Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 92583 dokumen yang sesuai dengan query
cover
Krisna Aditya
"ABSTRACT
Sistem prediksi berbasis citra VNIR telah teruji kemampuannya untuk memprediksi parameter tertentu pada objek, terlebih pada parameter yang sulit diamati secara visual oleh manusia. Kemampuan tersebut tidak lepas dari jumlah fitur yang besar >100 fitur . Namun, jumlah tersebut memberikan beban komputasi yang lebih. Beban yang diperoleh terkadang tidak sepadan dengan performa akhir dari sistem. Diperlukan pemilihan atas fitur-fitur yang digunakan pada sistem. Studi ini membahas pemanfaatan seleksi fitur pada kasus pengukuran kadar karotenoid daun bayam Amaranthus tricolor L. Pengukuran kadar karotenoid dilakukan dengan metode Sims-Gamon. Citra daun bayam diakuisisi pada panjang gelombang 400-1000nm. Citra melalui proses koreksi, segmentasi, dan ekstraksi sebelum digunakan sebagi input. Sistem prediksi memiliki performa dasar PLSR sebesar 0,584 pada R2 , 0,0169 pada RMSE, dan 1,94 pada RPD untuk daun bayam hijau, serta 0,815 pada R2 , 0,013 pada RMSE, dan 2,44 pada RPD untuk daun bayam merah. Penggunaan Algoritma Genetika berhasil memilih 89 dan 86 fitur untuk daun bayam hijau dan merah. Performa sistem setelah seleksi fitur menjadi 0,878 pada R2 , 0,01 pada RMSE, dan 3,05 pada RPD untuk daun bayam hijau, serta 0,962 pada R2 , 0,00596 pada RMSE, dan 5,44 pada RPD untuk daun bayam merah.

ABSTRACT
Prediction system based on VNIR image had been tested at various prediction cases, especially at case which is hard to do inspection by human eyesight. This ability is due to lots of available features 100 features . Unfortunately, that features also give a burden to computational load. However, that load is not always worth the prediction system performance. Number of features to be used is needed to be reduce to a lesser number. In this study, feature selection is used to reduce number of features for predicting carotenoid content at Amaranthus tricolor L. Determination of carotenoid content is done by using Sims Gamon method. Image of amaranth leaf acquire at 400 1000nm. Image of amaranth leaf then processed through correction, segmentation, and extraction before being used as input. Base performance by using PLSR at green amaranth are 0.584 for R2, 0.0169 for RMSE, and 1.94 for RPD. Base performance for red amaranth are 0.815 for R2 , 0.013 for RMSE, and 2.44 for RPD. Genetic Algorithm selected 89 and 86 features for green and red amaranth. After feature selection, performance for green amaranth are 0.878 for R2 , 0.01 for RMSE, and 3.05 for RPD. Performance for red amaranth are 0.962 for R2 , 0.00596 for RMSE, and 5.44 for RPD. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mardhiyatna
"ABSTRAK
Pencitraan hiperspektral adalah gabungan teknologi pencitraan dan spektroskopi. Teknologi ini merupakan teknologi telah banyak digunakan untuk penilaian kualitas makanan. Informasi spasial dan spektral pada objek yang diamati dapat diperoleh secara bersamaan dengan menggunakan pencitraan hiperspektral. Dalam penelitian ini, pencitraan hiperspektral pada rentang spektral 400-1000 nm digunakan untuk memprediksi kandungan klorofil total dan karotenoid daun bayam hijau dan merah Amaranthus tricolor L. berdasarkan spektral reflektansi. Data spektral di wilayah ROI pada setiap daun diekstraksi dengan merata-rata semua piksel pada ROI. Kandungan klorofil total dan karotenoid diukur dengan spektrofotometer UV-Vis. Partial Least Square Regression PLSR digunakan untuk membuat model prediksi antara kandungan klorofil total dan karotenoid terukur dan spektrum reflektansi. Koefisien korelasi prediksi rp klorofil total dan karotenoid untuk daun bayam hijau pada panjang gelombang 400-1000 nm diperoleh sebesar 0,91 dan 0,80, sedangkan untuk bayam merah diperoleh rp klorofil total sebesar 0,90 dan rp karotenoid sebesar 0,90. Hasil penelitian menunjukkan bahwa pencitraan hiperspektral dapat digunakan sebagai uji tak rusak untuk memprediksi kandungan total klorofil dan karotenoid. Kata kunci: Pencitraan hiperspektral, Klorofil, Karotenoid, Daun Bayam, PLSR.

