Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155155 dokumen yang sesuai dengan query
cover
Intan Primasari
"ABSTRAK
Kanker merupakan salah satu penyakit yang paling mematikan bagi manusia. Menurut WHO 2015 , kanker adalah penyebab kematian nomor 2 di dunia sebesar 13 setelah penyakit kardiovaskular. Salah satu hal yang dapat dilakukan untuk penelitian kanker menggunakan machine learning adalah melakukan pendeteksian jenis kanker dengan memanfaatkan microarray data. Microarray data yang memiliki banyak fitur. Itu merupakan salah satu kendala dalam penerapan teknik machine learning. Hal ini akan mempengaruhi perfoma atau keakuratan dari hasil klasifikasi pada data kanker. Oleh karena itu, metode pemilihan fitur diperlukan untuk meningkatkan perfoma dalam pendeteksian kanker. Dalam tugas akhir ini dilakukan perbandingan pemilihan fitur menggunakan Genetic Algorithm dan Laplacian Score. Fitur-fitur yang sudah terpilih pada data kanker kemudian digunakan dalam proses klasifikasi Support Vector Machines. Hasilnya, didapatkan akurasi terbaik saat dengan metode pemilihan fitur menggunakan Genetic Algorithm yaitu 98,69 dengan penggunaan 40 fitur untuk data kanker prostat dan 98,97 dengan penggunaan 30 fitur untuk data kanker kolon.

ABSTRACT
Cancer is one of the most deadly diseases for humans. According to the WHO 2015 , cancer is the causes of the death number two in the world by 13 after cardiovascular disease. Taking advantage from microarray data, machine learning methods can be applied to help cancer prediction according to its types. Microarray data has many features. It is one of the obstacles in the machine learning techniques. This will affect the performance or accuracy of the classification results on cancer data. Therefore, feature selection methods are required to increase performance in cancer prediction. This research proposed comparison of feature selection using Genetic Algorithm and Laplacian Score. Features that are already selected in the cancer data then used in the Support Vector Machines classification. The results show that the best accuracy obtained when using Genetic Algorithm with percentage of 98,69 by using 40 features for prostate cancer data and 98,97 by using 30 features for colon cancer data. "
2017
S68354
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tommy Rachmansyah Adyalam
"Kanker otak adalah pertumbuhan sel-sel abnormal di organ otak yang bersifat ganas. Salah satu cara untuk mengurangi perkembangan penyakit ini adalah melakukan pendeteksian dini menggunakan machine learning. Metode machine learning yang digunakan adalah AdaBoost Support Vector Machines untuk klasifikasi. AdaBoost Support Vector Machines adalah metode ensemble antara AdaBoost dengan base classifier Support Vector Machines. Data kanker otak direpresentasikan dalam bentuk matriks berupa ekspresi gen yang disebut DNA microarray. Data DNA microarray yang berdimensi tinggi akan direduksi dengan pemilihan fitur Signal-to-noise Ratio.
Pemilihan fitur bekerja untuk menemukan fitur-fitur yang informatif dan membuang fitur-fitur yang tidak sesuai. Pertama, data diklasifikasi menggunakan AdaBoost Support Vector Machines tanpa pemilihan fitur, dilanjutkan klasifikasi menggunakan AdaBoost Support Vector Machines dengan pemilihan fitur. Pendekatan one vs one digunakan untuk menyelesaikan masalah multi kelas. Setelah melakukan pengujian, hasil akurasi terbaik adalah 91,111 pada data training 90 dengan menggunakan pemilihan fitur sebanyak 60 fitur. Hasil tersebut lebih baik dibandingkan klasifikasi tanpa pemilihan fitur yaitu 86,667 pada data training 90.

