Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75756 dokumen yang sesuai dengan query
cover
Jihan Maharani
"Saat ini, penyusupan pada suatu sistem jaringan sering sekali terjadi. Gangguan tersebut dapat dicegah atau dideteksi salah satunya dengan menggunakan Intrusion Detection System. Intrusion Detection System sangat diperlukan untuk melindungi jaringan dan menghalangi serangan. Pada penelitian ini, dibahas pengklasifikasian data Intrusion Detection System menggunakan Multi-Class Support Vector Machine dengan pemilihan fitur Information Gain dengan data yang digunakan yaitu KDD-Cup99. Sebagai hasil, akan dibandingkan nilai akurasi model IDS menggunakan Support Vector Machine dengan dan tanpa pemilihan fitur serta percobaan pengaplikasian model untuk klasifikasi pada data unseen dengan model yang sudah didapat dengan menggunakan 8 fitur dan data training sebesar 80.

Nowadays, the intrusions often occur in a network system. One of ways that Intrusions can be prevented or detected is by using Intrusion Detection System. Intrusion Detection System indispensable to protect the network and to prevent the intrusions. In this paper, the author will discuss about the classification IDS data using Multi Class Support Vector Machine with feature selection using Information Gain and for the data used KDDCup99 Data Set. As a result, it will be compared the accuracy between IDS model using Support Vector Machine with and without feature selection and the application of model has been obtained from the experiment using eight features and 80 data training to unseen data.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arfiani
"Stroke merupakan penyakit yang menempati urutan ketiga sebagai penyebab kematian terbesar di dunia setelah penyakit jantung dan kanker. Stroke juga menduduki posisi pertama sebagai penyakit yang dapat menyebabkan kecacatan, baik ringan maupun berat. Salah satu jenis stroke yang umum terjadi adalah infark serebri. Di Indonesia, jumlah penderita stroke, terutama infark serebri, semakin meningkat setiap tahunnya. Tidak hanya terjadi pada seseorang yang berusia lanjut, namun infark serebri juga dapat terjadi pada seseorang yang masih muda dan produktif. Oleh sebab itu, pendeteksian dini terhadap infark serebri sangatlah penting. Berbagai metode medis selalu digunakan untuk mengklasifikasi infark serebri, namun dalam penelitian ini, akan digunakan metode machine learning. Metode yang diusulkan yaitu Multiple Support Vector Machine dengan Seleksi Fitur Information Gain (MSVM-IG). MSVM-IG merupakan metode baru yang menggunakan support vector sebagai data baru untuk selanjutnya dilakukan seleksi fitur dan evaluasi performa. Data yang digunakan berupa data numerik hasil CT Scan yang diperoleh dari RSUPN dr. Cipto Mangunkusumo, Jakarta. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai nilai akurasi sebesar 88,71%. Sehingga, metode MSVM-IG ini dapat menjadi salah satu alternatif untuk membantu praktisi medis dalam mengklasifikasi infark serebri.

Stroke is a disease that ranks third as the biggest cause of death in the world after heart disease and cancer. Stroke also occupies the first position as a disease that can cause disability, both mild and severe. One type of stroke that is common is cerebral infarction. In Indonesia, the number of stroke patients, especially cerebral infarction, is increasing every year. Not only occurs in someone who is elderly, but cerebral infarction can also occur in someone who is young and productive. Therefore, early detection of cerebral infarction is very important. Various medical methods are always used to classify cerebral infarction, but in this study, machine learning methods would be used. The proposed method is Multiple Support Vector Machine with Information Gain Feature Selection (MSVM-IG). MSVM-IG is a new method that uses support vector as a new dataset, then feature selection step and performance evaluation are performed. The data used in the form of numerical data results of CT scan obtained from RSUPN Dr. Cipto Mangunkusumo, Jakarta. Based on the results, the proposed method is able to achieve an accuracy value of 88.71%. Thus, the MSVM-IG could be an alternative to assist medical practitioners in classifying cerebral infarction."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahra Rubena Putri
"Meningkatnya jumlah pengguna internet saat ini memberikan banyak dampak pada kehidupan manusia, karena internet menghubungkan banyak perangkat setiap hari. Perkembangan ini membawa berbagai dampak positif maupun dampak negatif. Salah satu dampak negatifnya adalah adanya aktivitas berbahaya yang dapat menyerang jaringan. Intrusion detection system merupakan sebuah sistem manajemen keamanan pada jaringan komputer. Data yang dimiliki intrusion detection system mempunyai fitur yang cukup banyak tetapi tidak semua fitur yang ada relevan dengan data yang digunakan dan jika data tersebut diolah akan memakan waktu yang cukup lama. Oleh karena itu, diperlukan pemilihan fitur untuk meningkatkan akurasi serta memperpendek waktu pembelajaran.
Beberapa metode pembelajaran sudah pernah diterapkan untuk menyelesaikan masalah intrusion detection system, seperti Na ? ve Bayes, Decision Tree, Support Vector Machines dan Neuro-Fuzzy Methods. Metode pemilihan fitur yang digunakan untuk skripsi ini adalah metode Chi-Square. Setelah dilakukan pemilihan fitur, akan didapatkan hasil berupa sebuah dataset baru yang kemudian akan diklasifikasi menggunakan metode Extreme Learning Machines. Hasilnya menunjukkan setelah dilakukan pemilihan fitur dengan metode Chi-Square, tingkat akurasi akan meningkat serta waktu yang dibutuhkan algoritma pembelajaran untuk menyelesaikan metode tersebut menjadi semakin singkat.

