Hasil Pencarian

Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 186633 dokumen yang sesuai dengan query
cover
Muhammad Yusuf Irfan Herusaktiawan
"Penelitian ini mengembangkan dan menganalisa sistem pendeteksi plagiarisme dua bahasa berbasis Latent Semantic Analysis untuk karya tulis berbahasa Indonesia dan referensi berbahasa Inggris. Sistem pendeteksi plagiarisme menggunakan algoritma backpropagation neural network untuk melakukan klasifikasi pasangan karya tulis berbahasa Indonesia dan Inggris yang sudah dinilai tingkatan plagiarismenya secara manual. Sistem dapat memperoleh klasifikasi akurasi F-measure sampai dengan 92.75.
Hasil percobaan menunjukkan bahwa akurasi tertinggi dapat diperoleh jika menggunakan metode term frequency binary dalam penghitungan jumlah kata dan penggunaan frobenius norm, vector angle slice, dan vector angle pad sebagai pilihan fitur untuk masukan backpropagation neural network.

This research aims to develop and analyse dual language plagiarism detection system based on Latent Semantic Analysis for papers with Indonesian language and reference text with English language. The plagiarism detection system uses backpropagation neural network algorithm to classify pairs of Indonesian and English papers which plagiarism levels has been graded manually. The system has reached classification accuracy using F measure metric up to 92.75.
Experiment results show that the highest accuracy obtained when using term frequency binary method in counting frequency of words and using frobenius norm, vector angle slice, and vector angle pad features for backpropagtion neural network input.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ihsan Ibrahim
"Di Indonesia yang mayoritas karya tulis di dunia akademiknya masih menggunakan bahasa Indonesia dan referensi yang digunakan mayoritas berbahasa Inggris, memudahkan terjadinya tindak plagiarisme daripada penggunaan bahasa yang sama. Departemen Teknik Elektro telah mengembangkan sistem pendeteksi plagiarisme dwibahasa berbasis Latent Semantic Analysis LSA . Lamanya eksekusi, membuat paralelisme menjadi solusi untuk mengurangi waktu eksekusi dari sistem. Pada penelitian ini dilakukan pengembangan dengan pemrosesan paralel terhadap sistem dengan menggunakan OpenMP. Proses yang diparalelkan adalah, yaitu Singular Value Decomposition SVD, operasi-operasi matriks, dan proses Learning Vector Quantization LVQ dengan melakukan pada pendekatan loop-loop-nya.
Pada pengujian yang dilakukan, akurasi dari proses paralel memiliki konsistensi yang baik karena hasil yang sama dengan proses serial dan didapatkan peningkatan kecepatan eksekusi sistem sebesar 4-7,9 . Dengan fenomena pemrosesan paralel dengan menggunakan 1 thread memiliki waktu eksekusi yang lebih lambat daripada proses serial. Sedangkan saat menggunakan 2 thread dan 4 thread, didapatkan hasil yang lebih cepat daripada proses serial meskipun penggunaan 4 thread hanya berbeda sedikit atau cenderung sama dengan 2 thread. Hal ini disebabkan adanya overhead OpenMP yang terjadi saat pemrosesan paralel berjalan sebesar 20 , dan overhead MySQL yang membuat proses menjadi sangat lama karena besarnya yang mencapai 70 saat proses serial dan 50 pada proses paralel.

