaft directly or with supporting tools is connected to a mechanism that will be moved. It depends on what kind of mechanism that being used, steam turbine can be used to many kind of industries, the example is this steam turbine can be applicated to a power plant. The amount of potential energy which is produced by steam turbine is very big yet in converting process of this energy to electrical energy will get decreased by many factors. The purpose of this research is to identify the amount of energy which works on turbine blade by analyzing its fluid dynamics and compare it to data of real potential energy which is obtained from the earlier experiment. The calculation on turbine blade done by using velocity triangle equation, the calculation is using 150 Watt and 250 Watt load variations and limited at 3600 rpm. The result of this calculation has shown that the potential energy which is converted to electrical energy is relatively small."
2016
S65900
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lili Hambali
"Pada sebuah Pembangkit Listrik Tenaga Uap (PLTU), seperti di PLTU Ombilin, Sumatera Barat, air digunakan terutama untuk air umpan boiler, untuk pendingin, pemadam kebakaran, service water, dan air minum. PLTU Ombilin menggunakan Sungai Ombilin sebagai sumber air baku untuk memenuhi semua kebutuhannya akan air. Sebelum dapat digunakan untuk memenuhi semua keperluan tersebut, air baku harus diolah terlebih dahulu melalui berbagai tahapan untuk menghilangkan berbagai pengotor yang secara alami terkandung di dalamnya. Penelitian ini bertujuan untuk merancang unit pengolahan awal air baku untuk utilitas di PLTU Ombilin dan membandingkannya dengan unit pengolahan yang sudah ada dan beroperasi. Untuk keperluan perancangan digunakan data laju alir air yang diolah yang diperoleh dari lapangan yaitu sebesar 1.160 m³/jam. Untuk karakteristik air baku digunakan asumsi dan pendekatan bahwa air baku memiliki karakterisitik seperti air permukaan pada umumnya, yaitu dengan kandungan TSS, patogen, dan kekeruhan tinggi namun memiliki kesadahan rendah. Dengan demikian perancangan didasarkan tujuan untuk menyisihkan TSS, patogen, dan kekeruhan yaitu dengan menggunakan prinsip-prinsip koagulasi, flokulasi, sedimentasi, disinfeksi, dan membran ultrafiltrasi. Hasil perancangan ini berupa rangkaian proses yang tersusun dari static mixer, flokulator, clarifier, dan membran ultrafiltrasi, serta dengan menggunakan senyawa kimia meliputi alum, kapur, NaOCI, dan polielektrolit. Static mixer yang digunakan memiliki diameter pipa sebesar 16 in. Flokulator dirancang berupa saluran berpenampang (2 x 2) m² dengan panjang 100 m. Clarifier berupa unit aliran horizontal, dengan permukaan (40 x 20) m² dan kedalaman 5,8 m. Clarifier ini memiliki laju beban permukaan 35 m³m².d, laju beban weir 250 m³/m.d dengan panjang weir 111,36 m. Membran ultrafiltrasi hanya mengolah 80% air umpan, dengan fluks 50 Imh, dan luas permukaan yang dibutuhkan 13.290 m². Dari perbandingan hasil perancangan dan unit pengolahan yang sudah ada, didapatkan rekomendasi bagi unit pengolahan yang ada untuk tidak menggunakan screen, memodifikasi flokulator dan clarifier, serta mengganti saringan pasir dengan membran ultrafiltrasi."
Depok: Fakultas Teknik Universitas Indonesia, 2006
S49552
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marjo
"Penelitian yang dilakukan untuk tugas akhir ini menggunakan miniatur Pembangkit Listrik Tenaga Uap (PLTU) ini diproduksi oleh SNM (Shin Nippon Machinery) dengan TIPE 100-SCR. PLTU ini mampu menghasilkan daya listrik sebesar 450 Watt dengan kapasitas uap maksimum 130 kg/jam. Penelitian ini dilakukan bersama dengan Wawan Mardiyanto dengan masing¬masing menganalisa karakteristik PLTU pada titik pengaturan temperatur superheater yang ditentukan yaitu pada 205oC dan 215°C. Tujuan penulisan tugas akhir ini adalah untuk mengetahui karakteristik dan performance PLTU 450 Watt dengan kondisi pengaturan temperatur superheater 205°C. Pengujian dilakukan dengan cara mengoperasikan PLTU 450 pada pengaturan temperature superheater 205°C dengan variasi pembebanan 100 Watt, 200 Watt, 300 Watt dan 450 Watt.
Dari data hasil pengujian yang diperoleh kemudian di plot pada diagram h-s, T-s dan p-h untuk mengetahui karakteristik PLTU. Setelah dilakukan perhitungan pada beban puncak (450 W), diperoleh effisiensi thermal yang kecil yaitu sebesar 3,88%. Kenaikan temperatur pada superheater tidak sebanding dengan kenaikan effisiensi thermal system. Hal ini dapat dilihat pada diagram h-s dan T-s dan p-h dimana terjadi losses pada saat uap dialirkan dari boiler menuju superheater sebesar 0,4 kJ/kg dan dari superheater menuju turbin sebesar 78 kJ/kg.

The research for this thesis uses miniature Steam Power (power plant) was produced by the SNM (Shin Nippon Machiner y) with TYPE 100-SCR. This power plant capable of producing electrical power of 450 Watts with maximum steam capacity of 130 kg / hour. This research was conducted jointl y with Henry Mardiyanto to analyze the characteristi cs of each plant at the point of superheater temperatur e setting thatis prescribed at 205°C and 215°C. The purpose of this thesis is to investi gate the characteristi cs and performance of 450 Watt power plant with superheater temperature setting conditi ons 205°C. Testi ng is done by operati ng the power plant superheater 450 at 205oC temperature settings with variations of loading 100 Watt, 200 Watt, 300 Watt and 450 Watt.
From the test result data obtained later in the plot on the diagram hs, Ts and ph to characterize power plant. After doing the calculati ons at peakload (450 W), obtained by a small thermal efficiency that is equal to 3.88%. The increase in temperature at the superheater is not proporti onal to the increase in thermal efficiency system. This can be seen in the hs diagram and Ts and ph where losses occur at steam drained from the boiler to the superheater by 0.4 kJ /kg and from the superheater to the turbine by 78 kJ / kg.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
S770
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>