Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 32293 dokumen yang sesuai dengan query
cover
Mardhiyatna
"ABSTRAK
Pencitraan hiperspektral adalah gabungan teknologi pencitraan dan spektroskopi. Teknologi ini merupakan teknologi telah banyak digunakan untuk penilaian kualitas makanan. Informasi spasial dan spektral pada objek yang diamati dapat diperoleh secara bersamaan dengan menggunakan pencitraan hiperspektral. Dalam penelitian ini, pencitraan hiperspektral pada rentang spektral 400-1000 nm digunakan untuk memprediksi kandungan klorofil total dan karotenoid daun bayam hijau dan merah Amaranthus tricolor L. berdasarkan spektral reflektansi. Data spektral di wilayah ROI pada setiap daun diekstraksi dengan merata-rata semua piksel pada ROI. Kandungan klorofil total dan karotenoid diukur dengan spektrofotometer UV-Vis. Partial Least Square Regression PLSR digunakan untuk membuat model prediksi antara kandungan klorofil total dan karotenoid terukur dan spektrum reflektansi. Koefisien korelasi prediksi rp klorofil total dan karotenoid untuk daun bayam hijau pada panjang gelombang 400-1000 nm diperoleh sebesar 0,91 dan 0,80, sedangkan untuk bayam merah diperoleh rp klorofil total sebesar 0,90 dan rp karotenoid sebesar 0,90. Hasil penelitian menunjukkan bahwa pencitraan hiperspektral dapat digunakan sebagai uji tak rusak untuk memprediksi kandungan total klorofil dan karotenoid. Kata kunci: Pencitraan hiperspektral, Klorofil, Karotenoid, Daun Bayam, PLSR.

ABSTRACT
Hyperspectral imaging is a technology that combines imaging and spectroscopy. This technology is a non destructive technology and used for food quality assessment. Spatial and spectral information on the observed object can be obtained simultaneously by using hyperspectral imaging. In this study, hyperspectral imaging in the spectral range of 400 1000 nm was used for total chlorophyll and carotenoid content prediction of green and red Amaranthus tricolor L. leaves based on reflectance profile. Spectral data in the region of interest ROI of each leaf were extracted by averaging all the pixels in the ROI. The determination of total chlorophyll and carotenoid content was measured using spectrophotometer UV Vis. The Partial Least Squares Regression PLSR was used to create a model prediction between the measured total chlorophyll and carotenoid content and the reflectance spectral. For green Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.91 and 0.80. For red Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.90 and 0.90. The results show that the hyperspectral imaging could be used as a nondestructive test to predict total chlorophyll and carotenoid content. Keyword Hyperspectral imaging, Total chlorophyll, Carotenoid, Amaranthus tricolor L. Leaves, PLSR"
2017
T49791
UI - Tesis Membership  Universitas Indonesia Library
cover
Reza Sugiarto
"ABSTRACT
Visualisasi pertulangan daun telah banyak dilakukan menggunakan citra RGB dan metode pengolahan yang digunakan adalah pemrosesan morfologi. Hasil dari metode tersebut dapat menampilkan pola pertulangan daun atau venasi dengan baik, namun sangat terbatas pada resolusi kamera yang digunakan serta keterbatasan informasi spektral citra daunyan dihasilkan. Pada penelitian kali visualisasi venasi berhasil dilakukan dengan citra hyperspectral dengan panjang gelombang 400-1000nm. Sistem visualisasi pada penelitian kali ini menerima input citra hyperspectral dan menghasilkan output berupa citra venasi. Proses automasi mendapatkan citra venasi menggunakan model klasifikasi. Model klasifikasi dibuat berdasarkan infomasi panjang gelombang dari vena dan bagian helaian daun. Tujuan model klasifikasi ini adalah memprediksi bagian vena pada citra hyperspectral Algoritma klasifikasi yang digunakan pada penelitian ini adalah Support Vector Machine SVM , Multi Layer Perceptron Classifier MLPC , serta Decision Tree DT . Hasil akurasi dari model mencapai 97 pada model SVM, 95 pada model MLPC, dan 81 pada model DT. Model SVM dan MLPC selanjutnya digunakan untuk memprediksi citra hyperspectral untuk menghasilkan citra venasi daun bayam merah. Hasil akhir, berupa citra venasi menggunakan model SVM lebih baik karena mampu memvisualisasikan bagian vena primer dan vena sekunder dibandingkan citra venasi dengan model MLPC.

