Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 145342 dokumen yang sesuai dengan query
cover
Atika Rahmahwati
"Pengolahan bijih nikel laterit untuk menghasilkan feronikel memerlukan konsumsi energi yang tinggi. Sehingga perlu teknik pengolahan bijih nikel laterit terutama yang berkadar rendah agar tetap ekonomis. Reduksi selektif bijih nikel laterit diaggap sebagai proses yang potensial untuk menghasilkan nikel berkadar tinggi pada feronikel. Reduksi selektif terjadi karena penambahan sejumlah aditif pada bijih nikel laterit kemudian dilakukan separasi magnetik. Pada penelitian ini, digunakan aditif natrium karbonat, natrium klorida dan natrium sulfat serta 5 arang cangkang sawit sebagai reduktor. Reduksi dilakukan pada variasi temperatur 950, 1050 dan 1150 oC selama 60 menit. Kemudian dilakukan metode separasi magnetik basah dengan kekuatan magnet 500 Gauss untuk memisahkan konsentrat yang bersifat magnetik dan tailing. Karakterisasi bijih laterit hasil reduksi dilakukan menggunakan X-ray Diffraction XRD , mikroskop optik dan Scanning Electron Microscope SEM yang dilengkapi Energy Dispersive X-ray Spectroscopy EDS serta konsentrat feronikel dan tailing diidentifikasi menggunakan X-ray Fluororescene XRF.
Hasil percobaan menunjukkan bahwa penambahan aditif menghasilkan peningkatan kadar dan recovery nikel serta recovery besi pada konsentrat jika dibandingkan dengan bijih reduksi tanpa penambahan aditif. Penambahan 15 aditif natrium sulfat dapat meningkatkan kadar dan recovery nikel hingga mencapai 5,3 dan 83,7 pada temperatur reduksi 1150 oC selama 60 menit. Pada penambahan 5 aditif natrium karbonat dan natrium klorida menghasilkan recovery nikel optimum sebesar 73,1 dan 72,8. Peningkatan temperatur reduksi hingga 1150 oC selama 60 menit berpotensi meningkatkan ukuran partikel feronikel, dengan penambahan dosis 10 natrium sulfat, natrium karbonat dan natrium klorida dihasilkan rata-rata ukuran partikel feronikel sebesar 30,6 mm, 12,8 mm dan 8,0 mm hingga 30,6 mm. Partikel feronikel mengalami aglomerasi seiring dengan peningkatan temperatur pada penambahan aditif yang memberikan kondisi yang menguntungkan untuk migrasi dan agregasi Ni dan Fe.

The processing of nickel laterite to produce ferronickel requires high energy consumption. Therefore, it needs low cost technology in mineral processing the low grade nickel laterite to keep it economically. Selective reduction of nickel laterite ore is a potential method for producing high grade ferronickel. Selective reduction is performed due to the addition of additives to lateritic nickel ore and followed by magnetic separation. In this study, the additives were sodium carbonate, sodium chloride and sodium sulphate and 5 palm shell charcoal were used as reducing agents. The temperature reduction was carried out at 950 and 1150 oC for 60 min. Magnetic separation used in this study was a wet magnetic separation with 500 Gauss and the magnetic product magnetic product that was resulted from the magnetic separation was ferronickel concentrate. The characterization of reduced ore was performed by using by X ray Diffraction XRD , optical microscope and Scanning Electron Microscope SEM with Energy Dispersive X ray Spectroscopy EDS and ferronickel concentrate was identified by X ray Fluororescene XRF.
