Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 35748 dokumen yang sesuai dengan query
cover
Rizki Arif
"Dalam penelitian ini, telah dibuat sebuah sistem akuisisi data 32-channel berbasis Field Programmable Gate Array FPGA untuk mengakuisisi dan memroses sinyal Electroencephalography EEG . Sistem akuisisi data yang dibangun menggunakan board PYNQZ1, dengan Xilinx ZYNQ XC7Z20-1CLG400C All Programmable System-on-Chip APSoCs yang dapat memberikan sebuah sistem tertanam dengan performa tinggi, karena memiliki kombinasi antara fleksibilitas serta versatility dari programmable logic PL dengan prosesor embedded atau programmable system PS dengan kecepatan tinggi. Sebagai pusat dari sistem akuisisi data yang dibangun, FPGA menerima, memproses, dan menyimpan data dari Front-End Analog to Digital Converter ADC ADS1299EEG-FE. Komunikasi data yang digunakan dalam sistem akuisisi data yang dibangun adalah Serial Peripheral Interface SPI dengan konfigurasi daisy-chain. Untuk bagian pemrosesan sinyal, penulis mengimplementasikan filter bandpass Butterworth dengan orde 5 dan Fast Fourier Transform FFT pada overlay dari PYNQ-Z1. Overlay merupakan desain FPGA yang dapat dikonfigurasi sehingga menghubungkan PS pada ZYNQ dengan PL, memberikan penulis kemampuan untuk mengendalikan secara langsung platform hardware memanfaatkan Python pada PS. Rerata dari error akurasi yang didapatkan dari hasil validasi adalah 1.34 dan kriteria performa Total Harmonic Distortion THD menghasilkan 0.0091 , dengan memanfaatkan NETECH MiniSIM EEG Simulator 330. Perbandingan dari sistem akuisisi data dengan Neurostyle NS-EEG-D1 System yang mengambil data EEG yang sama menghasilkan parameter korelasi gradien dengan 0.9818, y-intercept dengan -0.1803, dan R2 dengan 0.9742 berdasarkan analisis least square. Parameter tersebut memperlihatkan sistem akusisi data yang telah dibangun cukup, jika tidak setara, dengan sistem akuisisi data komersil dengan standar medis, yaitu Neurostyle NS-EEG-D1 System, karena dapat memastikan dan mempertahankan akurasi dengan konfigurasi frekuensi sampling yang lebih tinggi.

This study proposes a novel Field Programmable Gate Array FPGA based 32 channel data acquisition system to acquire and process Electroencephalography EEG signal. The data acquisition system is utilizing PYNQ Z1 board, which is equipped with a Xilinx ZYNQ XC7Z020 1CLG400C All Programmable SoC APSoCs that can offer high performance embedded system because of the combination between the flexibility and versatility of the programmable logic PL and the high speed embedded processor or programmable system PS . As the core of the data acquisition system, the FPGA collect, process, and store the data based on Front End Analog to Digital Converter ADC ADS1299EEG FE. The communication protocol used in the data acquisition system is Serial Peripheral Interface SPI with daisy chain configuration. For the signal processing part, we implement a 5th order Butterworth bandpass filter and Fast Fourier Transform FFT directly on the PYNQ Z1 rsquo s overlay. The overlay are configurable FPGA design that extend the system from the PS of the ZYNQ to the PL, enabling us to control directly the hardware platform using Python running in the PS. The mean accuracy error obtained from validation result of the developed system is 1.34 and the Total Harmonic Distortion THD performance criterion resulting in 0.0091 , both of them validated with NETECH MiniSIM EEG Simulator 330. The comparison between the developed system with Neurostyle NS EEG D1 System acquiring the same EEG data shows correlation parameter gradient of 0.9818, y intercept with 0.1803, and R2 of 0.9742 based on the least square analysis. The parameter above indicates that the developed system is adequate enough, if not on a par, with the commercialized, medical grade EEG data acquisition system Neurostyle NS EEG D1 as it can assure and maintain accuracy with higher sampling frequency."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendra Saputra Gani
"Telah dibuat sistem akuisisi data EEG 16 kanal menggunakan ADS1299FE Texas Instrument, USA berbasis FPGA Zedboard Diligent,USA . EEG merupakan suatu divais yang digunakan untuk mengukur aktivitas kelistrikan pada permukaan kepala yang dikenal sebagai sinyal EEG. Sinyal EEG memiliki beda potensial 0.5-100 V dengan frekuensi 0.5 ndash; 40 Hz. Sistem akuisisi data EEG ini terdiri atas 2 buah chip ADS1299 yang terhubung secara Daisy-Chain yang diproses menggunakan FPGA Zedboard. Rancangan sistem akuisisi ini dapat dikonfigurasi ulang baik gain dan data ratenya. Pengaturan ulangini dapat dilakukan melalui program terminal pada komputer maupun dengan menggunakan perangkat lunak yang didisain khusus untuk sistem ini. Perangkat lunak tersebut dapat merekam dan menampilkan data hasil akuisisi secara real time. Validasi sistem akuisisi data EEG ini telah diuji menggunakan EEG Simulator NETECH Mini-Sim EEG , pengujian dilakukan pada frekuensi 2Hz dan 5Hz dengan rentang amplitudo 10 V, 30 V , 50 V dan 100 V. Hasil uji validasi pada frekuensi 2Hz diperoleh hasil pengukuran dengan maksimal deviasi 1.3 dan pada frekuensi 5Hz diperoleh hasil pengukuran dengan maksimal deviasi 1.8.