Brain cancer is the growth of abnormal cells in the brain organ malignantly. One way to reduce the progression of this disease is to do early detection using machine learning. Machine learning method used is AdaBoost Support Vector Machines for classification. AdaBoost Support Vector Machines is an ensemble method between AdaBoost and base classifier Support Vector Machines. Brain cancer data is represented in the form of matrix of gene expression called DNA microarray. The high dimensional DNA microarray data will be reduced by Signal to noise Ratio feature selection.
Feature selection works to find informative features and discard irrelevant features. Firts, the data is classified using AdaBoost Support Vector Machines without feature selection, further classified using AdaBoost Support Vector Machines with feature selection. The one vs one approach is used to solve multi class problems. After testing, the best accuracy result is 91,111 in 90 training data by using feature selection of 60 features. The result is better than the classification without feature selection that is 86,667 in 90 data training.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tya Nadira
"ABSTRAK
Kanker merupakan penyebab utama kematian kedua di seluruh dunia sehingga mengakibatkan kanker menjadi salah satu prioritas masalah dalam kesehatan. Di Indonesia, tercatat bahwa kanker payudara dan kanker paru-paru memiliki angka kejadian dan kematian tertinggi bagi wanita dan pria WHO, 2014 . Untuk menangani hal tersebut, dalam tugas akhir ini diusulkan suatu metode untuk mengklasifikasikan data kanker menggunakan Support Vector Machines SVM dengan pemilihan fitur berdasarkan Artificial Bee Colony ABC dan Global Artificial Bee Colony GABC pada data kanker payudara dan paru-paru berbasis microarray. Hasil yang diperoleh menunjukkan bahwa metode pemilihan fitur ABC dan GABC memberikan hasil rata-rata akurasi yang lebih tinggi dibandingkan tanpa dilakukan pemilihan fitur dalam klasifikasi data kanker. Untuk pemilihan fitur, metode GABC memberikan hasil yang lebih unggul yaitu dengan akurasi tertinggi 99,99 dengan 10 fitur untuk data kanker paru-paru dan 96,4286 dengan 10 fitur untuk data kanker payudara selama 3 kali running sedangkan metode ABC memberikan rata-rata akurasi tertinggi 99,99 dengan 20 fitur untuk data kanker paru-paru dan 96,4286 dengan 10 fitur untuk data kanker payudara selama 5 kali running.

ABSTRACT
Cancer is the second leading cause of death globally, so that cancer becomes one of priority problems in health. According to WHO on 2014, Indonesia has breast cancer and lung cancer that is the highest incidence and death rates for women and men. To overcome it, in this research, we proposed method to classify cancer data using Support Vector Machines SVM with features selection based on Artificial Bee Colony ABC and Global Artificial Bee Colony GABC on breast and lung cancer based on microarray data. The results show that ABC and GABC as features selection method produced higher average classification accuracy than without no features selection. For features selection methods, the GABC method provides higher results with the highest 99,99 with 10 features for lung cancer data and 96,4286 with 10 features for breast cancer data for 3 times of runs while ABC method provides 99,99 with 20 features for data lung cancer and 96,4286 with 10 features for breast cancer data for 5 times of runs."
2017
S69844
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fildzah Zhafarina
"

Kanker hati merupakan penyebab utama kematian akibat kanker di seluruh dunia. Di Indonesia, kanker hati menempati angka kejadian tertinggi kedua untuk laki laki yaitu sebesar 12,4 per 100.000 penduduk dengan rata-rata kematian 7,6 per 100.000 penduduk. Pada tugas akhir ini, dibahas mengenai kanker hati primer dengan jenis hepatocellular carcinoma. Metode Twin Support Vector Machines (Twin SVM) diimplementasikan untuk mengklasifikasikan data kanker hati berdasarkan hasil CT scan. Data yang digunakan adalah data numerik hasil CT scan pasien yang menderita kanker hati dan diperoleh dari Laboratorium Radiologi RSUPN Cipto Mangunkusumo. Metode Twin SVM adalah pengembangan dari metode SVM yang menggunakan dua hyperplane dalam mengklasifikasikan sampel. Pada tugas akhir ini, kernel yang digunakan pada metode Twin SVM adalah polinomial dan radial basis function (RBF). Berdasarkan hasil perbandingan, klasifikasi data kanker hati menggunakan metode Twin SVM dengan kernel Polinomial menghasilkan akurasi tertinggi sebesar 77,30% pada penggunaan data testing sebesar 10% dan data training 90%. Selain itu, nilai akurasi terendah terdapat pada kernel RBF menghasilkan sebesar 60,10% pada penggunaan data testing sebesar 90% dan data training 10% dan nilai parameter 𝐶 = 1. Jika dibandingkan, klasifikasi data kanker hati dengan menggunakan metode Twin SVM dengan kernel polinomial menghasilkan nilai akurasi yang lebih baik.