The increasing rates of internet users nowadays must be give much impacts to our lifes, because the internet things can connect more devices every day. This growth carriers several benefits as well as can attack the network. Intrusion detection system IDS are used as security management system. IDS can be used to detect suspicious activity or alert the system. IDS involves large number of data sets with several different features but not all features are relevant with the data sets and it takes long computational time to solve IDS data sets. Therefore, it has to do feature selection to remove the irrelevant features, to increase the accuracy and to shorten the computational time for the learning methods.
Many researches about learning method to solve intrusion detection system problem have been done to develop and test the best model from various classifiers, such as Na ve Bayes, Decision Tree, Support Vector Machines, and Neuro Fuzzy Methods. For this thesis, the feature selection methods will be used is Chi Square methods to reduce dimentionality of IDS data sets. The new IDS data sets with the best selected features are obtained afterwards, and then these new data sets will be classified with Extreme Learning Machines methods. The result denotes that Extreme Learning Machines classification methods provides better accuracy level while combined with Chi Square feature selection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muslar Alibasya
"Kanker paru-paru merupakan jenis kanker yang dimulai dan tumbuh di dalam paru-paru. Kanker paru-paru terjadi ketika sel-sel yang melapisi bronkus dan bronkiolus tumbuh secara tidak terkendali. Hal ini dapat menyebabkan kematian jika tidak ditangani dengan cepat dan tepat. Pengklasifikasian dini merupakan salah satu solusi yang tepat untuk mengurangi jumlah kematian yang disebabkan oleh kanker paru-paru. Pendekatan machine learning dapat digunakan untuk mengklasifikasi kanker paru-paru. Dalam penelitian ini, pengklasifikasian dilakukan dengan menggunakan data microarray. Data microarray memiliki fitur yang sangat banyak. Oleh karena itu, dibutuhkan seleksi fitur agar proses klasifikasi berlangsung optimal. Pada penelitian ini, penulis mengusulkan metode Support Vector Machine-Recursive Feature Elimination (SVM-RFE) untuk metode seleksi fitur. Data microarray yang digunakan diambil dari National Center for Biotechnology Information (NCBI) yang merupakan sebuah website online database. Pada penelitian ini, penulis menggunakan SVM-RFE sebagai metode seleksi fitur untuk mengeliminasi fitur yang kurang relevan. Setelah itu pendekatan k-fold cross-validation digunakan sebagai pembagian data, dan beberapa machine learning classifier yaitu Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), dan Extreme Gradient Boosting (XGBoost) digunakan sebagai metode klasifikasi. Dari hasil simulasi menunjukkan bahwa hasil terbaik berdasarkan nilai akurasi, precision, recall dan running time diperoleh oleh metode klasifikasi SVM dengan nilai akurasi 100%, precision 100%, recall 100% dan running time 5,42 detik.