Has been developed Electroencepharography EEG data acquisition system base on FPGA Zedboard Diligent, USA usin ADS1299FE Texas Instrument, USA . EEG is a device used to measure the electrical activities on the scalp. The voltage range of EEG signal are around 0.5 100 V with frequency 0.5 ndash 40 Hz. This data acquisition system consisted of 2 chips ADS1299 which were connected in Daisy Chain mode and processes using Zedboard. This acquisition system can be reconfigured both its gain and data rate. This configuration could modified both using terminal program or software specially design respectively. The feature of this software are data recording and display the EEG signal graphically in real time. The recorded EEG signal were validated using EEG Simulator NETECH Mini Sim EEG with frequency 2Hz and 5Hz and voltage test in 10 V, 30 V, 50 V and 100 V. The result of the validation test at 2Hz obtained measurement result with a maximum deviation of 1.3 and at a frequency of 5Hz obtained measurement result with a maximum deviation of 1.8 ."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
T46854
UI - Tesis Membership  Universitas Indonesia Library
cover
Henry Hendarwin
"Sistem akuisisi data Electroencephalography (EEG) telah dikembangkan. menggunakan Analog Front End (AFE) ADS1299 EEGFE-PDK berbasis Raspberry Pi. Sistem ini merupakan kelanjutan dari sistem yang dikembangkan sebelumnya, dengan menambahkan fitur Relative Power Ratio (RPR), komunikasi Local Area Networking (LAN) dan GUI (Graphical User Interface). Fitur RPR perlu dipahami Karakteristik sinyal EEG. ADS 1299 memiliki beberapa keunggulan diantaranya Akuisisi data secara simultan, resolusi 24 bit, membutuhkan daya <0,2 mW dan noise <1 μV. Sistem akuisisi data ini terdiri dari 4 unit AFE yang dikonfigurasi secara daisy rantai. Komunikasi antara AFE dan Raspberry Pi menggunakan periferal serial antarmuka (SPI) dengan format RDATA. Bahasa pemrograman C digunakan untuk komunikasi antara Raspberry dengan AFE dan Matlab digunakan untuk pemrosesan sinyal. Data dari Raspberry ditransfer melalui LAN ke Personal Computer (PC). Kemudian disaring menggunakan Butterworth order 5. Data EEG dan perhitungan RPR ditampilkan secara real-time. Perhitungan dilakukan dengan Fast Fourier Transforms (FFT) dan Power Spectral Density (PSD). Sistem ini telah dievaluasi dengan menggunakan simulator EEG (NETECH Mini-Sim EEG) yang menghasilkan sinyal listrik sinusoidal dengan frekuensi 2 Hz, 5 Hz, dan amplitudo tegangan 30, 50 μV. Dengan perbandingan rata-rata FWHM (Full Width at Half Maximum) didapatkan untuk frekuensi 2Hz di sistem akuisisi tersebut memperoleh nilai 4 Hz, dan dalam Neurostyle 4 Hz. Di frekuensi 5 Hz, rata-rata nilai FWHM yang diperoleh untuk sistem akuisisi yang dibuat adalah 13 Hz dan Neurostyle pada 14 Hz.