ABSTRACT
Hyperspectral imaging is a technology that combines imaging and spectroscopy. This technology is a non destructive technology and used for food quality assessment. Spatial and spectral information on the observed object can be obtained simultaneously by using hyperspectral imaging. In this study, hyperspectral imaging in the spectral range of 400 1000 nm was used for total chlorophyll and carotenoid content prediction of green and red Amaranthus tricolor L. leaves based on reflectance profile. Spectral data in the region of interest ROI of each leaf were extracted by averaging all the pixels in the ROI. The determination of total chlorophyll and carotenoid content was measured using spectrophotometer UV Vis. The Partial Least Squares Regression PLSR was used to create a model prediction between the measured total chlorophyll and carotenoid content and the reflectance spectral. For green Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.91 and 0.80. For red Amaranthus tricolor L. leaves, the correlation coefficients r in the full wavelength 400 ndash 1000 nm for predicting total chlorophyll and carotenoid are 0.90 and 0.90. The results show that the hyperspectral imaging could be used as a nondestructive test to predict total chlorophyll and carotenoid content. Keyword Hyperspectral imaging, Total chlorophyll, Carotenoid, Amaranthus tricolor L. Leaves, PLSR"
2017
T49791
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Feriansyah Raihan Taufiq
"Citra hiperspektral memiliki jumlah spektral dari suatu objek dengan rentang spektrum yang lebih luas dibandingkan dengan citra RGB. Suatu citra hiperspektral memberikan informasi yang jauh lebih banyak kegunaannya sebagai analisa suatu kasus dibandingkan dengan citra RGB. Salah satu pengaplikasian dengan menggunakan citra hiperspektral yaitu pengukuran suatu kadar tertentu dalam suatu objek. Namun, citra hiperspektral sulit diperoleh dikarenakan memiliki sistem akuisisi yang tidak sederhana. Faktor tersebut dikarenakan pencitraan berbasis citra hiperspektral menggunakan kamera yang mahal, perangkat keras pendukung sistem akuisisi yang kompleks, beserta ukuran citra yang lebih besar dibandingkan dengan citra RGB. Oleh karena itu, penelitian ini melakukan rekonstruksi citra hiperspektral dari citra RGB menggunakan algoritma convolutional neural network dengan arsitektur dense block untuk studi kasus sistem prediksi kadar karotenoid pada daun bisbul. Penelitian ini menghasilkan citra hiperspektral rekonstruksi dari citra RGB yang diperoleh dari proses konversi, beserta citra RGB yang diperoleh dari kamera RGB. Citra hiperspektral yang direkonstruksi pada penelitian ini yaitu berada pada rentang target panjang gelombang 400 nm hingga 1000 nm dengan target jumlah bands sebanyak 112. Algoritma rekonstruksi yang digunakan pada penelitian ini yaitu convolutional neural network dengan arsitektur dense blocks. Pembangunan model rekonstruksi citra pada penelitian ini, yaitu dengan memvariasikan jumlah dense block beserta target rentang dan jumlah panjang gelombang yang akan direkonstruksi. Variasi ini bertujuan untuk mencari model rekonstruksi citra yang optimal untuk merekonstruksi citra hiperspektral dari citra RGB. Lalu, citra hiperspektral rekonstruksi akan digunakan untuk membangun model prediksi kadar karotenoid pada daun bisbul berbasis algoritma machine learning XGBoost, kemudian model prediksi kadar karotenoid berbasis citra hiperspektral rekonstruksi akan dibandingkan dengan model prediksi kadar karotenoid berbasis citra hiperspektral asli. Hasil eksperimen memaparkan bahwa model rekonstruksi citra dengan jumlah dense block sebanyak 30 memiliki performa terbaik, dengan target rentang panjang gelombang 400 nm hingga 1000 nm dan target jumlah bands sebanyak 112. Performa model rekonstruksi citra dengan variasi tersebut memiliki RMSE sebesar 0,0743 dan MRAE sebesar 0,0910. Lalu, performa model prediksi kadar berbasis citra hiperspektral rekonstruksi memiliki RMSE sebesar 0,0565 dan MRAE sebesar 0,0963. Evaluasi kualitatif citra hiperspektral rekonstruksi memiliki pola signatur spektral yang sama dengan citra hiperspektral asli.