Liver cancer is the main cause of cancer death in the worldwide. In Indonesia, the incidence rate of liver cancer is the second highest for men, that is 12.4 per 100,000 population with the average death rate is 7.6 per 100,000 population. This final project discusses primary liver cancer with a type of hepatocellular carcinoma. The Twin Support Vector Machines (Twin SVM) method was implemented to classify liver cancer data based on CT scan results. The data used are numerical data from CT scan results of patients suffering from liver cancer and obtained from the Radiology Laboratory of Cipto Mangunkusumo Hospital. The Twin SVM method is the development of the SVM method that uses two hyperplane in classifying samples. In this final project, the kernel used in the Twin SVM method is polynomial and radial basis function (RBF). Based on the comparison results, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces the highest accuracy of 77.30% on the use of testing data of 10% and training data of 90%. In addition, the lowest accuracy value is found in the RBF kernel resulting in 60.10% on the use of testing data of 90% and training data of 10% and the parameter value of C=1. When compared, the classification of liver cancer data using the Twin SVM method with a polynomial kernel produces better accuracy values.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Maghfirah
"Kematian yang disebabkan oleh kanker diperkirakan akan terus meningkat, padahal jumlah kematian ini dapat dikurangi dengan adanya deteksi dini. Salah satunya adalah dengan klasifikasi data kanker. Data kanker yang digunakan merupakan data kanker berdimensi tinggi dengan ribuan fitur, tetapi tidak semua fitur yang ada merupakan fitur yang relevan. Oleh karena itu, perlu adanya proses seleksi fitur. Untuk meningkatkan tingkat akurasi yang dihasilkan, digunakan sebuah metode seleksi fitur yang meninjau adanya korelasi antar gen, yaitu CSVM-RFE. Pada metode tersebut, data yang ada diproyeksikan dan diubah menjadi sebuah data baru dengan ekstraksi fitur, dan kemudian dilakukan proses seleksi fitur. Penggunaan dua metode tersebut pada klasifikasi tiga data kanker yang ada terbukti menghasilkan tingkat akurasi yang tinggi, pada data kanker kolon tingkat akurasi yang didapatkan adalah sebesar 96.6, pada kanker prostat sebesar 98.9, dan pada kanker lymphoma sebesar 98,6.

The number of death caused by cancer expected to rise over two decades, whereas the number of death can be reduced by early detection. One of them is cancer classification. Cancer dataset is a high dimensional dataset that consist of thousands of features, but not all of these features are relevant. Therefore, it is necessary to remove the redundant features using feature selection. Feature selection can also improve the accuracy of classification. Many feature selection methods do not consider the correlated genes, so we need a new feature selection method that consider the correlated genes. It is CSVM RFE, in this method the existing data is projected and converted into a new data with feature extraction. These two methods are applied to the cancer datasets, and produce the accuracy of 96.6 using colon cancer dataset, 98.9 using prostate cancer dataset, and 98.6 using lymphoma cancer dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69588
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ismail
"

Kanker adalah penyakit yang disebabkan akibat pertumbuhan (pembelahan) tidak normal dari sel jaringan tubuh. Kanker dapat menyebar ke jaringan lain yang terdekatnya. Menurut World Health Organization (WHO), tercatat pada tahun 2018 ada sebanyak 9,6 juta jiwa yang meninggal pada tahun 2018. Biasanya untuk dapat mengetahui sesorang terjangkit kanker atau tidak, ahli medis akan melakukan biopsi apabila disarankan oleh dokter. Namun, sekarang terknologi semakin berkembang, para saintis menggunakan metode komputasi dalam pendekatan pengolahan citra untuk meningkatkan penilaian histopatologis. Penelitian – penelitian sebelumnya telah menunjukan bagaimana machine learning dapat membantu pendeteksian kanker salah satunya mengguakan metode data scaling. Penelitian ini membahas algoritma data scaling membantu meningkatkan akurasi dalam proses klasifikasi kanker usus besar menggunakan Support Vector Machine. Hasil dari penelitian ini, algoritma data scaling memiliki nilai akurasi yang lebih tinggi dibandingkan dengan yang tidak menggunakannya.