The results showed that the addition of additives was significantly affected to the increasing of nickel grade, nickel recovery and iron recovery at concentrate than the reduced ores without additives. When the sodium sulfate dosage was increased to 15 at 1150 oC for 60 min, the nickel grade and nickel recovery were increased to 5.3 and 83.7 , respectively. By the increasing of the addition of sodium carbonate and sodium chloride up to 5 , the yielded optimum nickel recovery was 73.1 and 72.8 , respectively. The increasing of reduction temperature to 1150 oC for 60 min potentially increased the particle size of ferronickel up to 30.6 m by the addition of a 10 sodium sulfate. In the presence of sodium carbonate and sodium chloride result on the average of ferronickel particle size approximately 12.8 and 8.0 m, respectively. The ferronickel particle was agglomerated with increasing reduction temperature and addition additives and it provides favorable conditions for the migration and aggregation of Ni and Fe.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Shofi
"Proses reduksi selektif dan pemisahan magnetik bijih nikel kadar rendah dengan kandungan Ni, Fe, Mg, dan Si masing-masing sebesar 1,4 , 50,5 , 1,81 , dan 16,5 telah dilakukan melalui mekanisme dua tahap peningkatan panas dengan penambahan aditif Na2SO4 dan NaCl. Na2SO4 dan NaCl diketahui mampu membebaskan nikel dan besi dari fasa olivin dan juga menekan metalisasi besi dengan proses sulfidasi, kloridasi, dan segregasi. NaCl yang ditambahkan bertujuan untuk menggantikan sebagian Na2SO4 untuk mengurangi kandungan sulfur sisa pada konsentrat yang dihasilkan. Penahanan pada temperatur awal pre-heating dilakukan untuk memaksimalkan reaksi reduksi nikel dalam fasa goethit sekaligus menekan reduksi besi oksida, sedangkan penahanan pada temperatur lanjut reduksi bertujuan untuk proses pembebasan nikel pada fasa lizardit dan mendukung pertumbuhan partikel feronikel dengan mekanisme aglomerasi partikel pada fasa leleh sistem Fe-FeS eutektik yang terbentuk. Oleh karena itu, kedua perlakuan pemanasan tersebut dapat meningkatkan kadar, perolehan dan derajat metalisasi dari nikel. Hasil optimal didapatkan pada bijih hasil reduksi dengan penambahan 11 satu stoikiometri arang cangkang sawit, 10 Na2SO4, dan 10 NaCl pada temperatur pemanasan awal 500 C selama 90 menit, diikuti dengan pemanasan lanjut selama 90 menit pada temperatur 1150 C, yang menghasilkan konsentrat feronikel dengan kadar dan perolehan nikel masing-masing sebesar 5,53 dan 85,89 , serta derajat metalisasi nikel sebesar 93,69 . Ukuran partikel feronikel yang dihasilkan pada sampel tersebut berukuran 61,75 m, jauh lebih besar dibandingkan ukuran butir sampel tanpa penambahan aditif atau temperatur reduksi yang lebih rendah 1050 C yaitu berturut-turut sebesar 5 m dan 28,5 m. Fasa-fasa yang terbentuk dengan penambahan aditif Na2SO4 dan NaCl yaitu kamasit FeNi , wustit FeS , fayalit, dan nepheline, yang merupakan indikasi berjalannya proses optimasi reduksi selektif dengan memaksimalkan pembebasan nikel dari fasa olivin dan menekan pembentukan logam besi sehingga perolehan, kadar, dan derajat metalisasi nikel meningkat.

Selective reduction and magnetic separation process of low grade nickel ore with Ni, Fe, Mg and Si contents of 1.4 , 50.5 , 1.81 and 16.5 has been conducted with two stage thermal upgrading mechanism with addition of Na2SO4 and NaCl. These two additives is known to be capable of liberating nickel and iron from olivine phase, as well as suppressing iron metallization with sulphidation, chloridization and segregation process. The addition of NaCl was aimed to substitute some part of Na2SO4 to reduce residual sulphur content of the produced ferronickel concentrate. The retention of roasting at initial temperature pre heating was done to maximize reductive reaction of nickel within goethite phase and to suppress the reduction of iron oxide, while the retention of roasting at final temperature reduction was done to focus the nickel liberation from lizardite phase and to promote ferronickel particle growth using agglomeration mechanism within the formed molten phase of Fe FeS eutectic system. Therefore, these two thermal treatment could improve the grade, recovery and metallization of nickel. The optimal result obtained was the reduced ore with 11 palm kernel shell reductor, 10 Na2SO4, and 10 NaCl at initial roasting temperature of 500 C for 90 minutes, followed by final roasting temperature of 1150 C for 90 minutes which resulted ferronickel concentrat with 5.53 grade, 85.9 recovery and 93.86 metallization. The resulting particle size of the aformentioned sample is 61.75 m, far bigger compared to sample without additives or lower reducing temperature 1050 C which is 5 m and 28.5 m, respectively. The formed phase of the reduced ore with the addition of Na2SO4 and NaCl was kamacite FeNi , wustite FeS , fayalite and nepheline, which indicates the optimization process of selective reduction through maximalizing nickel liberation from olivine and suppresing the formation of metallic iron resulting in improved nickel grade, recovery and metallization."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49604