The systems have been developed to obtain Electroencephalography (EEG) data using the Raspberry Pi based Analog Front End (AFE) ADS1299 EEGFE-PDK. This system is a continuation of a previously developed system, supported by Relative Power Ratio (RPR) features, Local Area Networking (LAN) and GUI (Graphical User Interface) features. EPR. ADS 1299 has several advantages that can be taken from simultaneous data, 24 bit resolution, requires power <0.2 mW and noise <1 μV. This data acquisition system consists of 4 AFE units completed by daisy chains. Communication between AFE and Raspberry Pi uses a serial peripheral interface (SPI) with RDATA format. C programming language is used for communication between Raspberries and AFE and MATLAB is used for signal implementation. Data from Raspberry is transferred via LAN to Personal Computer (PC). Then filtered using Butterworth order 5. EEG data and realtime calculations. The calculations are carried out by Fast Fourier Transforms (FFT) and Power Spectral Density (PSD). This system has been evaluated using an EEG simulator (NETECH Mini-Sim EEG) which produces sinusoidal electrical signals with a frequency of 2 Hz, 5 Hz, and a amplitude of 30, 50 μV. With the average change in FWHM (Full Width at Half Maximum) obtained for the 2Hz frequency in the acquisition system a value of 4 Hz is obtained, and in Neurostyle it is 4 Hz. At a frequency of 5 Hz, the average FWHM value obtained for the acquisition system is 13 Hz and Neurostyle is 14 Hz."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nida Amala Syawalia Adriant
"

Elektroensefalografi (EEG), sebagai metode rekaman neurofisiologis yang telah dimanfaatkan secara luas, terutama dalam penelitian dasar tentang fungsi otak dan pemantauan pasien dengan gangguan neurologis. serta sistem Brain Computer Interface (BCI) untuk menerjemahkan sinyal menjadi perintah atau fungsi tertentu. Dalam perekaman sinyal EEG, terdapat tantangan interferensi dan noise akibat amplitudo sinyal yang sangat kecil (mikrovolt [V]) dan frekuensi rendah. Penelitian ini mengeksplorasi pengembangan elektroda aktif sebagai solusi untuk menguatkan sinyal EEG sehingga dapat meminimalisir noise yang mungkin ada. Elektroda aktif dirancang menggunakan filter aktif Sallen & Key orde 2 dengan respon butterworth menggunakan OPA378 sebagai operational amplifier dengan frekuensi cut-off 0 hingga 100 Hz. Untuk meminimalisir jumlah kabel, diterapkan operasi single-supply sehingga hanya 3 kabel yang diperlukan untuk mengoperasikan elektroda aktif. Prototype elektroda aktif diuji menggunakan EEG simulator NETECH MiniSim 330 dan direkam menggunakan ADS1299 PDK sebagai ADC dan Raspberry Pi 4 Model B untuk menyimpan file rekaman. Hasilnya, elektroda aktif mampu melakukan penguatan sinyal sebesar 22 kali dengan cukup stabil pada rentang frekuensi 20 hingga 100 Hz dengan error sebesar 3.53% dari target penguatan yang diinginkan.


Elektroensefalografi (EEG) is a widely used method for recording neurophysiological signals, primarily for research on brain functions and monitoring patients with neurological disorders. The development of active electrodes is being explored as a solution to improve the quality of EEG signals, which are characterized by very low amplitude (microvolts [μV]) and low frequency. The active electrode is designed using Sallen & Key filter or Butterworth filter with OPA378 as the operational amplifier with a cut-off frequency range of 0 Hz to 100 Hz. To minimize the number of wires, single-supply operation is applied, requiring only three wires to operate the active electrode. The prototype of the active electrode was tested using a NETECH MiniSim 330 EEG simulator and recorded using an ADS1299 PDK as an ADC and a Raspberry Pi 4 Model B to save the recorded file. The results show that active electrodes can provide signal attenuation up to 22 times with sufficient stability in the 20 Hz to 100 Hz frequency range, with an error of 3.35% from the expected