ABSTRACT
Venation visualization broadly have been done by RGB images using morphological image processing. The result of that method can visualizing leaf venation properly, but it depends on camera resolution and limited spectral information. In this research, we developing venation visualization system using hyperspectral image on band 400 1000nm. Our system visualizing red amaranth leaf venation as a output and hyperspectral image for input. To automated identifying venation region, we built classification model to predict based on spectral information. Classification model take every hyperspectral image pixel to predict leaf vein. In this work, we made 3 classification model namely SVM Support Vector Machine , MLPC Multi Layer Perceptron Classifier , and DT Decision Tree . Our model trained by 5 fold cross validation. Average accuracy score for SVM model up to 97 , 95 for MLPC and 81 on DT. Regard this accuracy result, SVM and MLPC model used for constructed venation image and DT model fall on overfitting state. The final result, SVM perform better than MLPC by visualizing primary vein and secondary vein."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yossie Cahya Permata
"ABSTRAK
Nilai reflektansi pada panjang gelombang tertentu pada buah pisang dengan rentang yang besar digunakan untuk mengembangkan sebuah sistem pengujian kadar karotenoid menggunakan teknik hiperspektral imaging. Sistem pengujian ini terdiri dari satu set sistem pengukuran, sumber cahaya berupa lampu halogen, dan kamera hiperspektral yang terhubung dengan Personal Computer PC menggunakan penghubung Camera Link. Sampel terdiri dari tiga tingkat kematangan yaitu mentah, matang, dan sangat matang. Sistem pengujian menggunakan Partial least square regression PLSR model untuk memperoleh hasil kuantitatif. PLSR model pada panjang gelombang penuh digunakan untuk membuat sebuah model yang menghubungkan antara data spektral hiperspektral dan kadar karotenoid berdasarkan metode pengujian spektroskopi. Hasil yang diperoleh pada seluruh sampel memiliki koefisien korelasi prediksi melebihi 0,9 pada seluruh sampel dan nilai RMSE 6,81x10-7 pada pisang raja dan 1,03x10-5 pada pisang ambon. Hasil PLSR menunjukan bahwa sistem pengujian dapat digunakan untuk menguji kadar karotenoid.

ABSTRACT
Fruit reflectance spectra of banana with a wide range of carotenoids content have been studied to develop testing system using hyperspectral imaging technique. The testing system consist of a set of measuring instruments, halogen light source, and hyperspectral camera that connected to PC using Camera Link. A sample set combining three stages of maturity i.e. immature, mature, and very mature. The testing system uses Partial least square regression PLSR models to get its quantitative results. PLSR models on full spectra was used to create a model that computing relationship between HSI spectra and carotenoids contents based on spectroscopy methods. The profile map of carotenoids was distributed by applying the PLS models on pixels within the hyperspectral image, which obtained acceptable results for all sample sets with correlation coefficient of prediction over 0.9 and RMSE value 6,81x10 7 on Musa textilia and 1,03x10 5 on Musa paradisiaca. The results show that the proposed system can be used to testing of carotenoids content."