UI - Tesis Membership  Universitas Indonesia Library
cover
Ghifari Ghani Santoso
"Indonesia mempunyai cadangan nikel terbesar di dunia, yang merupakan jenis bijih nikel laterit. Bijih nikel laterit merupakan sumber daya utama yang ada di alam. Akan tetapi, pengolahan bijih nikel laterit kadar rendah dianggap tidak menguntungkan karena proses peleburan/smelting dengan temperatur tinggi untuk menghasilkan feronikel memerlukan konsumsi energi/biaya yang tinggi. Metode reduksi selektif dianggap sebagai proses yang ekonomis untuk pengolahan bijih nikel laterit untuk menghasilkan kadar nikel yang tinggi pada feronikel. Hal ini dikarenakan penambahan aditif sulfur/sulfat dapat mengoptimalkan proses reduksi pada temperatur rendah dengan cara pembentukan senyawa FeS. Arang cangkang sawit-ACS merupakan limbah yang melimpah di Indonesia. Limbah ACS berpotensi menjadi bioreduktor adalam proses reduksi bijih nikel laterit dikarenakan memiliki nilai fixed carbon dan nilai kalor yang cukup tinggi dibandingkan biomassa lainnya. Penelitian ini bertujuan mempelajari proses selektif reduksi bijih nikel laterit untuk menghasilkan konsentrat logam feronikel dengan penambahan elemental sulfur dan penggunaan reduktor ACS pada temperatur rendah. Bahan yang digunakan ialah bijih nikel laterit jenis limonit, reduktor ACS dengan variasi stokio 0,0625-0,25, aditif sodium sulfate 10% dan elemental sulfur dengan variasi 0-5%. Bahan tersebut digerus dan dilakukan pelletisasi dengan ukuran 10-15 mm. Proses reduksi selektif ini dilakukan dengan menggunakan muffle furnace pada variasi temperatur 950, 1050, 1150ºC dengan waktu reduksi selama 60 menit dan setelahnya dilakukan pendinginan cepat dengan menggunakan media pendingin berupa air. Kemudian dilanjutkan dengan metode separasi magnetik basah dengan kekuatan magnet 500 gauss untuk memisahkan konsentrat yang bersifat magnetik dan tailing yang bersifat non-magnetik. Bahan baku, pellet hasil reduksi, produk konsentrat dan tailing dikarakterisasi/dilakukan pengujian menggunakan alat uji XRF, XRD dan SEM-EDS. Hasil reduksi selektif optimum pada penelitian ini diperoleh pada temperatur reduksi 1150ºC dengan kondisi tanpa penambahan aditif sulfur dan penggunaan reduktor ACS sebesar 0,125 stoikiometri dengan kadar nikel sebesar 5,812% serta recovery nikel sebesar 91,09%.

Indonesia has the largest nickel reserves in the world which is a type of nickel laterite. It is a major natural resource. However, processing low grade nickel laterite ore to produce ferronickel is considered to be unprofitable because the high temperature smelting process; thus, requires high energy consumption. The selective reduction method is considered to be an economical process to produce ferronickel from nickel laterite. This is because the addition of sulfur/sulfate additives can optimize the reduction process at low temperatures by forming the FeS compounds. Palm shell charcoal (ACS) is abundant waste in Indonesia. It is potentially to be a bioreductor in the process of reducing nickel laterite because it has a high fixed carbon value and heating value compared to other biomass. Theobjectives of this study is to investigate the selective process of reducing limonitic nickel laterite to produce ferronickel by the addition of elemental sulfur andusing ACS reducing agents at low temperatures. The raw materials used are limonite nickel laterite ore, ACS reductant with variations of 0.0625-0.25 stochiometry, additive sodium sulfate 10 wt.% and elemental sulfur with a variation of 0-5 wt.%. The material is crushed and then pelletized with a size of 10-15 mm in diameter. This selective reduction process is carried out in a muffle furnaces at variations temperature of 950, 1050, 1150ºC for 60 minutes and quenched with water.It was continued with wet magnetic separation process by using a magnetic strength of 500 Gauss to separate the magnetic concentrate (ferronickel) and the non-magnetictailing (impurities). Raw materials, reduced pellets, concentrate and tailings will be characterized/ using XRF, XRD and SEM-EDS. The optimum selective reduction results in this study was obtained at 1150oC in conditions without the addition of sulfur additive, and reductant stoichiometry of 0.125, resulting in nickel grade and recovery t of 5.812% and 91.09%, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nolzha Primadha Ilman
"Selama ini, produksi nikel selalu menggunakan bijih sulfida sebagai bahan-bakunya. Padahal Indonesia memiliki cadangan bijih laterit yang kaya, namun cadangan laterit di Indonesia belum diolah secara maksimal. Hal tersebut terjadi karena proses pemurnian laterit membutuhkan biaya yang besar, hal ini dipicu oleh banyaknya energi yang dibutuhkan serta kerumitan dalam proses pemisahan logam pengotor. Dibutuhkan tahap pra-reduksi atau peningkatan kadar nikel dalam konsentrat agar dapat memaksimalkan proses pemurnian nikel. Salah satu metodenya adalah dengan melakukan reduksi karbotermik serta penambahan aditif untuk mengoptimalkan proses reduksi.