 


Cancer is a disease caused by abnormal growth (division) of body tissue cells. Cancer can spread to other tissues closest to it. According to the World Health Organization (WHO), it was noted that in 2018 there were 9.6 million people who dies in 2018. Usually to be able to find out if someone has contracted cancer, a medical expert will do a biopsy if advised by a doctor. However, now that technology is growing, scientists use computational methods in image processing approaches to improve histopathological assessment. Previous studies have shown how machine learning can help detect cancer, one of which uses the method of data scaling. This study discusses the data scaling algorithm help to improve accuracy in the process of classification of colon cancer using Support Vector Machine. The result of this study, the data scaling algorithm has a higher accuracy than those who did not use it.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faisa Maulidina
"Kanker merupakan pertumbuhan sel abnormal di dalam tubuh yang tidak terkendali. Ketika kanker dimulai di paru-paru, hal ini dinamakan sebagai kanker paru-paru. Terdapat faktor-faktor tertentu yang meningkatkan risiko seseorang yang mengidap penyakit ini, yaitu dengan merokok (termasuk perokok pasif), riwayat kanker paru-paru dalam keluarga, terpapar radiasi, dan infeksi HIV. Penyakit ini dapat didiagnosis melalui image tests, diantaranya yaitu chest x-ray, CT scan, MRI scan, PET scan, dan bone scan. Meskipun diagnosa telah dilakukan dengan banyak cara, namun masih terdapat banyak kesalahan dalam mendiagnosa penyakit tersebut. Untuk mengatasi dan membantu hal tersebut, klasifikasi penyakit kanker paru-paru dapat dilakukan dengan menggunakan metode machine learning. Dataset yang akan digunakan untuk mengklasifikasikan penyakit ini berupa CT Scan yang didapatkan dari Rumah Sakit Cipto Mangunkusumo, Jakarta, Indonesia. Metode klasifikasi yang digunakan adalah Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), dimana Particle Swarm Optimization-Genetic Algorithm (PSO-GA) digunakan untuk mengoptimisasi parameter pada Support Vector Machine (SVM). Untuk mengevaluasi hasil kinerja metode tersebut, akan dilihat nilai akurasi, presisi, recall, dan f1-score dan dibandingkan dengan metode SVM tanpa optimisasi. Dari hasil yang didapat, klasifikasi dengan menggunakan Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM) menghasilkan performa yang lebih baik jika dibandingkan dengan Support Vector Machine (SVM) tanpa optimisasi parameter.

Cancer is an uncontrolled growth of abnormal cells in the body. When cancer starts in the lungs, it is referred as lung cancer. There are certain factors that increase a person's risk of this disease, such as smoking (including passive smoker), a family history of lung cancer, exposure to radiation, and HIV infection. This disease can be diagnosed through image tests, including chest x-ray, CT scan, MRI scan, PET scan, and bone scan. Although diagnosis has been made in many ways, there are still many errors in diagnosing the disease. To overcome and help this problem, the classification of lung cancer can be done by using machine learning method. The dataset that used to classify this disease is CT Scan obtained from Cipto Mangunkusumo Hospital, Jakarta, Indonesia. The classification method that will be used is Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO-GA-SVM), where Particle Swarm Optimization-Genetic Algorithm (PSO-GA) was used to optimize the parameters of the Support Vector Machine (SVM). To evaluate the results of the performance of the method, values of accuracy, precision, recall, and f1-score will be seen and it will be compared with SVM without the optimization. From the results obtained, classification using Particle Swarm Optimization-Genetic Algorithm-Support Vector Machine (PSO- GA-SVM) produces better performance compared to Support Vector Machine (SVM) without parameter optimization."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Theresia Veronika Rampisela
"Skizofrenia adalah gangguan jiwa yang serius dan kronis. Penyakit ini ditandai dengan gangguan dalam pemikiran, persepsi, dan tingkah laku. Karena gangguan-gangguan ini dapat memicu penderita Skizofrenia untuk bunuh diri atau mencoba bunuh diri, penderita Skizofrenia mempunyai usia harapan hidup yang lebih rendah dari populasi umum. Skizofrenia juga sulit untuk didiagnosis karena belum ada tes secara fisik untuk mendiagnosisnya dan gejala-gejalanya sangat mirip dengan beberapa gangguan jiwa lainnya. Dengan menggunakan Northwestern University Schizophrenia Data, penelitian ini bertujuan untuk mengklasifikasikan orang yang menderita Skizofrenia dan orang yang tidak menderita Skizofrenia. Data tersebut terdiri dari 392 observasi dan 65 variabel yang merupakan data demografis dan data kuesioner Scale for the Assessment of Positive Symptoms dan Scale for the Assessment of Negative Symptoms yang diisi oleh klinisi. Metode klasifikasi yang digunakan adalah machine learning dengan metode Support Vector Machines SVM dan Twin Support Vector Machines Twin SVM menggunakan MATLAB R2017a. Simulasi dilakukan dengan data dan persentase data training dan testing yang berbeda-beda. Pada setiap simulai, akurasi serta running time diukur. Validasi dan evaluasi performa dari model yang telah dioptimasi dilakukan dengan mengambil rata-rata dari sepuluh kali Hold-Out Validation yang dilakukan. Pada umumnya, metode Twin SVM berhasil mengklasifikasikan data Skizofrenia dengan lebih akurat dibandingkan dengan metode SVM. Metode Twin SVM dengan kernel Gaussian menghasilkan hasil akhir akurasi klasifikasi data Skizofrenia yang terbaik, yaitu 91,0 . Berdasarkan hasil akhir running time, metode SVM dengan kernel Gaussian untuk klasifikasi data Skizofrenia mempunyai running time yang paling cepat, 0,664 detik. Selain itu, metode SVM dengan kernel linear, metode SVM dengan kernel Gaussian, dan metode Twin SVM untuk klasifikasi data Skizofrenia berhasil mencapai akurasi hingga 95,0 dalam setidaknya satu simulasi.