Hyperspectral image has the spectral number of an object with a wider spectrum range than RGB image. As a some case analysis, a hyperspectral image is far more useful than RGB image. The measurement of contents in an object is one of the applications of the hyperspectral imagery. However, hyperspectral image is difficult to obtain due to a complicated acquisition system. This is down to the fact that hyperspectral imaging requires more expensive cameras, complex system support devices and have a larger size than RGB images. Therefore, this study reconstruct hyperspectral image using RGB images using a convolutional neural network with dense blocks architecture for a case study of a carotenoid content prediction in (Diospyros discolor Willd.) leaves. This research produces a reconstructed hyperspectral image from the RGB image obtained from the conversion process, and an RGB image obtained from the RGB camera. This study’s reconstructed hyperspectral image has a wavelength target from 400 nm to 1000 nm and a number of bands up to 112. This study’s reconstruction algorithm is a convolutional neural network with dense blocks architecture. In this study, an image reconstruction model is built by varying the number of dense block, target range and number of wavelengths to be reconstructed. The purpose of this variation is to find the best image reconstruction model for constructing hyperspectral images from RGB images. The reconstructed hyperspectral images will then be used to build a prediction model of carotenoid levels in (Diospyros discolor Willd.) leaves using the XGBoost machine learning algorithm, and this model will be compared to the original hyperspectral image based on carotenoid content prediction model. The experimental results indicate that the image reconstruction model with a dense block of 30 and a target wavelength range from 400 nm to 1000 nm with band number consist of 112 performs the best. The image reconstruction model performs well with these variations, with an RMSE of 0,0743 and an MRAE of 0,0910. The RMSE and MRAE of the reconstructed hyperspectral image for carotenoid content prediction model are 0,0565 and 0,0963, respectively. The qualitative evaluation of the reconstructed hyperspectral image has the same spectral signatur pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Bariq Ikhsan
"Kandungan total karotenoid dalam tumbuhan umumnya diukur menggunakan analisis spektrofotometri, dengan sifatnya yang merusak sampel terdapat batasan yang bisa dilakukan untuk penelitian selanjutnya. Digunakan pencitraan hiperspektral menggabungkan analissi spektral dan spasial yang bersifat tidak merusak sampel. Timbul masalah terutama pada bagian algoritma untuk membuat sistem prediksi pada citra hiperspektral karena diperlukan algoritma dengan akurasi yang tepat dan cepat. Penelitian ini membahas tentang komparasi algoritma pembelajara mesin metode ensemble dengan menambahkan tuning hyperparameter menggunakan random search dan memanfaatkan seleksi fitur yang dimiliki tiap model untuk meningkatkan performa dan mengurangi waktu latih model prediksi kadar karotenoid pada daun Bisbul. Sistem prediksi menghasilkan performa dasar, random forest dengan semua fitur memiliki RMSE sebesar 38,16, serta R2 sebesar 0,95, dan waktu latih 4,27s, xgboost dengan semua fitur memiliki RMSE sebesar 39,82, serta R2 sebesar 0,95, dan waktu latih 0,83s, lightgbm dengan semua fitur memiliki RMSE sebesar 35,59, serta R2 sebesar 0,96, dan waktu latih 1,73s, catboost dengan semua fitur memiliki RMSE sebesar 31,60, serta R2 sebesar 0,97, dan waktu latih 17,34s. Dengan menggunakan fitur hasil seleksi dan I, performa sistem berhasil ditingkatkan, random forest tuning dengan 30 fitur memiliki RMSE sebesar 34,39, serta R2 sebesar 0,96, dan waktu latih 5,85s, xgboost tuning dengan 120 fitur memiliki RMSE sebesar 33,32, serta R2 sebesar 0,96, dan waktu latih 1,73s, lightgbm tuning dengan 50 fitur memiliki RMSE sebesar 32,24, serta R2 sebesar 0,97, dan waktu latih 0,22s, catboost tuning dengan 40 fitur memiliki RMSE sebesar 28,53, serta R2 sebesar 0,97, dan waktu latih 4,92s. Secara umum Catboot memiliki peningkatan RMSE paling tinggi, lightgbm memiliki peningkatan waktu latih paling tinggi.