Majority of academic environment in Indonesia is still using Indonesian language and its references are in English. This condition led to ease the plagiarism acts when compared to same language environment. Due to this problem, Department of Electrical Engineering has developed bilingual plagiarism detection system based on Latent Semantic Analysis LSA . Parallelism becomes a solution to duration of execution problem. Development of parallel processing on the system with using OpenMP was conducted in this research. The parallelized processes were Singular Value Decomposition SVD , matrices operations, and Learning Vector Quantization LVQ with approach on loops.
In the testing process, accuracy of the parallel process had the same accuracy with the serial process. It is mean that the parallel process has good consistency. Then, the result of execution time has 4 7.9 of improvement compared to the serial one. There was a phenomenon that 1 thread of parallel process had worse performance than the serial process. Furthermore, use of 2 threads and 4 threads in the parallel process had a better execution time, even 4 threads is only slightly better or tend to be the same with 2 threads. These happened due to overhead presences. OpenMP overhead appeared at 20 when parallel executed and MySQL had more with 70 of system computation process in serial and 50 when executed in parallel.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50881
UI - Tesis Membership  Universitas Indonesia Library
cover
Mahasena Alfafa
"Pada skripsi ini dibuat rancangan sistem deteksi plagiarisme pada karya tulis digital dua bahasa Indonesia - Inggris . Bahasa Indonesia digunakan sebagai karya tulis yang akan diuji dan bahasa Inggris sebagai karya tulis referensinya. Sistem ini menerapkan algoritma winnowing yang dilengkapi dengan metode penerjemah bahasa dan synonym recognition.
Metode synonym recognition ini mampu mendeteksi sinonim dari tiap kata, mampu melakukan perubahan kata secara otomatis ketika diperlukan, dan mampu meningkatkan akurasi pada sistem deteksi plagiarisme dua bahasa yang sedang dikembangkan.
Hasil penelitian ini menunjukkan bahwa penggunaan parameter winnowing yang tepat serta dilengkapi synonym recognition didapatkan peningkatan akurasi sistem dari 0.03 hingga 13.04.

In this thesis, the design of plagiarism detection system on bilingual digital essay Indonesian English . Indonesian used as a document to be tested and English as a reference document. The system applies winnowing algorithms that are equipped with language translator methods, and synonym recognition.
This synonym recognition method is able to detect synonyms of each word, capable of automatically changing words as needed, and capable of improving accuracy in the bilingual plagiarism detection system being developed.
The results of this study indicate that the use of appropriate winnowing parameters and by applying synonym recognition obtained improved system accuracy from 0.03 to 13.04.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68638
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Rismawati
"Departemen Teknik Elektro Universitas Indonesia telah mengembangkan suatu sistem berbasis Latent Semantic Analysis (LSA) untuk mendeteksi plagiarisme pada karya tulis berbahasa Indonesia dan Inggris. Data keluaran sistem deteksi plagiarisme berbasis LSA adalah nilai frobenius norm, slice, dan pad. Pada skripsi ini akan menjelaskan serta memberikan analisis pada pengembangan sistem deteksi plagiarisme yang telah ada yaitu dengan menerapkan algoritma Support Vector Machine (SVM).
Support Vector Machine (SVM) adalah suatu Learning Algoritm yang bertujuan untuk menemukan suatu hipotesis berupa bidang pemisah (hyperplan) terbaik dari sekumpulan data yang dapat dipisahkan secara linear maupun tidak linear. SVM akan memisahkan data hasil keluaran sistem deteksi plagiat bebasis LSA menjadi dua kelas yaitu "plagiat" dan "tidak plagiat" dengan menggunakan 2 metode yaitu kombinasi data input dan kombinasi data output dengan metode AND. Beberapa modifikasi terhadap imput program dilakukan diantaranya memvariasikan parameter-parameter pembelajaran dan memvariasikan data hasil keluaran program deteksi plagiarisme berbasis LSA.
Hasil dari analisis serta pengujian yang telah dilakukan yaitu jika menggunakan parameter serta kombinasi data yang tepat, SVM mampu untuk meningkatkan akurasi sistem dari sistem yang menggunakan metode Learning Vector Quantization (LVQ) pada penelitian sebelumnya hingga menghasilkan akurasi sebesar 63,15% hal ini dilihat jika mempertimbangkan keseimbangan terhadap aspek presisi dan relevansi program sedangkan jika dilihat melalui presentase jumlah data yang berhasil diklasifikasikan dengan tepat, SVM mampu menghasilkan akurasi sebesar 97,04%.