Schizophrenia is a severe and chronic mental disorder. This disorder is marked with disturbances in thoughts, perceptions, and behaviours. Due to these disturbances that can trigger Schizophrenics to commit suicide or attempt to do so, Schizophrenics have a lower life expectancy than the general population. Schizophrenia is also difficult to diagnose as there is no physical test to diagnose it yet and its symptoms are very similar to several other mental disorders. Using Northwestern University Schizophrenia Data, this research aims to distinguish people who are Schizophrenics and people who are not. The data consists of 392 observations and 65 variables that are demographic data as well as clinician filled Scale for the Assessment of Positive Symptoms and Scale for the Assessment of Negative Symptoms questionnaires. Classification methods that are used are machine learning with Support Vector Machines SVM and Twin Support Vector Machine Twin SVM using MATLAB R2017a. Simulations are done with different data and percentage of training and testing data. In each simulation, accuracy and running time are measured. Performance validation and evaluation of the optimized models are done by taking the average of ten times Hold Out Validations that were done. In general, Twin SVM successfully classified Schizophrenia data more accurately than the SVM method. Twin SVM with Gaussian kernel produced the best final accuracy in classifying Schizophrenia data, 91.0 . Based on the final running time, SVM with Gaussian kernel has the fastest running time in classifying Schizophrenia data, 0.664 seconds. Furthermore, SVM with linear kernel, SVM with Gaussian kernel, and Twin SVM managed to reach an accuracy of 95.0 in at least one simulation in classifying Schizophrenia data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ayu Andya Ruvita
"Pengenalan wajah merupakan teknologi yang berkembang sangat pesat. Pengenalan wajah mampu menghasilkan beragam informasi mengenai identitas seseorang dengan cepat dan akurat. Salah satunya, mampu memberikan informasi mengenai jenis kelamin dari setiap orang yaitu sebagai pria atau wanita. Proses klasifikasi pria atau wanita ini menjadi hal yang sangat penting dalam berbagai bidang, seperti bisnis berbasis online, kontrol akses, absensi kehadiran, sistem keamanan, identifikasi individu yang tidak dikenal, dan lain-lain. Dalam penelitian ini digunakan Fisher Score sebagai metode pemilihan fitur, dan Support Vector Machine SVM sebagai metode klasifikasi untuk mengukur tingkat akurasi dan running time dari klasifikasi pria atau wanita dengan data yang digunakan berasal dari Computer Science Research Projects. Hasil akurasi dari klasifikasi SVM kernel polynomial d = 4 dengan pemilihan fitur Fisher Score mencapai tingkat akurasi tertinggi yaitu 100 pada 3000 fitur dengan data training 90 . Sedangkan hasil akurasi terbaik dari klasifikasi SVM tanpa pemilihan fitur mencapai 77.5 pada data training 80.

Face recognition is a technology that is growing very rapidly. Face recognition is able to produce various information about the identity of a person quickly and accurately. One of the utility of face recognition is the ability to provide information about the gender of each person as a male or female. The process of classifying male or female is of paramount importance in many areas, such as online based businesses, access control, attendance, security systems, identification of unknown individuals, and so on. In this study Fisher Score is used as a feature selection method, and Support Vector Machine SVM as a classification method to measure the accuracy and running time of male or female classification with data used from Computer Science Research Projects. Accuracy results from SVM polynomial kernel classification d 4 with Fisher Score feature selection reaches the highest accuracy level of 100 at 3000 features with 90 training data. While the best accuracy results from SVM classification without feature selection reached 77.5 in 80 training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>