The total carotenoid content in plants is generally measured using spectrophotometric analysis, with its destructive to the sample there are limitations that can be done for further research. Hyperspectral imaging combining spectral and spatial analysis is used that is not destructive to the sample. Problems arise, especially in the algorithm section to create a prediction system on hyperspectral images because an algorithm with precise and fast accuracy is required. This study discusses the comparations of machine learning algorithm with the ensemble method by adding hyperparameter tuning using random search and utilizing the feature selection of each model to improve performance and reduce training time for predictive models of carotenoid levels in velvet leaves. The prediction system produces basic performance, random forest with all features has RMSE of 38.16, and R2 of 0.95, and training time of 4.27s, xgboost with all features has RMSE of 39.82, and R2 of 0.95, and training time of 0.83s, lightgbm with all features has an RMSE of 35.59, and R2 of 0.96, and training time of 1.73s, catboost with all features has an RMSE of 31.60, and R2 of 0.97, and training time 17.34s. By using the selected features and I, system performance has been successfully improved, random forest tuning with 30 features has an RMSE of 34.39, and R2 of 0.96, and training time of 5.85s, xgboost tuning with 120 features has an RMSE of 33, 32, and R2 of 0.96, and training time of 1.73s, lightgbm tuning with 50 features has RMSE of 32.24, and R2 of 0.97, and training time of 0.22s, catboost tuning with 40 features has an RMSE of 28.53, and R2 is 0.97, and training time is 4.92s. In general Catboot has the highest increase in RMSE, lightgbm has the highest increase in training time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervita Indah Pratiwi
"Pengiriman barang dari depot terakhir menuju ke lokasi pelanggan adalah pengiriman last mile. Pengiriman last mile sering dianggap sebagai tahap yang paling mahal dan kurang efisien. Beberapa permasalahan yang dihadapi dalam pengiriman last mile adalah biaya yang tinggi, waktu pengiriman yang lama, dan kemungkinan barang rusak. Penggunaan sistem kendaraan truck-drone dalam pengiriman last mile dapat dijadikan sebagai solusi untuk mengatasi permasalahan dalam last mile. Tujuan dari penelitian ini adalah menemukan rute pengiriman barang yang meminimalkan biaya pengiriman dengan menggunakan sistem truck-drone dalam last mile. Pendekatan yang diusulkan untuk mencari rute optimal terdiri dari dua fase yaitu fase clustering dan routing. Dalam fase clustering menggunakan mean shift clustering untuk mengelompokkan lokasi pelanggan dan mencari lokasi parkir (pusat cluster). Dalam fase routing menggunakan algoritma genetika untuk menemukan rute optimal. Implementasi pada 90 pelanggan didapatkan penggunaan metode mean shift clustering diikuti oleh algoritma genetika, dapat menghasilkan rute optimal yang meminimalkan total biaya. Hal ini ditunjukkan dari penurunan biaya pada rute mean shift clustering mencapai 3,51% dibandingkan clustering dengan metode intuitif. Selain itu, analisis hasil juga mencerminkan bahwa penerapan mean shift clustering mampu mengurangi total jarak sebesar 27,93 % dan waktu tempuh sebesar 25,83 % delivery.

Last-mile delivery is often considered the most expensive and less efficient stage. Some challenges in last-mile delivery include high costs, long delivery times, and the possibility of damaged goods. The use of a truck-drone system in last-mile delivery can be a solution to address these challenges. The objective of this research is to find delivery routes that minimize delivery costs using a truck-drone system in the last mile. The proposed approach to finding optimal routes consists of two phases: clustering and routing. In the clustering phase, mean shift clustering is used to group customer locations and identify parking locations (cluster centers). In the routing phase, a genetic algorithm is employed to find the optimal routes. The implementation on 90 customers showed that the use of mean shift clustering followed by a genetic algorithm could generate optimal routes that minimize the total cost. This is evident from the cost reduction in mean shift clustering routes by 3,51% compared to the initial clustering solution with intuitif method. Furthermore, the results analysis also reflects that the implementation of Mean Shift Clustering can reduce the total distance by 27.93% and travel time by 25.83%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ario Bintang Koesalamwardi
"Desain optimal dari bangunan hemat energi menghadapi dua kebutuhan yang saling bertentangan, yaitu biaya yang seekonomis mungkin dan dampak lingkungan yang seminimal mungkin. Tingginya biaya bangunan hemat energi seperti near Zero Energy House disebabkan oleh tingginya harga peralatan dan material yang diaplikasikan seperti panel surya, insulasi dan lain-lain.