2017
S67009
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Feriansyah Raihan Taufiq
"Citra hiperspektral memiliki jumlah spektral dari suatu objek dengan rentang spektrum yang lebih luas dibandingkan dengan citra RGB. Suatu citra hiperspektral memberikan informasi yang jauh lebih banyak kegunaannya sebagai analisa suatu kasus dibandingkan dengan citra RGB. Salah satu pengaplikasian dengan menggunakan citra hiperspektral yaitu pengukuran suatu kadar tertentu dalam suatu objek. Namun, citra hiperspektral sulit diperoleh dikarenakan memiliki sistem akuisisi yang tidak sederhana. Faktor tersebut dikarenakan pencitraan berbasis citra hiperspektral menggunakan kamera yang mahal, perangkat keras pendukung sistem akuisisi yang kompleks, beserta ukuran citra yang lebih besar dibandingkan dengan citra RGB. Oleh karena itu, penelitian ini melakukan rekonstruksi citra hiperspektral dari citra RGB menggunakan algoritma convolutional neural network dengan arsitektur dense block untuk studi kasus sistem prediksi kadar karotenoid pada daun bisbul. Penelitian ini menghasilkan citra hiperspektral rekonstruksi dari citra RGB yang diperoleh dari proses konversi, beserta citra RGB yang diperoleh dari kamera RGB. Citra hiperspektral yang direkonstruksi pada penelitian ini yaitu berada pada rentang target panjang gelombang 400 nm hingga 1000 nm dengan target jumlah bands sebanyak 112. Algoritma rekonstruksi yang digunakan pada penelitian ini yaitu convolutional neural network dengan arsitektur dense blocks. Pembangunan model rekonstruksi citra pada penelitian ini, yaitu dengan memvariasikan jumlah dense block beserta target rentang dan jumlah panjang gelombang yang akan direkonstruksi. Variasi ini bertujuan untuk mencari model rekonstruksi citra yang optimal untuk merekonstruksi citra hiperspektral dari citra RGB. Lalu, citra hiperspektral rekonstruksi akan digunakan untuk membangun model prediksi kadar karotenoid pada daun bisbul berbasis algoritma machine learning XGBoost, kemudian model prediksi kadar karotenoid berbasis citra hiperspektral rekonstruksi akan dibandingkan dengan model prediksi kadar karotenoid berbasis citra hiperspektral asli. Hasil eksperimen memaparkan bahwa model rekonstruksi citra dengan jumlah dense block sebanyak 30 memiliki performa terbaik, dengan target rentang panjang gelombang 400 nm hingga 1000 nm dan target jumlah bands sebanyak 112. Performa model rekonstruksi citra dengan variasi tersebut memiliki RMSE sebesar 0,0743 dan MRAE sebesar 0,0910. Lalu, performa model prediksi kadar berbasis citra hiperspektral rekonstruksi memiliki RMSE sebesar 0,0565 dan MRAE sebesar 0,0963. Evaluasi kualitatif citra hiperspektral rekonstruksi memiliki pola signatur spektral yang sama dengan citra hiperspektral asli.