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Permana
"Brain Computer Interface (BCI) merupakan sebuah teknologi yang sedang banyak dikembangkan di banyak negara di dunia, pasalnya teknologi BCI ini adalah teknologi yang modern dimana teknlogi ini dapat memungkinkan manusia dapat berkomunikasi dengan suatu sistem. Sampai sekarang BCI banyak dikembangkan pada dunia medis, salah satunya adalah stroke, stroke adalah sebuah penyakit yang diakibatkan oleh penguumpalan darah pada pembuluh darah diotak ataupun akibat pecahnya pembuluh datah diotak. Stroke mengakibatkan kelumpuhan pada bagian tubuh penderitanya, sehingga membuat ketebatasan pada mobilitasnya. Sehingga melalui penelitian ini diharapkan dapat membantu pasien stroke dalam mobilitiasnya. Pada pembuatan sistem sebelumnya dilakukan pengklasifikasian sinyal otak dengan cara perekaman sinyal EEG dengan menggunakan ADS1299EEG-FE, perekaman ini dilakukan dengan metode motor imagery sehingga subjek tidak perlu melakukan pergerakan cukup melakukan pemikiran pergerakan motorik untuk dapat menjalankan kursi roda. Pengklasifikasian sistem ini menggunakan fitur RPR yaitu nilai rasio power, setelah dilakukan klasifikasi dilakukanlah validasi sistem dengan melakukan pengujian lasngung pada sistem. Pada pengujian sistem terdapat 2 model pengujian yakni Diam – Maju – Mundur dan Diam – Kiri – kanan dengan presentase keberhasilan 46% dan 65%.

Brain Computer Interface (BCI) is a technology that is being developed in many countries in the world, because this BCI technology is a modern technology where technology can enable communicate human with a system. BCI has been widely developed in the medical, one of them is stroke, stroke is a disease caused by blood clots in blood vessels in the brain or due to ruptured brained vessels. Stroke results in paralysis of the part of the body of the sufferer, making it difficult for mobility. So that this research is expected to help stroke patients in their mobility. For making the system previously we classification the brain signals by recording EEG signals using ADS1299EEG-FE, this recording using the motor imagery method so that the subject did not need to move and just thinking about motor movements to control a wheelchair. The classification of this system uses the RPR feature, namely the value of the power ratio, after classification the system validation is done by direct testing on the system. In the system testing there are 2 test models namely Stop - Forward - Backward and Stop - Left - right with a success percentage 46% and 65%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faizal Adila Ferdiansyah
"

Brain-Machine Interface (BMI), atau saat ini juga terdapat Hybrid Brain-Machine Interface (hBMI),teknologi yang saat ini sedang berkembang pesat. Teknologi ini juga telah diaplikasikan pada berbagai bidang. BMI adalah sistem yang secara langsung mengubah pikiran seseorang dari otak menjadi sebuah informasi yang dapat diproses untuk mengartikannya menjadi informasi yang dapat dipahami manusia. BMI ini juga memiliki pengembangan lanjut dimana sinyal otak digabungkan oleh sinyal biologis lain seperti electromyography (EMG), electrooculography (EOG), atau juga electrocardiography (ECG). Pengembangan teknologi ini memiliki aplikasi sebagai alat bantu rehabilitasi untuk seseorang yang menderita ketidakmampuan dalam menggerakkan anggota tubuhnya, seperti tangan. Melalui penelitian ini diharapkan untuk dapat merancang sistem pengendalian orthosis sebagai alat bantu rehabilitasi dengan menggunakan metode klasifikasi dengan sinyal otak dan sinyal otot, sehingga subjek yang menggunakan alat ini dapat melakukan rehabilitasi dalam pergerakan lengan atas khususnya pada sendi siku. Hasil klasifikasi gerakan dengan menggunakan sinyal otak dan sinyal otot ini, dengan menggunakan fitur delta alpha rasio dan root mean square, didapatkan akurasi training untuk tiga gerakan yakni relaks, fleksi, dan ekstensi yaitu sebesar 90.3% dan untuk akurasi testing sebesar 85.2%.