Tujuan dari penelitan ini adalah menemukan desain yang optimal dari sebuah near Zero Energy House, dengan studi kasus terhadap rumah 1 tingkat. Sasaran dari optimasi desain ini adalah kinerja biaya siklus hidup yang lebih ekonomis jika dibandingkan dengan bangunan konvensional.
Metode optimasi dengan algoritma genetika adalah metode optimasi paling sesuai untuk permasalahan optimasi desain yang memiliki banyak variabel. Sangat sulit untuk menemukan solusi tunggal, atau solusi terbaik untuk optimasi desain. Dengan menggunakan algoritma genetika, perancang bangunan dapat memilih salah satu dari solusi terbaik hasil optimasi yang sesuai dengan permintaan dan batasan-batasan yang ada.

Optimal design of energy efficient buildings facing two conflicting requirements, namely costs as economical as possible and minimal environmental impact. The high cost of energy efficient buildings as near Zero Energy House due to the high price of equipment and materials that are applied as solar panels, insulation and others.
The purpose of this research is to find the optimal design of a near Zero Energy House, with a case study on the first level. The goal of this design is the optimization of life cycle cost performance is more economical when compared to conventional buildings.
Optimization method with genetic algorithm optimization is the most suitable method for design optimization problem that has many variables. It is very difficult to find a single solution, or the best solution for design optimization. By using genetic algorithms, building designer can choose one of the best results of the optimization solution according to the demand and constraints that exist.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42845
UI - Tesis Membership  Universitas Indonesia Library
cover
Lhuqita Fazry
"Citra fraktal merupakan citra yang memiliki sifat self-similarity. Hal ini berarti bahwa fraktal tersusun atas bagian-bagian yang tampak sama dengan gambar itu sendiri secara keseluruhan. Penelitian ini bertujuan untuk melakukan kompresi citra menggunakan metode kompresi citra fraktal. Prinsip kompresi citra fraktal adalah melakukan pencarian blok ranah yang paling mirip dengan blok jelajah, kemudian menurunkan transformasi affine kontraktif yang memetakan blok ranah ke blok jelajah tersebut. Percobaan kompresi citra menggunakan metode kompresi citra fraktal memberikan rasio kompresi yang cukup tinggi. Penerapan algoritma genetika pada kompresi citra fraktal bertujuan mengurangi jumlah pemasangan blok ranah dan blok jelajah sehingga mempersingkat waktu kompresi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2008
S27768
UI - Skripsi Open  Universitas Indonesia Library
cover
Hilma Qonitah
"Pada skripsi ini akan dibahas konsep ride sharing pada taksi, atau disebut juga taxi sharing, yang merupakan salah satu upaya untuk mengatasi masalah kemacetan akibat kurang seimbangnya jumlah kendaraan yang beredar dengan kapasitas jalan yang dapat menampung kendaraan. Pada taxi sharing, penumpang taksi berbagi kendaraan taksi dan biaya perjalanan dengan penumpang lain yang memiliki tempat asal-tujuan yang sama/hampir sama dalam waktu perjalanan yang hampir bersamaan. Pemanfaatan taxi sharing yang mengoptimalkan utilisasi kendaraan taksi, selain dapat mengurangi jumlah kendaraan taksi yang dibutuhkan untuk melayani konsumen dan mengurangi biaya operasional taksi, juga dapat mengurangi penggunaan bahan bakar, yang pada akhirnya mengurangi emisi gas buang kendaraan. Untuk memaksimalkan penggunaan taxi sharing, maka diperlukan pengoptimalan rute taksi dalam melayani penumpang, dimana masalah pencarian rute taxi sharing yang optimal dalam skripsi ini akan dimodelkan dalam bentuk mixed integer programming problem. Permasalahan ini diselesaikan menggunakan algoritma genetika, yang lahir dari sebuah inspirasi teori evolusi Darwin. Algoritma ini digunakan untuk mencari pasangan penumpang yang berbagi layanan taksi dan rute taksi yang optimal. Hasil percobaan dengan menggunakan ukuran populasi (popsize) 10, jumlah generasi 50 dan 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.2 menunjukkan bahwa yang sebelumnya terdapat 8 permintaan taksi dan 8 taksi, operator taksi dapat mengurangi jumlah taksi yang beroperasi sebesar satu taksi. Taksi yang menggunakan konsep taxi sharing, yaitu taksi 5 akan melayani permintaan 2 dan 8, dengan urutan menjemput permintaan 2 lalu 8, lalu mengantarkan permintaan 2 kemudian 8, dengan biaya yang dibayarkan Rp4.200,00 untuk permintaan 2 dan Rp14.700,00 untuk permintaan 8. Maka dari itu, keuntungan operator taksi menjadi lebih besar, penumpang dapat menghemat biaya perjalanan, dan penggunaan kendaraan di jalan berkurang.