Department of Electrical Engineering, University of Indonesia has developed a system based on Latent Semantic Analysis (LSA) to detect plagiarism between two paper written in different languages, which are Indonesian and English. The output data of plagiarism detection system are frobenius norm, slice, and pad. This thesis will explain and provide analysis of the development of plagiarism detection system that already exist by applying Support Vector Machine (SVM) algorithm.
Support Vector Machine (SVM) is a Learning Algorithm that aims to find a best hypothetical form called hyperplan to separated a set of data that can be separated linearly and nonlinearly. SVM will separate output data of plagiarism detection system into two classes, "plagiat" class and "tidak plagiat" class by using two methods: combination of input data method and output data combined with AND method. Some modifications to input program are made, such as variating the parameters of learning and variating the output data of plagiarism detection program.
The results of analysis and test that has been done are: if the system use correct parameters and correct combinations of the data, SVM is able to improve accuracy of the system from the last research that using Learning Vector Quantization (LVQ). The accuracy of SVM is 63,15% if considering the balance of precision and relevance of the program, while when viewed through a percentage of the amount of data that appropriately classified, the accuracy of SVM is 97.04%.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65023
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmat Arasy
"Tekanan darah tinggi pada retina Hypertensive Retinopathy merupakan penyakit yang timbul akibat tingginya tekanan darah yang mengalir pada pembuluh darah retina, mengakibatkan penebalan dinding pembuluh darah, sehingga debit aliran darah pada retina berkurang. Komplikasi yang timbul dari penyakit ini beragam dan membahayakan, mulai dari oklusi pembuluh darah retina, kerusakan saraf mata, bahkan kebutaan. Skripsi ini membahas tentang pendeteksian tekanan darah tinggi pada retina, sehingga dapat digunakan sebagai media untuk membantu diagnosis dan pencegahan penyakit tekanan darah tinggi pada retina Hypertensive Retinopathy . Pendeteksian dilakukan dengan menganalisa gambar retina Fundus Image pasien dengan metode Principal Component Analysis PCA dan Backpropagation Neural Network BNN , sehingga outputnya berupa klasifikasi citra ke salah satu dari dua golongan; yaitu retina normal dan retina dengan tekanan darah tinggi. Dari hasil perancangan diperoleh tingkat akurasi pengujian dan pengujian neural network hingga 85,5 dan 63,6 .

Hypertensive Retinopathy is a disease caused by high blood pressure flowing in the retinal blood vessels, resulting in thickening of blood vessel walls and reduced blood flow in the retina. Complications arising from these diseases are diverse and dangerous, ranging from retinal vein occlusion, nerve eye damage, even blindness. This paper discusses the detection of high blood pressure in the retina, so it can be used as a medium to help diagnosis and prevention of Hypertensive Retinopathy disease. Detection is done by analyzing the patient 39 s retinal image Fundus Image with Principal Component Analysis PCA method and Backpropagation Neural Network BNN , so that the output is image classification to one of two classes namely the normal retina and retina with high blood pressure. The result shows that this proposed model have leaning and testing accuracy up to 85,5 and 63,6 ."
Lengkap +
Depok: Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Addi Ryan
"Pengembangan sistem pendeteksi plagiarisme dibuat untuk mengatasi masalah plagiarisme yang kerap terjadi pada dunia akademis. Pada skripsi ini dibuat sistem pendeteksi plagiarisme otomatis pada karya tulis digital dwi bahasa Indonesia-Inggris dengan Bahasa Indonesia digunakan sebagai karya tulis yang akan diuji dan Bahasa Inggris sebagai karya tulis referensinya. Sistem menerapkan algoritma winnowing yang dilengkapi dengan metode penerjemah bahasa Googletrans API dan similar words. Algoritma winnowing merupakan algoritma yang dapat mendeteksi kesamaan antar teks dengan menggunakan fingerprint yang didapat dari proses hashing karakter teks. Penelitian dilakukan untuk meningkatkan akurasi sistem dan mengetahui metode penilai kesamaan teks yang akurat.
Dari hasil penelitian, didapatkan bahwa parameter terbaik algoritma winnowing secara umum terdapat saat nilai k-window = 5 dan nilai basis bilangan prima bernilai 3. Parameter n-gram bernilai kecil akan lebih akurat pada teks yang memiliki jumlah kata lebih sedikit dan/atau tingkat plagiarisme tinggi dan sebaliknya. Tingkat akurasi sistem pendeteksi plagiarisme otomatis dwi bahasa yang dikembangkan berkisar antara 75.02 hingga 99.51.
Metode Cosine Similarity menjadi metode penilai kesamaan teks terbaik dari hasil penelitian ini. Selain itu, metode penerjemahan Googletrans API juga memberikan kelebihan dalam hal akurasi dan kelengkapan data kamus dibandingkan dengan metode kamus terjemahan database.