Hyperspectral image has the spectral number of an object with a wider spectrum range than RGB image. As a some case analysis, a hyperspectral image is far more useful than RGB image. The measurement of contents in an object is one of the applications of the hyperspectral imagery. However, hyperspectral image is difficult to obtain due to a complicated acquisition system. This is down to the fact that hyperspectral imaging requires more expensive cameras, complex system support devices and have a larger size than RGB images. Therefore, this study reconstruct hyperspectral image using RGB images using a convolutional neural network with dense blocks architecture for a case study of a carotenoid content prediction in (Diospyros discolor Willd.) leaves. This research produces a reconstructed hyperspectral image from the RGB image obtained from the conversion process, and an RGB image obtained from the RGB camera. This study’s reconstructed hyperspectral image has a wavelength target from 400 nm to 1000 nm and a number of bands up to 112. This study’s reconstruction algorithm is a convolutional neural network with dense blocks architecture. In this study, an image reconstruction model is built by varying the number of dense block, target range and number of wavelengths to be reconstructed. The purpose of this variation is to find the best image reconstruction model for constructing hyperspectral images from RGB images. The reconstructed hyperspectral images will then be used to build a prediction model of carotenoid levels in (Diospyros discolor Willd.) leaves using the XGBoost machine learning algorithm, and this model will be compared to the original hyperspectral image based on carotenoid content prediction model. The experimental results indicate that the image reconstruction model with a dense block of 30 and a target wavelength range from 400 nm to 1000 nm with band number consist of 112 performs the best. The image reconstruction model performs well with these variations, with an RMSE of 0,0743 and an MRAE of 0,0910. The RMSE and MRAE of the reconstructed hyperspectral image for carotenoid content prediction model are 0,0565 and 0,0963, respectively. The qualitative evaluation of the reconstructed hyperspectral image has the same spectral signatur pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maulana Ihsan
"Kandungan total flavonoid dalam tumbuhan umumnya diukur menggunakan analisis spektrofotometri berdasarkan tingkat penyerapan warna. Dalam penelitian ini, sistem pemetaan flavonoid pada daun bisbul (Diospyros discolor Willd.) diperkenalkan menggunakan teknik pencitraan hiperspektral menggabungkan analisis spektral dan spasial. Sistem pemetaan dapat menunjukkan distribusi total flavonoid pada daun bisbul. Sistem ini terdiri dari sistem pengukuran dan model matematika dengan cara mengubah setiap piksel spasial menjadi nilai yang mewakili jumlah flavonoid dalam daun bisbul. Sistem pengukuran terdiri dari kamera hiperspektral, lampu halogen, slider serta kerangka pengukuran. Random forest (RF) dan XGBoost Regressor digunakan untuk menghitung model transformasi antara nilai reflektansi dan total flavonoid. Random forest juga digunakan untuk menyeleksi panjang gelombang yang memiliki korelasi terhadap flavonoid. Pembangunan sistem pengukuran dilakukan dengan 18 sampel daun bisbul dengan variasi usia daun berdasarkan letak daun pada satu dahan. Dalam rentang panjang gelombang penuh, model RF memberikan root mean square error (RMSE) 18,46 dan koefisien determinasi (R2) 0,89. Model RF setalah dilakukan pemilihan panjang gelombang menghasilkan RMSE 18,07 serta R2 0,90. Model XGBoost Regressor memberikan RMSE 11,89 dan koefisien determinasi 0,96. Sistem pemetaan yang diusulkan dapat digunakan dalam menganalisis distribusi flavonoid dalam daun bisbul.

The total content of flavonoids in plants is generally measured using spectrophotometric analysis based on color absorption rates. In this study, mapping system of flavonoid distribution of (Diospyros discolor Willd.) leaf was introduced using hyperspectral imaging technique combining spectral and spatial analysis. The mapping system provides total distribution of flavonoids in (Diospyros discolor Willd.) leaves. This system consists of a measurement system and a mathematical model that converts each spatial pixel into a value that represents the number of flavonoids in (Diospyros discolor Willd.) leaves. The measurement system consists of a hyperspectral camera, halogen lamp, slider, and measurement frame. Random forest (RF) and XGBoost Regressor are used to calculate the transformation model between reflectance values ​​and total flavonoids. Random forest is also used to select wavelengths that have a correlation with flavonoids. The construction of the measurement system was carried out with 18 samples of (Diospyros discolor Willd.) leaves with variations in the age of leaves based on the location of the leaves on one branch. In the full wavelength range, the RF model gives the root mean square error (RMSE) 18.46 and the determination coefficient (R2) 0.89. The RF model after selecting the wavelength produces RMSE 18.07 and R2 0.90. The XGBoost Regressor model gives RMSE 11.89 and the coefficient of determination 0.96. The proposed mapping system can be used in analyzing the distribution of flavonoids in (Diospyros discolor Willd.) leaves."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Krisna Aditya