Pada penelitian ini akan dilakukan studi pengaruh waktu reduksi, temperatur reduksi, dan kadar reduktor arang cangkang sawit dalam reduksi serta penambahan Na2SO4 sebagai aditif. Hasil reduksi kemudian dilakukan pengujian XRF dan XRD, serta pengamatan mikrostruktur dengan mikroskop optik dan SEM. Hasilnya pada kondisi yang optimal kadar dan perolehan nikel mampu ditingkatkan mencapai 4.601 dan 73.23 . Kondisi optimal untuk melakukan proses reduksi tersebut adalah pada temperatur 1150oC, kadar reduktor 5 wt. , dan waktu reduksi 60 menit.

During this time, nickel sulfide ore is the main choice for nickel production. Whereas Indonesia has rich laterite ore deposits, but the reserves in Indonesia have not been processed optimally. This happens because the laterite purification process requires a large cost, due to energy required and the complexity in the process of separation of impurity minerals. A pre reduction or nickel grade promoting process is needed to maximize the nickel purification process. One of the methods used is the selective carbothermic reduction process with the addition of an additive to optimize the process.
This research studied the effect of reduction time, reduction temperature, and grade of palm kernel shell charcoal as the reductor in the reduction process and addition of Na2SO4 as additive. The results of the reduction process are then tested XRF and XRD, as well as observations of microstructures with optical microscopy and SEM. The result on optimal condition of nickel content and recovery can be increased to reach 4,601 and 73.23 . The optimum conditions for the reduction process are at a temperature of 1150oC, 5 wt. reductors, and a reduction time of 60 min.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ananda
"Tingginya temperatur dalam proses peleburan/smelting bijih nikel laterit menyebabkan tingginya biaya/konsumsi energi. Penggunaan sulfur/sulfat mampu mengoptimalkan proses reduksi pada temperatur rendah melalui pembentukan senyawa FeS. Limbah biomass, yaitu arang cangkang sawit (ACS) memiliki potensi sebagai reduktor dalam proses reduksi bijih nikel laterit dikarenakan memiliki nilai fixed carbon dan nilai kalor yang cukup tinggi di bandingkan biomass yang lain, selain itu limbah ACS semakin melimpah seiring dengan makin tumbuh berkembangnya industri perkebunan sawit Indonesia. Oleh karena itu, dalam penelitian ini akan dipelajari proses selektif reduksi bijih nikel laterit menjadi konsentrat logam ferronikel pada temperatur rendah menggunakan reduktor biomass ACS dengan aditif elemental sulfur dan sodium sulfate.
Bijih nikel laterit kadar rendah (laterit jenis limonit), reduktor ACS, dan aditif sulfur-sodium sulfate digerus hingga berukuran kurang dari 100 mesh, kemudian diaduk secara merata dan di-aglomerasi dalam bentuk pellet berukuran 10-15 mm. Variasi penambahan elemental sulfur dilakukan sebanyak 0-5%S. Variasi jumlah ACS dilakukan berdasarkan stoikiometri sebesar 0,5-1,5% dengan penambahan aditif 10% Na2SO4. Proses reduksi terhadap pellet bijih nikel laterit dilakukan dengan menggunakan muffle furnace pada temperatur 950, 1050, 1150ºC selama 60 menit. Selanjutnya dilakukan proses pemisahan magnet (500 gauss) terhadap pellet hasil reduksi untuk memisahkan konsentrat-ferronikel (magnetik) dengan tailing-pengotor (non-magnetik). Bahan baku, pellet hasil reduksi, produk konsentrat dan tailing akan dikarakterisasi/dilakukan pengujian menggunakan XRF, XRD dan SEM-EDS.