The development of plagiarism detection system is made to overcome the problem of plagiarism that often occurs in the academic world. In this thesis, an automatic plagiarism detection system on bilingual digital paper Indonesian English is created with Indonesian is used as the tested paper and English as the reference paper. The system implements the winnowing algorithm that comes with the Googletrans API language translator method and similar words. Winnowing algorithm is an algorithm that can detect similarity between text by using fingerprint obtained from hashing process of text character. The study was conducted to improve system accuracy and to know accurate method of text equality assessment.
From the study result, it is found that the best parameter of winnowing algorithm is generally occured when the value of k window 5 and the base value of the prime number is 3. The smaller value of n gram parameter will be more accurate in text that has fewer word counts and or high plagiarism levels and vice versa. The accuracy level of the automatic plagiarism detection system in the developed language ranged from 75.02 to 99.51 .
The Cosine Similarity method is the best method of text equality assessment according to results of this study. In addition, the Googletrans API translation method also provides advantages in terms of accuracy and completeness of dictionary data as compared to database translation dictionary method.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nanda Girindratama
"Pada penelitian ini, dikembangkan HPC yang menerapkan multicore processing pada program Sistem Pendeteksi Plagiarisme dengan memanfaatkan infrastruktur komputasi awan berbasis OpenStack. Sistem Pendeteksi Plagiarisme merupakan program yang dikembangkan untuk mendeteksi tingkat plagiarisme dari suatu karya ilmiah. Algoritma program yang digunakan untuk penelitian kali ini adalah latent semantic analysis (LSA). Implementasi HPC dilakukan dengan bantuan library OpenMP yang didesain untuk bahasa pemrograman C. Diterapkan dua jenis paralelisme pada program, yaitu paralelisme fungsi dan paralelisme data. Setelah dilakukan pengujian, didapati hasil bahwa kedua metode paralelisme ini mempercepat eksekusi program. Paralelisme fungsi mempercepat waktu eksekusi hingga sebesar 1,03 kali waktu eksekusi serial dan paralelisme data mempercepat waktu eksekusi hingga 1,34 kali waktu eksekusi serial.