Brain-Machine Interface (BMI) or also its advancement, hybrid brain machine interface (hBMI), is a technology that is vastly developed. This technology has been used in many fields. BMI is a system that directly changes human’s mind into information that can be extracted to informations that can be meaningful to people. BMI also has advancement in which the brain signal is combined with other biopotential signal such as electromyography (EMG), electrooculography (EOG), or electrocardiography (ECG). The development of this technology has applications as a rehabilitation aid for someone suffering from an inability to move his limbs, such as the hands. Through this research it is hoped to be able to design an orthosis control system as a rehabilitation device by using a classification method with brain signals and muscle signals, so that subjects who use this tool can carry out rehabilitation in upper arm movements especially in the elbow joint. The results of the movement classification using brain signals and muscle signals, using the delta alpha ratio and root mean square features, obtained training accuracy for three movements namely relax, flexion, and extension of 90.3% and for testing accuracy of 85.2%.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farah Nuraiman Hartono
"Brain-Computer Interface (BCI) merupakan sebuah sistem yang mampu menerjemahkan sinyal-sinyal otak menjadi perintah kepada berbagai devais keluaran. Teknologi ini kini sedang berkembang pesat terutama untuk keperluan rehabilitasi gerak bagi orang-orang yang telah kehilangan kemampuan geraknya. Dalam penelitian ini, dirancang sebuah sistem BCI yang mampu menerjemahkan sinyal otak seseorang ketika sedang melakukan pembayangan gerak (motor imagery) untuk gerakan tangan menggenggam dan membuka. Hasil terjemahan tersebut dapat digunakan untuk menggerakkan sebuah antarmuka yang membantu orang tersebut untuk bergerak menggenggam dan membuka tangan secara real-time. Sistem BCI ini menggunakan perangkat akuisisi data yang terdiri dari Raspberry Pi 4 dan ADS1299 Analog-to-Digital Converter. Sistem ini juga dikembangkan dengan menggunakan berbagai algoritma pemrosesan dan klasifikasi data, mulai dari Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, dan Random Forest. Akurasi hasil testing klasifikasi yang dilakukan oleh sistem ini bernilai 64,6% untuk mengklasifikasi 3 jenis pembayangan gerak (menggenggam, membuka, dan diam) menggunakan algoritma SVM serta 94,7% untuk klasifikasi 2 jenis pembayangan gerak (menggenggam dan membuka) menggunakan algoritma Random Forest.

Brain-Computer Interface (BCI) is a system which can translate brain signals to command various output devices. This technology had been developing rapidly, especially for movement rehabilitation purposes for people with motoric disabilities. In this research, a BCI system has been developed which can translate one’s brain signals when one is imagining doing hand movement (motor imagery). The translation result can be used to drive an interface in real-time. This BCI system utilize an acquisition device, consisting of Raspberry Pi 4 and ADS1299 Analog-to-Digital Converter. Besides, this system has also been developed using several algorithms for processing and classifying data, namely Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, and Random Forest. Testing accuracy for this system yielded a 64.6% for classifying three types of motor imagery (hand grasping, hand opening, and resting) with SVM, and 94.7% for classifying two types of motor imagery (hand grasping and hand opening only) using Random Forest."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
La Ode Husein Zilullah Toresano
"Sistem instrumentasi akuisisi data yang telah dibuat berhasil diuji untuk mengakuisisi sinyal EEG (Electroencephalogram) berbasis mikrokontroler 32-bit ATSAM3X8E ARM Cortex-M3. Instrumen ini terdiri dari elektroda 16-channeldalam bentuk EEG head-caps yang terhubung dengan ADC (Analog to Digital Converter) ADS1299Texas Instrument. ADC ini memilikiresolusi sebesar 24-bit sehingga dapat presisi mengakuisisi sinyal analog sinyal EEG dalam orde microvolt (μV). Sistem front-end ADS1299 dirancang dalam format double-layer PCB (Print Circuit Board) dengan konfigurasi daisy-chain, sehingga dapat secara simultan mengakuisisi data sebanyak 16-channel. Protokol SPI (Serial Peripheral Interface) untuk proses aktivasi ADS1299 berhasil diuji dengan SPI Analyzer Hantek 4032L logic analyzer dengan sampling rate sebesar 400 MSa/s. Sistem akuisisi data dapat menampilkanhasil akuisisi secara real-time dalam bentuk grafik, brain-mapping 16-channel, serta hasil pengolahan sinyal (signal processing) dengan metode FFT (Fast Fourier Transform). Aplikasi firmware software GUI (Graphical User Interface) yang dikembangkan berbasis OpenBCI (Brain Computer Interface) dengan Java Processing dan dapat melakukan proses penyimpanan data dalam format *.txt. Sistem akuisisi data EEG telah divalidasi dengan EEG Simulator NETECH 330.Proses pengujian dilakukan pada frekuensi 2 Hz dan 5 Hz, dengan variasi amplitudo sebesar 10 μV, 30 μV, 50 μV, dan 100μV pada channel-1 hingga channel-16. Pada pengujian di frekuensi 2 Hz menghasilkan deviasi error maksimum sebesar 8.66% ± 2% dan deviasi minimum sebesar12.11% ± 2%, serta pada pengujian di frekuensi 5 Hz menghasilkan deviasi error maksimum sebesar 7.18% ± 2% dan deviasi minimum sebesar 0.03±2 %.