Hasil yang diperoleh yaitu semakin tinggi temperatur reduksi maka terjadi kenaikan kadar dan perolehan nikel dalam konsentrat. Pada penelitian kali ini didapatkan kondisi optimum pada proses reduksi yaitu dengan temperatur 1150 ºC serta penggunaan 0,5% stoikiometri reduktor arang cangkang sawit (ACS) dan aditif 10% Na2SO4 tanpa penambahan sulfur (0%S), dimana kadar nikel yang diperoleh didalam konsentrat yaitu 2,852% dengan perolehan 73,51%. Saat penambahan 2,68% sulfur, kadar nikel yang didapatkan lebih tinggi yaitu 3% namun perolehan yang didapat yaitu hanya 64,84%. Maka dari itu, penambahan arang cangkang sawit (ACS) dan sulfur harus dilakukan dalam jumlah yang optimum.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anis Sa`Adah
"Indonesia memiliki sejumlah besar deposit bijih laterit, salah satunya dalam bentuk bijih limonit. Namun, bijih limonit jarang digunakan sebagai bahan baku pembuatan feronikel karena konsentrasi Ni relatif rendah (<1,5%) sehingga dianggap tidak menguntungkan. Feronikel umumnya dihasilkan melalui jalur tanur tiup atau tungku putar-tugku busur listrik yang membutuhkan energi yang besar (temperatur 1300-1400°C). Dengan permasalahan tersebut, penelitian ini bertujuan untuk mengolah bijih nikel laterit menjadi feronikel menggunakan suatu metode proses selektif reduksi dengan biaya (energi) yang relatif lebih rendah. Proses reduksi selektif dilakukan menggunakan muffle furnace dengan temperatur rendah dan diikuti pemisahan magnetik basah untuk mendapatkan kembali nikel dalam bentuk logam paduan (feronikel). Untuk mengurangi temperatur reduksi, Na2SO4 sebagai aditif ditambahkan ke dalam proses. Proses ini diharapkan dapat membebaskan nikel dari mineral pengganggunya sehingga akan meningkatkan kadar nikel dalam konsentrat. Proses reduksi selektif dilakukan pada rentang temperatur 950-1150°C, waktu reduksi 60-120 menit, jumlah reduktor 5-15% berat, dan 10% aditif Na2SO4.
Karakterisasi bijih laterit hasil reduksi dilakukan menggunakan X-ray Diffraction (XRD), mikroskop optik dan Scanning Electron Microscope (SEM) yang dilengkapi Energy Dispersive X-ray Spectroscopy (EDS) serta konsentrat feronikel dan tailing diidentifikasi menggunakan X-ray Fluororescene (XRF). Hasil penelitian menunjukkan seiring meningkatnya temperatur dan waktu reduksi, kadar dan perolehan nikel dari bijih nikel yang telah direduksi dengan penambahan aditif Na2SO4 lebih tinggi jika dibandingkan dengan tanpa penambahan aditif. Sedangkan semakin banyak jumlah reduktor yang ditambahkan menyebabkan kadar dan perolehan nikel menurun. Kondisi proses yang ekonomis dan efisien diperoleh pada proses reduksi selektif bijih nikel laterit dengan 10% Na2SO4 pada temperatur 1150oC selama 60 menit dengan penambahan 5% berat reduktor dimana kadar dan perolehan nikelnya adalah 6,1% dan 70,3% dengan kadar dan perolehan besi yang rendah, yaitu 56,18% dan 17,98%. Kehadiran Na2SO4 akan meningkatkan laju reduksi kinetik dan memfasilitasi pembentukan FeS yang dapat menurunkan metalisasi besi dan meningkatkan selektifitas reduksi nikel dan besi sehingga perolehan nikel meningkat, sedangkan perolehan besi menurun.

Indonesia has large amounts of laterite ore deposits, one of them in the form of limonite ore. However, limonite ore is rarely used as raw materials for produce ferronickel, since the concentration of Ni is relatively low 1,5 so it is not considered beneficial. Ferronickel is generally produced through blast furnace or electric arc furnace which required a large amount of energy temperature 1300 ndash 1400 C . With the issues, this research aims to process limonite ore into ferronickel using a selective reduction method with low cost energy . The selective reduction process was carried out in a muffle furnace with lower temperature and followed by wet magnetic separation in order to recover nickel in the form of ferronickel. To reduce the reduction temperature, sodium sulfate as an additive was added to the process. This process is expected can liberate nickel from the impurities minerals so it will increase the nickel grade in the concentrate. The selective reduction process was carried out at temperature range of 950 ndash 1150 C for 60 120 minutes, 5 15 wt. reductant, and 10 wt. additive.