In this research, HPC with multicore processing is developed on Plagiarism Detection System using OpenStack based cloud computing infrastructure. Plagiarism Detection System is a software developed to detect plagiarism level of a scientific papers. The algorithm used in this program is latent semantic analysis (LSA). HPC implementation is done using OpenMP library which is designed to be used in C programming language. There are two types of paralelism in this program, which are function paralelism and data paralelism, both accelerate the execution time. Function paralelism accelerates program by up to 1,03 times of serial execution while data paralelism decreases the execution time by up to 1,34 times serial execution time."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andryano
"Sistem Penilaian Ujian Lisan (SIPENILAI) merupakan pengembangan dari Sistem Penilaian Esai Otomatis (Simple-O) yang membuat metode menjawab soal dapat dilakukan secara lisan. Sistem ini menggunakan input suara dalam Bahasa Jepang, lalu suara tersebut dikonversi menjadi teks menggunakan bantuan dari engine bernama Julius. Selanjutnya teks dibandingkan dengan kunci jawaban untuk dilakukan scoring menggunakan algoritma Latent Semantic Analysis (LSA). Pada skripsi ini terdapat tiga pengujian yang dilakukan yaitu uji keakuratan Julius, uji keakuratan SIPENILAI, serta uji kecepatan SIPENILAI. Ketiga uji coba tersebut menggunakan variasi jawaban yang berbeda-beda, namun pengucapnya tetap sama. Setelah dilakukan uji coba dan analisis diperoleh nilai akurasi Julius sebesar 77.92, nilai akurasi SIPENILAI sebesar 75.43, dan nilai kecepatan rata-ratanya sebesar 45.63 KB s.

The Oral Examination Assessment System (SIPENILAI) is the development of the Automatic Essay Assessment System (Simple-O) that makes the method of answering questions can be done orally. This system uses voice input in Japanese, then the sound is converted to text using the help of an engine named Julius. Furthermore, the text is compared with the answer key for scoring using the Latent Semantic Analysis (LSA) algorithm. In this thesis, there are three tests carried out, the accuracy test of Julius, the accuracy test of SIPENILAI, and the speed test of SIPENILAI. The three tests used a variety of different answers, but the speaker remained the same. After testing and analysis, the accuracy value of Julius was 77.92, the accuracy of SIPENILAI was 75.43, and the average speed was 45.63 KB s.
"
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadhilah Siti Shalihah
" E-learning dalam dunia pendidikan sudah banyak diterapkan untuk meningkatkan mutu pendidikan salah satunya adalah penggunaan e-learning pada pengujian akademis baik ujian pilihan ganda, esai, dan lisan. Proses penilaian jawaban ujian mahasiswa masih secara manual maka dari itu, penilitian membahas pengembangan Sistem Penilaian Ujian Lisan atau SIPENILAI dalam bahasa Jepang dengan menerapkan API google speech recognition dan metode LSA. SIPENILAI merupakan sistem yang dikembangkan oleh Departemen Teknik Elektro yang bertujuan untuk menilai ujian lisan secara otomatis. Speech recognition yang akan diterapkan memakai API google speech recognition yang merupakan API yang digunakan untuk mendeteksi suara yang kemudian diubah menjadi teks. Algoritma LSA merupakan metode yang digunakan untuk menganalisa kemiripan antara kalimat dengan dokumen jawaban dari pengajar. Kata dalam kalimat akan disusun menjadi matriks kemudian diproses dengan SVD (Singular Value Decomposition) dan diukur kemiripan antara kalimat dengan dokumen jawaban menggunakan Frobenius Norm. Dari pengujian yang telah dilakukan SIPENILAI dapat mencapai rata-rata akurasi sebesar 83.64% untuk pengguna fasih dan 76.89% untuk pengguna tidak fasih.