The data acquisition instrumentation system has been successfully tested to acquire of EEG (electroencephalogram) signals with 32-bit microcontrollers based on the ARM Cortex-M3 ATSAM3X8E. The instrument consists of a 16-channel electrodes in the form of EEG head-caps connected to ADC (Analog to Digital Converter) ADS1299 Texas Instruments. The ADC device has a 24-bit resolution so that it can precision to acquire the analog of EEG signals in order microvolt (μV). The ADS1299 front-end system has been developed in the format of a double-layer PCB (Print Circuit Board) with a daisy-chain configuration, and also can simultaneously acquire as much data as 16-channel. The SPI (Serial Peripheral Interface) protocol for activation process the ADS1299 has been successfully tested SPI Analyzer based Hantek 4032L logic analyzer with 400 MSa/s sampling rate. The data acquisition system can display the results in realtime format in the form of graphs, brain-mapping of 16-channels, as well as the results of signal processing FFT (Fast Fourier Transform) based. The firmware application software of GUI (Graphical User Interface) have been developed based on OpenBCI (Brain Computer Interface) with Java Processing and can saved of data results in *.txt format. The EEG data acquisition system has been validated with EEG Simulator NETECH 330. The systemhas beentested at a frequency of 2 Hz and 5 Hz with amplitude variations of 10 μV, 30 μV, 50 μV, and 100 μV on channel-1 to channel-16. The final results of validation process at a frequency of 2 Hz was produced a deviation error maximum of 8.66% ± 2% and minimum deviation 12.11% ± 2%, as well as at frequency of 5 Hz was produced a deviation error to a maximum of 7.18% ± 2% and minimum deviation of 0.03 ± 2 %."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
T46387
UI - Tesis Membership  Universitas Indonesia Library
cover
Akhmad Aldiya Yusuf
"ABSTRAK
Isu kesehatan mental merupakan sebuah isu yang sangat berkembang pesat pada masa ini. Remaja dan dewasa muda pada usia 16 hingga 30 tahun adalah korban utama yang menjadi penderita penyakit mentalitas. Isu kesehatan mental merupakan isu yang cukup serius dalam bidang medis dan social. Salah satu penyebab dari penyakit pada mentalitas manusia adalah kurangnya kemawasan diri, yang merupakan salah satu kunci dalam menjaga kestabilan mental pada diri seseorang. Sinyal otak merupakan suatu sinyal yang diduga mampu mendekteksi aktifitas otak manusia, dan dari sinyal tersebut, kita mampu membuat suatu sistem klasifikasi kondisi emosional manusia. Pada penelitian ini, EEG Neurostyle dengan 24 kanal digunakan untuk menangkap sinyal kelistrikan dari otak manusia. Metodenya meliputi reaksi seorang subjek terhadap stimulus berupa audio-visual yang berdurasi kurang lebih 5 menit. Subjek terdiri dari 10 orang manusia berumur 18 hingga 22 tahun, dimana tiap subjek menonton sebuah video pada lingkungan yang sama. Ekspresi mimik wajah akan direkam menggunakan kamera sebagai referensi dan konfirmasi agar sesuai dengan emosi yang dideskripsikan oleh subjek. Fitur emosi berupa RPR kemudian diambil untuk kemudian dimasukan kedalam algoritme classifier. Emosi dibagi berdasarkan 4 jenis yaitu: senang, sedih, takut, dan jijik Menggunakan Supervised Machine Learning, kita dapat menggunakan fitur fitur tersebut untuk klasifikasi. Menggunakan k-NN, didapat akurasi diatas 70% dengan menggunakan 4 kelas.