The characterization of reduced ore was performed by using by X ray Diffraction XRD, optical microscope and Scanning Electron Microscope SEM with Energy Dispersive X ray Spectroscopy EDS and ferronickel concentrate was identified by X ray Fluororescene XRF. The results showed that as the temperature and reduction time increases, the nickel grade and recovery of the reduced ore with the addition of Na2SO4 was higher than without the additive. While the more amount of reductant added causes the nickel grade and recovery decrease. The economical and efficient process conditions were obtained in a selective reduction of laterite ore with 10 wt. Na2SO4 at temperature of 1150 C for 60 minutes and 5 wt. reductant with the nickel grade of 6.1 and nickel recovery of 70.3 and low iron grade and recovery 56,18 and 17,98 . The presence of Na2SO4 increase the kinetic reduction rate and facilitate the formation of FeS that can decrease iron metallization and increase the selectivity of nickel and iron reduction thus increase the nickel recovery, while decrease the iron recovery.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jennifer
"Kandungan nikel pada bijih laterit tergolong rendah, namun kelimpahannya mencakup 70% jumlah total sumber daya nikel dunia. Indonesia sebagai negara dengan cadangan nikel laterit terbesar kedua dunia memanfaatkan saprolit dan limonit untuk memproduksi feronikel melalui proses pirometalurgi. Kualitas yang dihasilkan bergantung pada perilaku difusi nikel menuju matriks besi, hal ini dipengaruhi oleh derajat reduksi dari senyawa-senyawa pengotor yang terkandung selama proses roasting. Aspek-aspek yang mengontrol antara lain ukuran partikel, temperatur, waktu tahan, dan kadar reduktor. Dehidroksilasi dan rekristalisasi bijih laterit yang berasal dari Pomaala, Sulawesi, Indonesia diamati dengan metode Differential Scanning Calorimetry-Thermogravmetry (DSC-TG). Sampel-sampel berbentuk briket batubara/laterit diteliti menggunakan Energy Dispersive X-ray (EDX) dan X-ray Diffraction (XRD) setelah dipanaskan pada berbagai kondisi reduksi. Pembentukan tetratenit tampak sangat peka akan pengaruh peningkatan temperatur dari 600°C hingga 1200°C. Intensitas tertinggi 672 counts tercapai pada temperatur 1.200°C, di mana munculnya peak tetrataenit di 2θ 74,45° mulai terdeteksi. Pengamatan menggunakan Scanning Electron Microscopy (SEM) pada temperatur ini juga mendeteksi keberadaan senyawa berbentuk gelembung diduga hasil pertumbuhan tubular halloysit. Senyawa forsterit dan enstatit hanya ditemukan pada temperatur ≤ 1000°C. Intensitas tetratenit berhasil ditingkatkan hingga 469 counts pada sampel dengan ukuran partikel ≤ #270, sedangkan peningkatan waktu tahan hingga 90 menit menghasilkan intensitas 227 counts. Di lain pihak, pada batubara:laterit = 1:1, nilai intensitas tetrataenit hanya mencapai 185 counts.

The abundance of laterite ore with low nickel content covers 70% of total world nickel reserves. Indonesia as the country with the world’s second largest nickel laterite reserves recovers feronickel from saprolite and limonite through pyrometallurgical processes. Its quality will depend on the behaviour of nickel diffusion into ferrous matrix that is influenced by reduction degree of the ore gangue during roasting. Controlling aspects include ore particle size, temperature, reduction time, and reductor concentration. Dehydroxlation and recrystallization of laterite ores from Pomaala, Sulawesi, Indonesia were investigated using Differential Scanning Calorimetry-Thermogravmetry (DSC-TG) method. Samples in briquette coal/laterite form were examined by Energy Dispersive X-ray (EDX) and X-ray Diffraction (XRD) after reduction under various conditions. The formation of tetrataenite is highly sensitive to temperature increase from 600°C to 1200°C. Highest intensity of 672 counts was reached at 1200°C, at which the peak at 2θ 74,45° was detected finally. Observation using Scanning Electron Microscopy (SEM) at this temperature also revealed a bubble-shaped like compound supposedly the result of halloysite growth. Forsterite and enstatite were only found at temperature ≤ 1000°C. The tetrataenite intensity was succesfully raised until 469 counts on sample with particle size ≤ #270, while increase of reduction time up to 90 minutes yielded intensity of 227 counts. On the other hand, with coal/laterite ratio = 1, the tetrataenite intensity only attained 185 counts."