"ABSTRACT
Sistem prediksi berbasis citra VNIR telah teruji kemampuannya untuk memprediksi parameter tertentu pada objek, terlebih pada parameter yang sulit diamati secara visual oleh manusia. Kemampuan tersebut tidak lepas dari jumlah fitur yang besar >100 fitur . Namun, jumlah tersebut memberikan beban komputasi yang lebih. Beban yang diperoleh terkadang tidak sepadan dengan performa akhir dari sistem. Diperlukan pemilihan atas fitur-fitur yang digunakan pada sistem. Studi ini membahas pemanfaatan seleksi fitur pada kasus pengukuran kadar karotenoid daun bayam Amaranthus tricolor L. Pengukuran kadar karotenoid dilakukan dengan metode Sims-Gamon. Citra daun bayam diakuisisi pada panjang gelombang 400-1000nm. Citra melalui proses koreksi, segmentasi, dan ekstraksi sebelum digunakan sebagi input. Sistem prediksi memiliki performa dasar PLSR sebesar 0,584 pada R2 , 0,0169 pada RMSE, dan 1,94 pada RPD untuk daun bayam hijau, serta 0,815 pada R2 , 0,013 pada RMSE, dan 2,44 pada RPD untuk daun bayam merah. Penggunaan Algoritma Genetika berhasil memilih 89 dan 86 fitur untuk daun bayam hijau dan merah. Performa sistem setelah seleksi fitur menjadi 0,878 pada R2 , 0,01 pada RMSE, dan 3,05 pada RPD untuk daun bayam hijau, serta 0,962 pada R2 , 0,00596 pada RMSE, dan 5,44 pada RPD untuk daun bayam merah.

ABSTRACT
Prediction system based on VNIR image had been tested at various prediction cases, especially at case which is hard to do inspection by human eyesight. This ability is due to lots of available features 100 features . Unfortunately, that features also give a burden to computational load. However, that load is not always worth the prediction system performance. Number of features to be used is needed to be reduce to a lesser number. In this study, feature selection is used to reduce number of features for predicting carotenoid content at Amaranthus tricolor L. Determination of carotenoid content is done by using Sims Gamon method. Image of amaranth leaf acquire at 400 1000nm. Image of amaranth leaf then processed through correction, segmentation, and extraction before being used as input. Base performance by using PLSR at green amaranth are 0.584 for R2, 0.0169 for RMSE, and 1.94 for RPD. Base performance for red amaranth are 0.815 for R2 , 0.013 for RMSE, and 2.44 for RPD. Genetic Algorithm selected 89 and 86 features for green and red amaranth. After feature selection, performance for green amaranth are 0.878 for R2 , 0.01 for RMSE, and 3.05 for RPD. Performance for red amaranth are 0.962 for R2 , 0.00596 for RMSE, and 5.44 for RPD. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ali Muhammad Ali
"Citra hiperspektral memiliki informasi dalam rentang spektrum yang luas melebihi rentang spektrum yang ada pada citra RGB sebagai citra yang umum digunakan sehari-hari saat ini. Informasi tersebut dapat dimanfaatkan dalam berbagai macam bidang; salah satunya adalah pengukuran kadar tertentu dalam suatu objek. Namun, kamera hiperspektral sebagai alat akuisisi citra memiliki kekurangan yaitu harganya yang mahal, tidak mudah dioperasikan, ukuran hasil citra yang besar, serta memerlukan teknik dan perangkat khusus saat mengakuisisi citra. Hal tersebut berbeda dengan kamera RGB yang memiliki harga yang jauh lebih murah, hasil citra berukuran kecil, serta mudah dioperasikan. Penelitian ini melakukan implementasi sistem rekonstruksi citra hiperspektral dari citra RGB berbasis convolutional neural network ResNet pada sistem prediksi kadar fenolik daun bisbul. Terdapat proses rekonstruksi citra hiperspektral dengan target jumlah bands sebanyak 224 pada rentang panjang gelombang 400 sampai 1000 nm. Penelitian ini menggunakan algoritma model ResNet untuk model rekonstruksi citra, serta algoritma model XGBoost untuk model prediksi kadar. Performa model yang dihasilkan dalam penelitian ini adalah RMSE sebesar 0,1129 dan MRAE sebesar 0,3187 untuk model rekonstruksi citra, serta RMSE sebesar 0,5798 dan MRAE sebesar 0,1431 untuk model prediksi kadar. Citra hiperspektral hasil rekonstruksi mampu menghasilkan pola spectral signature yang serupa dengan citra hiperspektral asli.