Lung cancer is a type of cancer that begins in the lungs. Lung cancer occurs when the cells that cover the bronchi and bronchioles grow uncontrollably. This can lead to death if not treated quickly and appropriately. Early classification is one of the appropriate solution to reduce the number of deaths caused by lung cancer. Machine learning approach can be used to classify lung cancer. In this research, classification is done using microarray data which has a lot of features. Therefore, feature selection is applied such that the classification process used the optimal number of features. In this study, the researcher proposes the Support Vector Machine-Recursive Feature Elimination (SVM- RFE) method for the feature selection method. The microarray data was taken from the National Center for Biotechnology Information (NCBI), which is an online database website. In this study, the researcher used SVM-RFE as a feature selection method to eliminate irrelevant features. Afterwards, the k-fold cross-validation method and several machine learning classifiers, namely Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), and Extreme Gradient Boosting (XGBoost) will be used as classification methods. In the final stage, the researcher will analyze the performance results of the proposed method based on the accuracy and running time of each classifier. The simulation results show that the best results based on the values of accuracy, precision, recall and running time are obtained by the SVM classification method with a value of 100% accuracy, 100% precision, 100% recall and running time of 5.42 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Olivera Siti Nataza
"Intrusion Detection System adalah suatu sistem yang berfungsi untuk mendeteksi serangan berbahaya dan kerentanan pada jaringan komputer. Beberapa teknik data mining telah diajukan dalam menyelesaikan persoalan deteksi intrusi pada jaringan. Pada skripsi ini, akan diajukan klasifikasi data Intrusion Detection System menggunakan Na ve Bayes Classifier dan Particle Swarm Optimization sebagai pemilihan fitur. Pertama, Particle Swarm Optimization melakukan pemilihan fitur untuk mendapatkan fitur yang optimal. Lalu, hasil dari pemilihan fitur tersebut akan diklasifikasikan menggunakan Na ve Bayes Classifier dengan harapan dapat memberikan hasil yang lebih akurat. Data yang digunakan adalah dataset KDD CUP 1999. Hasil akhir dari penelitian ini adalah berupa perbandingan hasil akurasi antara klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur dan klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization. Hasil empiris menunjukkan bahwa klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur memperoleh akurasi tertinggi sebesar 99.16 . Sementara klasifikasi menggunakan Na ve Bayes Classifier dengan pemilihan fitur Particle Swarm Optimization memperoleh akurasi tertinggi sebesar 99.12 . Hasil dari penelitian ini menunjukkan bahwa metode pemilihan fitur Particle Swarm Optimization dapat diterapkan pada proses klasifikasi menggunakan Na ve Bayes Classifier. Akan tetapi dengan menambahkan metode ini tidak menjamin bahwa hasil yang diperoleh akan lebih baik daripada proses klasifikasi menggunakan Na ve Bayes Classifier tanpa pemilihan fitur.

Intrusion Detection System is a system that has a function to detect malicious attacks and vulnerabilities on computer networks. Several data mining techniques have been proposed in solving the problem of intrusion detection on the network. In this research, data classification of Intrusion Detection System will be filed using Na ve Bayes Classifier and Particle Swarm Optimization as feature selection. First, Particle Swarm Optimization will perform the feature selection to get the optimal features. Then, the results of the feature selection will be classified using Na ve Bayes Classifier in hopes of getting more accurate results. The data used in this study is KDD CUP 1999 dataset. The end result of this study is a comparison of accurate results between the classification using Na ve Bayes Classifier without feature selection and classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection. The empirical results indicate that the classification using Na ve Bayes Classifier without feature selection obtains the highest accuracy of 99.16 . While the classification using Na ve Bayes Classifier with Particle Swarm Optimization as feature selection obtained the highest accuracy of 99.12 . The results of this study indicate that the Particle Swarm Optimization feature selection method can be applied to the classification process using Na ve Bayes Classifier. However, adding this method does not guarantee that the results obtained will be better than the classification process using Na ve Bayes Classifier without feature selection.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Rizki Bagasta
"ABSTRAK

Infark Serebri adalah kondisi dari suatu jaringan otak yang tidak teralirkan darah sehingga sel-sel otak tersebut kekurangan oksigen dan nutrisi. Hal ini dapat mengakibatkan kerusakan bahkan kematian sel-sel otak dan perlu dengan segera mendapatkan penanganan. Keadaan ini sering dikenal sebagai Stroke, dimana pada penulisan ini akan berfokus pada data stroke nonhemoragik (stroke tidak berdarah) yang diakibatkan penyumbatan pembuluh darah di otak. Biasanya penyakit ini dapat dikenali dari gejala kelumpuhan suatu bagian tubuh atau kesulitan menggunakan suatu alat indra. Menurut para ahli, penyakit ini harus dicegah sejak dini karena dapat berakibat fatal bagi keseluruhan fungsional tubuh. Salah satu tindakan yang dapat dilakukan sejak dini adalah mendeteksi kemungkinan penyakit agar dapat dilakukan penanganan secara tepat dan cepat. Dalam penelitian ini, Infark Serebri dideteksi dengan mengklasifikasi ada atau tidaknya sel abnormal pada jaringan otak pada hasil CT Scan otak pasien menggunakan Support Vector Machine dengan Seleksi Fitur RELIEF. Data yang digunakan berupa data numerik dari pasien yang melakukan pemeriksaan di RSUPN dr. Cipto Mangunkusumo Jakarta dalam bentuk hasil CT Scan otak. Terdapat Sembilan fitur indikator yang digunakan dan diproses dengan membandingkan Support Vector Machine dengan dan tanpa seleksi fitur RELIEF. Berdasarkan hasil uji coba, metode yang diusulkan mampu mencapai akurasi sebesar 95,23%. Sehingga, penggunaan seleksi fitur RELIEF pada SVM merupakan metode yang baik untuk menklasifikasi infark serebri.