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32124
UI - Tesis Membership  Universitas Indonesia Library
cover
Silmina Adzhani
"Indonesia memiliki sumber daya alam yang berlimpah, salah satunya yaitu mineral nikel. Permintaan dunia akan kebutuhan nikel yang terus meningkat, memberikan kesempatan bagi Indonesia untuk dapat mengembangkan potensi yang dimiliki nya dalam industri pengolahan nikel. Pada proses reduksi nikel dibutuhkan agen pereduksi seperti gas alam dan batubara. Dalam penelitian ini, penggunaan reduktor dari limbah cangkang kelapa sawit digunakan sebagai energi alternatif pemakaian batubara pada proses reduksi karbotermik nikel yang bertujuan untuk mengurangi pemakaian bahan bakar fosil yang persediannya semakin menipis.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh penggunaan cangkang kelapa sawit sebagai reduktor pada proses reduksi bijih nikel laterit, dengan menggunakan variabel perbandingan massa antara bijih nikel dan reduktor. Adapun variabel perbandingan massa antara bijih nikel dan reduktor yang digunakan dalam penelitian ini yaitu 1:1, 1:2, 1:3, dan 1:4, dengan waktu reduksi selama 60 menit pada temperatur 800 C.
Untuk mengamati hasil dari percobaan ini, dilakukan karakterisasi sampel dengan menggunakan pengujian XRD untuk melihat senyawa yang terbentuk pada setiap sampel. Sedangkan pengujian XRF dilakukan untuk melihat kandungan unsur yang terkandung dalam sampel. Pada pengujian XRD didapatkan senyawa dominan yang ada seperti silika SiO2 , senyawa oksida besi seperti maghemite Fe2O3 dan magnetite Fe3O4 , lalu terbentuk juga senyawa lizardite yang tereduksi seperti forsterite Mg2SiO4 , dan liebenbergite Ni2SiO4 . Hasil analisis data pengujian XRF menunjukkan peningkatan recovery Ni seiring dengan penambahan massa reduktor yang digunakan.

Indonesia has many valuable mineral resources, such as lateritic nickel ore. Today, the world demand of lateritic nickel continues to increase. This is an opportunity for Indonesia to develop its potentials in the nickel processing industry. To perform nickel reduction process, reducing agents such as natural gas and coal are needed. In this study, the use of a reductant from palm kernel shell waste as a coal alternative energy in order to reduce the use of fossil fuel which limited availability and cause environmental pollution, being a focus of this research.
The purpose of this study is to determine the effect of palm kernel shell as a reductant in lateritic nickel reduction process, using mass ratio variable between mass of nickel ore and reductant. The mass ratio between nickel ore and reducing agent used in this study are 1 1, 1 2, 1 3, and 1 4, with the temperature of reduction in 800 C for 60 minutes.
To observe the results of this experiment, the sample characterization was carried out using XRD and XRF. XRD data showed the presence of silica SiO2 , iron oxide compounds such as maghemite Fe2O3 and magnetite Fe3O4 , also compounds from reduction of lizardite such as forsterite Mg2SiO4 and liebenbergite Ni2SiO4 . The results of XRF analysis showed improvement of Ni recovery in line with the addition of the mass of reducing agents.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67263
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dwipuji Rahayu
"Bijih nikel laterit merupakan salah satu sumber mineral terbesar yang terdapat di Indonesia. Bijih ini memiliki potensial yang sangat besar untuk dilakukan proses pengolahan dan pemurnian, namun membutuhkan energi yang tinggi dalam pemisahan mineral ataupun mineral ikutan, sehingga biaya yang dikeluarkan menjadi tinggi pula. Untuk mengatasi hal tersebut, maka dilakukan tahap pra-reduksi yaitu proses reduksi karbotermik. Proses reduksi karbotermik banyak digunakan untuk bijih nikel tipe saprolit, dimana proses tersebut membutuhkan reduktor untuk mereduksi bijih nikel laterit menjadi logam nikel murni.
Reduktor yang umum digunakan adalah batu bara dan kokas. Namun, pada penelitian ini dilakukan pengembangan proses reduksi karbotermik bijih nikel laterit tipe saprolit menggunakan reduktor biomassa, yaitu cangkang kelapa sawit. Dalam penelitian, digunakan bijih nikel laterit dari Halmahera Timur dan cangkang kelapa sawit dari limbah perkebunan kelapa sawit di Palangkaraya, Kalimantan Tengah. Bijih nikel laterit direduksi ukurannya hingga menjadi partikel serbuk 270.
Tujuan dari penelitian ini adalah untuk mengetahui pengaruh variasi waktu reduksi terhadap hasil reduksi karbotermik bijih nikel laterit, dengan temperatur dan rasio massa dibuat konstan. Variasi waktu reduksi yang diuji dalam penelitian ini adalah 1 jam, 2 jam, 3 jam dan 4 jam. Seluruh sampel diuji pada temperatur 800oC dan rasio massa 1:4 bijih nikel laterit:cangkang kelapa sawit yang dimasukkan ke suatu krusibel dan reduksi karbotermik dilakukan di dalam melting furnace.