Hyperspectral images have much information within their large spectrum area; larger than RGB images which are used daily nowadays. The information can be used in many applications; one of them is content measurement of an object. However, hyperspectral cameras as an image acquisition instrument have disadvantages, such as high cost, not easy to operate, large image results, and require additional equipment in its image acquisition. This is different from RGB cameras which have cheaper price, smaller in image size, and easier to operate. This study implemented a hyperspectral image reconstruction system from RGB images based on the ResNet convolutional neural network on the velvet apple leaf’s phenolic content prediction system. This study reconstructs hyperspectral images with a total target of 224 bands in the wavelength range of 400 to 1000 nm. This study uses the ResNet model algorithm for the image reconstruction model, and the XGBoost model algorithm for the content prediction. The performance of the model produced in this study is RMSE of 0.1129 and MRAE of 0.3187 for the image reconstruction model, as well as RMSE of 0.5798 and MRAE of 0.1431 for the content prediction model. The reconstructed hyperspectral image can produce the same spectral signature pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Sriyono Putro
"Pada saat ini, pengukuran sifat dan karakteristik madu yang menjadi dasar untuk penentuan kualitas madu dilakukan dengan metode berbasis laboratorium yang umumnya memiliki sifat merusak, memerlukan waktu yang lama, satu alat untuk satu pengukuran dan memerlukan penanganan yang khusus. Penelitian ini ditujukan untuk membuat suatu sistem pengukuran berbasis citra hiperspektral yang memiliki sifat tidak merusak, cepat, mudah, dan terintegrasi untuk memprediksi beberapa sifat madu antara lain massa jenis, TSS Total Soluble Solid), konduktivitas listrik, dan pH madu, serta mampu untuk melakukan pengenalan produsen madu. Sistem pengukuran yang dikembangkan menggunakan kamera hiperspektral yang mampu mendeteksi gelombang elektromagnetik pada panjang gelombang 400-1000 nm.
Sistem pengolahan citra meliputi pengkoreksi citra, pemilihan area pengukuran, pengekstraksi ciri, pereduksi data, pemodelan pengenalan produsen madu dan pemodelan prediksi sifat madu. Algoritma pereduksi data yang digunakan meliputi PCA (Principal Component Analysis), PLS (Partial Least Square), dan ICA (Independent Componen Analysis). Algoritma pengenalan produsen madu meliputi algoritma DT (Decission Tree), kNN (k Nearest Neighbor), SVM (Support Vector Machine).
Algoritma pemodelan prediksi sifat madu meliputi RT (Regression Tree), SVR (Support Vector Regression), dan GPR (Gaussian Process Regression). Sampel madu yang digunakan untuk menguji kinerja sistem yang dikembangkan terdiri atas 140 sampel yang didapatkan dari 3 produsen madu, dimana masing masing produsen mempunyai 9 sumber flora yang berbeda beda. Evaluasi terhadap kinerja sistem dilakukan dengan analisis nilai akurasi pada klasifikasi, serta koefisien determinasi (R2) dan RMSE (Root Mean Square Error) pada regresi.