This research will discuss about the implementation of taxi ride sharing system or taxi sharing as an attempt to find a solution for traffic jam problem that caused by an unequal number of public transportation units operated in the street and the lack of street capacity which supposed to facilitate it. With the present of taxi sharing system, consument can share their taxi trip with others passengers that going on to same direction at the same time. This solution can give benefit for consuments by sharing the trip cost while at the same time benefitted the public transportations provider to optimalized the utilization of the taxi units and cut off operationalization cost, benefitted society by minimalize the number of cars in the streets and reducing air polution from gasoline consumption. To make this taxi sharing system works it also needed an optimalization in taxi route for each trip service. This research will be trying to solved this challenges by examines the taxi-sharing route services through Mixed Integer Programming Problems. This process will be carried using a genetics algorythm which inspired from Darwin's theory of evolution. This algorithm is aiming to be effectively find and match pairs of passengers who use taxi sharing system and taxi routes. The experiment by using population size (popsize) of 10, number of generations 50 and 100, crossover rate (Cr) 0.7, mutation rate (Mr) 0.2 shows that from 8 taxi units to accomodate 8 taxi requests that have been received before, the taxi provider supposedly be able to effectively reduce the number of taxis into only 7 taxis to carry all of the sharing system passengers that requesting. A taxi that uses taxi sharing system will serve request number 2 and request number 8, by picking up request 2 then 8, then delivering request 2 then 8, with fees paid Rp4.200,00 for request 2 and Rp14.700,00 for request 8. Therefore, the profit of the taxi provider is greater, the passengers can save their trip costs, and the use of vehicles on the road can be decreased."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adila Alfa Krisnadhi
"Principal Componen Analysis (PCA) merupakan sebuah metode transformasi yang sangat berguna dalam sistem pengenalan wajah tiga dimensi. PCA berperan sangat baik sebagai alat pengekstraksi ciri yang sangat dibutuhkan dalam proses klasifikasi objek tiga dimensi yang diwakili oleh sekumpulan citra wajah dua dimensi. Dalam proses ekstraksi ciri dilakkan transformasi yang sekaligus melibatkan proses reduksi dimensi untuk mendapatkan ciri-ciri optimal sebagai basis ortogonal ruang wajah. Namun pada setiap himpunan citra wajah yang berbeda proses ini harus dilakukan berulang-ulang karena tingkat reduksi dimensi tersebut ditentukan oleh suatu parameter proporsi kumulatif nilai eigen yang harus ditentukan secara manual dari luar sistem. Akibatnya, proses untuk mendapatkan tingkat reduksi dimensi yang terbaik menjadi terhambat karena adanya proses trial and error tersebut. Disini akan dijelaskan sebuah metode untuk mengotomatisasi dan mengoptimasi proses di atas dengan menunjukkkan kinerja yang tidak kalah bahkan mampu memperbaiki kinerj PCA tanpa dikombinasikan dengan alogritma genetika, sehingga disini proses otomasi dan optimasi yang diharapkan dapat dinyatakan berhasil."
2003
JIKT-3-2-Okt2003-84
Artikel Jurnal  Universitas Indonesia Library
cover
Nurina Izzati
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S64469
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>