E-learning in the world of education has been widely applied to improve the quality of education one of which is the use of e-learning in academic testing both multiple choice exams, essays, and oral. The process of evaluating student exam answers is still manual and therefore the research, discussing the development of the Oral Examination Assessment System or SIPENILAI in Japanese by implementing Google API speech recognition and LSA methods. SIPENILAI is a system developed by the Department of Electrical Engineering which aims to assess oral examinations automatically. Speech recognition that will be implemented using Google API speech recognition which is an API that is used to detect sound which is then converted into text. LSA algorithm is a method used to analyze the similarity between sentences and the document answers from the teacher. The words in the sentence will be arranged into a matrix and then processed with SVD (Singular Value Decomposition) and measured the similarity between the sentence with the answer document using Frobenius Norm. From testing that has been done, SIPENILAI can reach an average accuracy of 83.64% for fluent users and 76.89% for non-fluent users."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Darien Jonathan
"ABSTRAK
Distribusi normal adalah salah satu jenis persebaran kelompok data yang didefinisikan berdasarkan rata-rata dan standar deviasi dari sekelompok data, yang dapat digunakan untuk mengelompokkan data berdasarkan posisinya terhadap standar deviasi dari kelompok data tersebut. Learning Vector Quantization adalah salah satu jenis neural network yang bisa mempelajari sendiri masukan yang ia terima kemudian memberi keluaran sesuai dengan masukan tersebut, dengan metode supervised dan competitive learning. Skripsi ini membahas penerapan dan analisis dari kedua sistem tersebut untuk menguji hasil deteksi plagiarisme oleh sistem deteksi plagiarisme berbasis latent semantic analysis, yang berasal dari program Simple-O. Beberapa modifikasi dilakukan untuk meningkatkan akurasi pengujian, antara lain dengan melakukan variasi parameter-parameter dari metode distribusi normal, yakni dengan mengubah batas standar deviasi maupun dengan mengubah koefisien pengali batas nilai pada standar deviasi tertentu, dimana hasilnya adalah standar deviasi maupun koefisien pengalinya berbanding lurus dengan aspek relevansi program (recall) namun tidak pada akurasi (F-Measure). Modifikasi juga dilakukan pada parameter percepatan belajar dari algoritma learning vector quantization, dimana hasilnya adalah parameter percepatan belajar berbanding terbalik dengan relevansi program maupun akurasi. Kemudian variasi dan analisis dilakukan pada tujuh jenis besaran hasil keluaran sistem deteksi plagiarisme berbasis latent semantic analysis, yakni frobenius norm, slice, dan pad, beserta kombinasinya, dimana hasilnya keberadaan frobenius norm diwajibkan untuk melakukan evaluasi kemiripan antara dua teks. Kemudian hasil pengujian menggunakan kedua metode digabungkan menggunakan operasi AND yang memberikan hasil yang beragam, dengan catatan perlunya keseimbangan antara precision dan recall dari masing pengujian yang akan dilakukan operasi AND untuk memberikan hasil yang baik. Dengan menggunakan kombinasi metode dan parameter yang tepat, terdapat peningkatan akurasi sistem dari 35-46% pada penelitian sebelumnya hingga maksimal 65,98%.

ABSTRACT
Normal distribution is a type of data distributions which is defined from the average and standard deviation of the data cluster. It can be used to group datas based on its position from the standard deviation of the data cluster. Learning vector quantization is a type of neural networks that can learn from inputs it gets to give appropriate outputs, with supervised and competitive learning methods. This thesis discusses the implementation and analysis of both methods to verify the plagiarism detection results from detection plagiarism system based on latent semantic analysis, which is based on Simple-O program. Some modifications are made, such as by variating the parameters of normal distribution method, by changing the limits of standard deviation or by changing the factor of the number limit at a particular standard deviation. Both of them appear to be directly proportional to the relevance (recall), but not with accuracy (F-Measure). Modifications are also made at the learning acceleration parameters from the learning vector quantization algorithm, which sees the parameters being inversely proportional to both the relevance and accuracy. Then, variations and analysis are done to seven types of magnitude from the results of the plagiarism detection system, which are frobenius norm, slice, and pad, and their combinations, which suggest that frobenius norm is the most verifiable results, and must be included to be evaluated when text similarity analysis are conducted. Then, verification results using both methods are combined using AND operation which gives diverse results. However, it is needed to have a balance between precision and recall from each verifications to produce good results. With correct combinations of methods and parameters, system accuracy are increased from 35-46% of last research to maximum accuracy of 65,98%.
"
Lengkap +
Fakultas Teknik Universitas Indonesia, 2016
S62578
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>