Hasil yang diperoleh menunjukan algoritma PLS-kNN sebagai algoritma terbaik untuk klasifikasi produsen madu dengan tingkat akurasi 79,3%. Algoritma PCA-GPR merupakan algoritma terbaik untuk prediksi nilai massa jenis, TSS, dan konduktivitas listrik dengan nilai R2 sebesar 0,889, 0,801, 0,875 dan RMSE dengan nilai 0,012, 1,738, 0,074. Algoritma terbaik untuk prediksi nilai pH madu adalah PLS-GPR dengan nilai R2 sebesar 0,904 dan RMSE 0,107. Secara umum, sistem yang dikembangkan telah berhasil melakukan pengenalan produsen madu dan memprediksi sifat madu dengan baik.

Currently, the measurement of the honey properties which is the basis for determining the quality of honey is carried out by laboratory-based methods which generally have destructive properties, require a long time, one tool for one measurement and require special handling. This research is intended to develop measurement system based on hyperspectral imaging which has non-destructive, fast, easy and integrated properties that are able to measure some of the properties of honey including density, TSS, electric conductivity, and pH. , and are able to recognize the producers of honey.
The measurement system uses a hyperspectral camera over 400-1000 nm wavelength signal. This system use image processing technique including image correction, image segmentation, image extraction, classification algorithm to recognize the producers of honey, and regression algorithm to predict honey properties value. The data reduction algorithm used are PCA (Principal Component Analysis), PLS (Partial Least Square), and ICA (Independent Componen Analysis).
The classification algorithm used are DT (Decission Tree), kNN (k Nearest Neighbor), SVM (Support Vector Machine. The regression algorithm used are RT (Regression Tree), SVR (Support Vector Regression), and GPR (Gaussian Process Regression). The honey samples used to test the performance of the system consisted of 140 samples obtained from 3 honey producers, where each producer had 9 different sources of honey floral origin. Evaluation of the system was done by analyzing the value of accuracy on classification, as well as the coefficient of determination (R2) and RMSE (Root Mean Square Error) in the regression.
The results obtained show the PLS-kNN algorithm as the best algorithm to recognize the honey producers with 79.3% accurac. The PCA-GPR algorithm is the best algorithm for predicting density, TSS, and electrical conductivity with R2 values of 0.889, 0.801, 0.875 and RMSE values of 0.012, 1.738, 0.074. The best algorithm for predicting the pH value of honey was PLS-GPR with R2 value of 0.904 and RMSE 0.107.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
T51840
UI - Tesis Membership  Universitas Indonesia Library
cover
Shinta Aprilia Safitri
"Pola konsumsi pangan masyarakat Indonesia saat ini telah beralih dari sekedar pemenuhan kebutuhan dasar menjadi pola konsumsi makanan sehat yang disebut sebagai pangan fungsional. Beras berpigmen masuk kedalam jenis makanan fungsional karena mengandung banyak antioksidan yang berasal dari antosianin. Namun beras berpigmen dinilai mudah apek jika disimpan terlalu lama. Teknologi iradiasi dapat digunakan untuk mengawetkan makanan secara aman dan efektif sehingga dapat memperpanjang umur simpannya. Penyinaran radiasi gamma dengan dosis tertentu dapat menyebabkan terjadinya perubahan komposisi nutrisi yang terkandung dalam beras. Sehingga perlu dilakukan pengukuran kandungan nutrisi beras berpigmen pasca iradiasi untuk menjamin kesesuaian gizi pada beras tersebut.  Penelitian ini dilakukan untuk membangun sistem multi-output yang mampu memprediksi kadar total antosianin dan kadar air pada beras berpigmen teriradiasi berbasis pencitraan hiperspektral. Evaluasi model dilakukan dengan menghitung nilai root mean square error (RMSE) dan koefisien determinasi R2 dari model multi-output dan membandingkan performanya dengan model single-output. Hasilnya didapatkan bahwa model multi-output Spectral Xception mampu melakukan prediksi yang sangat baik dengan performa pengujian kadar total antosianin menghasilkan nilai RMSE sebesar 0,9105 dan R2 sebesar 0,9963, serta pengujian kadar air bernilai RMSE sebesar 0,2529 dan R2 sebesar 0,9784. Selain itu, model multi-output secara umum lebih efisien dibandingkan single-output karena proses pelatihannya 48% lebih cepat. Pada penelitian ini juga dilakukan evaluasi performa model multi-output Spectral Xception saat menggunakan dataset yang berbeda.