ABSTRACT

 


The Cerebrovascular Infarction is a condition of an inflowed blood of brain tissue so that the brain cells lack oxygen and nutrients. This can cause the damage and even the death of brain cells and needed to get immediate treatment. This situation is often known as stroke, which at this writing will fokus on data on non-hemoragic strokes (non-bleeding strokes) caused by blockage of blood vessels in the brain. Usually this disease can be identified by symptoms of paralysis of some body part or difficulty using a human sensory. According to the experts, this disease must be prevented early because it can be fatal to the overall functional body. One of the actions that can be done early is to detect the possibility of a disease so that it can be handled appropriately and quickly. In this study, the cerebral infarction was detected by classifying the presence or absence of abnormal cells in brain tissue in the results of a CT brain scan of patients using Support Vector Machine with the RELIEF Selection Feature. The data used in the form of numerical data reports from patients who performed examinations at the RSUPN dr. Cipto Mangunkusumo Jakarta in the form of brain CT Scan. There are nine indicator features that are used and processed by comparing Support Vector Machine with and without RELIEF feature selection. Based on the results, the proposed method is able to achieve accuracy value of 95,23%. Thus, the use of RELIEF feature selection with SVM is a good method for classifying cerebral infarction.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melati Vidi Jannati
"Klasifikasi data kanker menggunakan microarray data menjadi salah satu cara untuk mendapatkan pengobatan yang lebih tepat. Kendala yang terdapat adalah karakteristik dari microarray yang memiliki fitur yang sangat banyak. Seringkali fitur tersebut tidak begitu informatif bagi pengklasifikasian sehingga perlu adanya suatu cara untuk memilih fitur-fitur yang mengandung informasi yang penting. Salah satu cara tersebut adalah dengan pemilihan fitur. Pada penelitian ini, metode pemilihan fitur yang digunakan berdasarkan clustering dengan fungsi kernel. Fitur-fitur yang sudah terpilih kemudian diklasifikasikan menggunakan metode Support Vector Machine.
Evaluasi dari klasifikasi pada penelitian ini melibatkan K-Fold Cross Validation, metode tersebut akan membagi data secara acak, tetapi merata sehingga akurasi yang didapat juga merata. Hasil akurasi tersebut dilakukan dengan berbagai uji terhadap parameter yang berkaitan seperti K partisi, nilai dan fitur-fitur yang digunakan. Pada proses klasifikasi tanpa pemilihan fitur tingkat akurasinya mencapai 89.68 dengan k partisi sebanyak 6 sementara dengan 5 fitur akurasinya menjadi 95.87 pada partisi sebanyak 10.

Classification of cancer using microarray data is one way to get a more precise treatment. The obstacle on classification data is the characteristics of microarray data that is having many features. These features are often not so informative for classification, so it needs a way to select the features that contain important information. One way is by selection feature. In this research, the method of selection features that are used based on clustering with kernel function. Features that are already selected then classified using Support Vector Machine.
Evaluation of classification in this research involves a K Fold Cross Validation, that methods split data randomly but uniformly so that it can reach all of accuracy. The results of accuracy data was done with different test against related parameters such as K partition, the value of and the features that are used. On the classification process without selection features rate of accuracy reached on 89.68 with k partition number 6 while with the 5 features obtained 95.87 on partition number 10.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S66852
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Maghfirah
"Kematian yang disebabkan oleh kanker diperkirakan akan terus meningkat, padahal jumlah kematian ini dapat dikurangi dengan adanya deteksi dini. Salah satunya adalah dengan klasifikasi data kanker. Data kanker yang digunakan merupakan data kanker berdimensi tinggi dengan ribuan fitur, tetapi tidak semua fitur yang ada merupakan fitur yang relevan. Oleh karena itu, perlu adanya proses seleksi fitur. Untuk meningkatkan tingkat akurasi yang dihasilkan, digunakan sebuah metode seleksi fitur yang meninjau adanya korelasi antar gen, yaitu CSVM-RFE. Pada metode tersebut, data yang ada diproyeksikan dan diubah menjadi sebuah data baru dengan ekstraksi fitur, dan kemudian dilakukan proses seleksi fitur. Penggunaan dua metode tersebut pada klasifikasi tiga data kanker yang ada terbukti menghasilkan tingkat akurasi yang tinggi, pada data kanker kolon tingkat akurasi yang didapatkan adalah sebesar 96.6, pada kanker prostat sebesar 98.9, dan pada kanker lymphoma sebesar 98,6.