ABSTRACT
Mental health issues are growing rapidly in these recent years. Teenagers and young adult on age 16-30 years old are the most common victims. Mental health is a really serious issue concerning emotional health. One of the causes on emotional health issues is a lack of self-awareness, which is the key cornerstone on maintaining emotional-state. Brain signals has proven that it can read human emotion, and from there we can use brain waves to classify human emotional-state. In this research study, EEG Neurostyle of 24 channels is used to obtain brain electrical signals. The method involves the subject reaction to a set of audio-visual stimuli of approximately 5 minutes, the subject consists of 10 subjects aged 18-22, with each person watched the video-clips in the same environment. The expressions of the subjects were recorded separately to ensure their emotion accordance with the source (i.e. sad clips resulting sad emotion). Then its feature were extracted. The feature were used to classify the emotion into 4 classes: happy, sad, scared, and disgust. Using Supervised Machine Learning Method, we can use these features to identify a new sample to predict which class it belongs to. Using k-NN algorithm as classifier, an accuracy greater than 70% is obtained with 4 classes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizki Nurriansyah
"Dalam penelitian ini, dibuat sistem optik yang bertujuan system instrumentasi Rotasi Faraday. Sistem ini dirancang dan dibuat untuk mengukur sudut rotasi bidang polarisasi pada analisator, intensitas cahaya, dan nilai medan magnet, di mana pengaturan sudut analisator dilakukan dengan menggunakan stepper motor yang terhubung pada lensa analisator melalui sepasang gerigi, untuk intensitas cahaya penulis mengukurnya dengan Lux meter BH1750, dan medan magnet yang dapat diukur dengan Gauss meter dan sumber arus dari constant current power supply. Jumlah pulsa untuk menggerakan stepper motor dan data dari IC BH1750 diperoleh dengan menggunakan mikrokontroler.
Dalam penelitian ini, penulis menggunakan tiga variabel panjang gelombang dari warna yang berbeda pada Laser RGB sebagai sumber cahaya, semua sumber cahaya ini dikendalikan oleh mikrokontroler. Berdasarkan penelitian ini, penulis menyimpulkan bahwa terdapat fungsi transfer p = 17,832, di mana ? adalah sudut rotasi analisator dan p adalah pulsa yang dihasilkan untuk menggerakan stepper motor. Semua sistem kendali dikendalikan oleh mikrokontroler dan terintegrasi dengan komputer.

In this research, an optical system is made and aims for Faraday Rotation apparatus. This system was designed and made to measure the rotation angle of plane of polarization on analyzer, light intensity, and value of magnetic field, where as the analyzer angle setting is done by using a stepper motor which connected to the lens of analyzer by a gear set, for the light intensity the writer measured it with a Lux meter BH1750, and the magnetic field measured with Gauss meter and current source which given by constant current power supply. Number of pulses on the stepper motor and the data from the IC BH1750 is being acquired using a microcontroller.
In this research, the writer used three variable wave length from different color on RGB Laser as the light sources, all of these light sources are being controlled by the microcontroller. Based on this research, the writer conclude that there are transfer function p 17,832, where is the rotation angle of analyzer and p is the pulse that is generated from the stepper motor. All of the control system is controlled by a microcontroller that is integrated with the computer.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>