Hasil XRD menyatakan bahwa peak yang terbentuk sudah dapat mereduksi hematite atau magnetite menjadi wustite pada waktu reduksi 1 jam. Hasil XRF menunjukkan bahwa pada waktu reduksi selama 1 jam merupakan waktu optimum karena kandungan unsur Nikel dan Nikel Oksida NiO didapatkan paling tinggi diantara variasi waktu lainnya.

Lateritic nickel ore is one of the biggest mineral source in Indonesia. There is large potential to acquire high concentration of nickel by processing and refining the ore, but because there is high energy use for mineral separation or gangue minerals processing, the cost will be high. Therefore, to resolve that problems, the pre reduction stage called carbothermic reduction process is carried out. Carbothermic reduction process usually used for saprolite which needs a reductor for the reduction reaction of lateritic nickel ore to produce pure nickel.
Common reductor used are coal and cokes. In this study, development on carbothermic reduction of saprolite type of lateritic nickel ore using biomass reductor palm kernel shell is conducted. The lateritic nickel ore used are obtained from Halmahera Timur and the palm kernel shells are obtained from the waste of palm oil plantation at Palangkaraya, Kalimantan Tengah. Size of the ore are reduced to powder particle with 270 size.
The purpose of this study is to find out the effect of reduction time variation on carbothermic reduction result of lateritic nickel ore with constant temperature and mass ratio value. Reduction time variation used in this study are 1, 2, 3, and 4 hours. All samples are tested at 800oC with mass ratio of 1 4 lateritic nickel ore palm kernel shell which are put into a crucible and then the carbothermic reduction process done in an melting furnace.
Peak formed on XRD results show that the process can reduce hematite or magnetit to wustite within one hour. XRF results show that reduction time of one hour is the optimum time because nickel and nickel oxide NiO content are highest compared to other time variation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67537
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samantha Aziza Nurarani
"Indonesia memiliki deposit bijih nikel yang kaya dan terak nikel adalah salah satu hasilnya. Terak nikel memiliki elemen berharga di dalamnya, oleh karena itu pemanfaatan lebih lanjut diperlukan. Dalam penelitian ini, unsur-unsur berharga dicapai oleh pyrometalurgi di mana arang tempurung kelapa sawit digunakan sebagai reduktor yang dianggap sebagai opsi yang lebih baik karena karakteristiknya yang ramah lingkungan dan sifat fungsionalnya yang mirip dengan bahan bakar fosil. Proses pyrometalurgi dilakukan dengan memanaskan bijih nikel ukuran # 200 mesh menggunakan tungku karbolit CWF 11/13 dengan perbandingan massa kulit inti sawit masing-masing adalah 5%, 10%, 15%, 20% dan penambahan natrium sulfat 10% dengan suhu operasi pada 1000oC selama 60 menit. Hasil reduksi kemudian diikuti dengan pemisahan magnetik menggunakan nippon magnetic dressing tipe 39000. Hasilnya diuji dengan ICP-OES ,XRD. Hasil penelitian menjelaskan bahwa kandungan pengotor dominan yang berupa SiO2 berkurang karena penambahan kulit biji sawit dan besi dari senyawa Forsterite yang kaya Fe akan dibebaskan dan akan mengikat belerang yang berasal dari natrium sulfat menjadi bentuk. troilite (FeS). Hal ini menghasilkan peningkatan kandungan mineral berharga yang ada di terak nikel.

Indonesia has rich deposit of nickel ore and nickel slag is one of the outcome. The nickel slag has valuable elements in it, therefore further utilization is needed. In this research, the valuable elements was achieved by pyrometallurgy where the palm kernel shell charcoal is used as reductor which considered as better option because of its environmental friendly characteristic and the functional properties resemble to fossil fuels. The pyrometallurgy process is done by heating the nickel slag size #200 mesh using furnace carbolite CWF 11/13 with the mass ratio palm kernel shell are 5% ,10%, 15%, 20% respectively and the addition of natrium sulphate 10% with operating temperature at 1000oC for 60 min. The result of the reduction then follows with magnetic seperation using nippon magnetic dressing type 39000. The result was tested with XRD. The results of the study explain that the content of the dominant impurities which is in the form of SiO2 decreases as the addition of palm kernell shell and iron from Fe-rich Forsterite compounds will be liberated and will bind to sulfur derived from sodium sulfate to form troilite (FeS). This results in an increasing content of valuable minerals present in the nickel slag.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>