Food consumption pattern of the Indonesian people has shifted from merely fulfilling basic needs to becoming a healthy food consumption which is referred to functional food. Pigmented rice can be categorized as a type of functional food because it contains antioxidants derived from anthocyanins. However, pigmented rice is considered to be easily stale when stored for too long. Irradiation technology can be used to safely and effectively preserve food to extend its shelf life. Utilization of gamma radiation irradiation with certain doses can cause changes in the composition of the nutrients contained therein. So it is necessary to measure the nutritional content of post-irradiation pigmented rice to ensure the nutritional suitability of the rice. This research was conducted to develop a multi-output system to predict total anthocyanin content and water content in irradiated pigmented rice based on hyperspectral imaging. Model evaluation has been carried out by calculating the root mean square error (RMSE) value and the coefficient of determination R2 of the multi-output model and comparing its performance with the single-output model. The results showed that the multi-output spectral xception model was able to make very good predictions with test performance at total anthocyanin content RMSE values of 0.9105 and R2 0.9963, as well as testing for water content RMSE values of 0.2529 and R2 0.9784. In addition, the multi-output model is generally more efficient than the single-output model because the training process is 48% faster. This research also evaluates the performance of the multi-output spectral exception model when using different datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Syifa Dzulhijjah Juansyah
"ABSTRAK
Sekarang ini, tingkat kematangan buah pisang Musa sp diklasifikasikan secara manual berdasarkan warna kulitnya. Pada penelitian ini, akan diperkenakan sistem otomatis tingkat kematangan buah pisang menggunakan teknologi hyperspectral. Sistem perangkat keras yang digunakan terdiri dari satu set alat pengukuran, sumber cahaya halogen dan kamera hyperspectral yang terhubung ke PC melalui Camera Link. Perangkat lunak sistem terdiri dari pengukuran hasil reflektansi citra, ekstraksi ciri, dan algoritma klasifikasi. Citra reflektansi permukaan pisang dihitung berdasarkan citra yang didapat, white reference dan dark reference. Feature extraction ekstraksi ciri didapatkan menggunakan principal component analysis pada semua range panjang gelombang hyperspectral. Dengan demikian, tingkat kematangan diklasifikasikan menggunakan artificial neural network menjadi 3 kelas yaitu, mentah, matang dan sangat matang. Sampel yang digunakan ialah 15 pisang ambon Musa acuminate colla dan 15 pisang raja Musa textilla yang masing-masing berisi 5 sampel pada setiap tingkat kematangan. Hasil penelitian ini menunjukan bahwa sistem yang diusulkan dapat mengkalsifikasikan tingkat kematangan buah pisang cukup akurat.

ABSTRACT
Nowadays, the maturity of banana is classified manually based on the surface color of banana. In this study, an automatic system was introduce using hyperspectral technology system. The hardware of system consist of a set of measuring system, light source and hyperspectral camera that connect to PC via Camera Link. The software of system consists of reflectance image profile measurement, feature extraction and classification algorithm. The reflectance image profile of the banana surface was calculated based on current image, white and dark image reference. The feature sets were computed using a principal component analysis on full wavelength range of HIS spectra. Thus, the maturity stage of banana was classified artificial neural network into 3 classes i.e. immature, mature and very mature. The samples used were 15 sampel Musa acuminate collaa and 15 sampel Moses textilla which is consist 5 samples for each aturity stage.The results show that the proposed system can classify the banana maturity stage perfectly. "
2017
S67132
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>