The number of death caused by cancer expected to rise over two decades, whereas the number of death can be reduced by early detection. One of them is cancer classification. Cancer dataset is a high dimensional dataset that consist of thousands of features, but not all of these features are relevant. Therefore, it is necessary to remove the redundant features using feature selection. Feature selection can also improve the accuracy of classification. Many feature selection methods do not consider the correlated genes, so we need a new feature selection method that consider the correlated genes. It is CSVM RFE, in this method the existing data is projected and converted into a new data with feature extraction. These two methods are applied to the cancer datasets, and produce the accuracy of 96.6 using colon cancer dataset, 98.9 using prostate cancer dataset, and 98.6 using lymphoma cancer dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69588
UI - Skripsi Membership  Universitas Indonesia Library
cover
Selly Anastassia Amellia Kharis
"Kanker merupakan kelompok penyakit yang ditandai dengan pertumbuhan dan penyebaran sel-sel abnormal yang tidak terkendali. Jika penyebaran sel tersebut tidak terkendali, hal ini dapat menyebabkan kematian. Berdasarkan American Cancer Society, pendeteksian dini terhadap sel kanker dapat meningkatkan angka harapan hidup seorang pasien lebih dari 97 . Banyak penelitian yang telah meneliti mengenai klasifikasi kanker menggunakan microarray data. Microarray data terdiri dari ribuan fitur gen namun hanya memiliki puluhan atau ratusan sampel. Hal tersebut dapat menurunkan akurasi klasifikasi sehingga perlu dilakukannya pemilihan fitur sebelum proses klasifikasi.
Pada penelitian ini dilakukan dua tahap pemilihan fitur. Pertama, support vector machine recursive feature elimination SVM-RFE digunakan untuk prefilter gen. Kedua, hasil pemilihan fitur SVM-RFE diseleksi kembali dengan menggunakan artificial bee colony ABC yang merupakan algoritma optimisasi berdasarkan perilaku lebah madu. Penelitian ini menggunakan dua dataset, yaitu data kanker paru-paru Michigan dan Ontario dari Kent Ridge Biomedical Dataset.
Hasil percobaan dengan menggunakan SVM-RFE dan ABC menunjukkan nilai akurasi klasifikasi yang lebih tinggi daripada tanpa pemilihan fitur, SVM-RFE, dan ABC, yaitu 98 untuk data kanker paru-paru Michigan dengan menggunakan 100 fitur dan 97 untuk data kanker paru-paru Ontario dengan menggunakan 70 fitur.

Cancer is a group of diseases characterized by the uncontrolled growth and spread of abnormal cells. If the spread is not controlled, it can result in death. Based on American Cancer Society, early detection of cancerous cells can increase survival rates for patients by more than 97 . Many study showed new aspect of cancer classification based microarray data. Microarray data are composed of many thousands of features genes and from tens to hundreds of instances. It can decrease classification accuracy so feature selection is needed before the classification process
In this paper, we propose two stages feature selection. First, support vector machine recursive feature elimination recursive feature elimination SVM RFE is used to prefilter the genes. Second, the SVM RFE features selection result is selected again using Artificial Bee Colony ABC which is an optimization algorithm based on a particular intelligent behavior of honeybee swarms. This research conducted experiments on Ontario and Michigan Lung Cancer Data from Kent Ridge Biomedical Dataset.
Experiment results demonstrate that this approach provides a higher classification accuracy rate than without feature selection, SVM RFE, and ABC, 98 for Michigan lung cancer dataset with using 100 features and 97 for Ontario lung cancer dataset with using 70 features.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T49733
UI - Tesis Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>