Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173480 dokumen yang sesuai dengan query
cover
Tasya Masyeba
"ABSTRAK
Kebutuhan domestik gas alam di Indonesia dapat dibilang besar. Namun, volume dari gas alam tersebut sangat besar sehingga harus diubah bentuknya menjadi Liquefied Natural Gas LNG . Dalam bentuk LNG, pendistribusian gas alam semakin mudah. Untuk menjadikan LNG menjadi gas alam, perlu dilakukan proses regasifikasi. Pada proses tersebut, energi dingin yang tersimpan dalam LNG terbuang begitu saja. Energi dingin yang dipindahkan ke fluida pemanas LNG sebenarnya dapat dimanfaatkan, contohnya untuk aplikasi pendinginan gudang daging meat cold storage . Fluida pemanas LNG dapat dijadikan sebagai refrigerant untuk cold storage. Karena LNG disimpan dalam suhu -162 C, potensi energi yang dapat dimanfaaatkan sangat besar yang berpengaruh pada kapasitas cold storage. Dalam kasus ini, jumlah energi dingin yang dapat dimanfaatkan dapat diperoleh melalui software HYSYS. Setelah itu dapat ditentukan kapasitas cold storage serta perancangan alat penukar panas yang dibutuhkan untuk mengatasi beban pendinginan. Oleh karena itu, perancangan ini bertujuan untuk mengetahui seberapa besar pemanfaatan energi dan bagaimana memanfaatkan energi tersebut. Cold storage yang dirancang memiliki kapasitas 47.59 kW atau 13.53 TOR. Evaporator yang dirancang model finned tube dan memiliki 5 buah fan untuk mengatasi beban pendinginan.

ABSTRACT
Domestic utility of natural gas in Indonesia is massive relatively. But, the volume of natural gas is very big that needs to change its form into Liquefied Natural Gas LNG . With LNG, it rsquo s easier to distribute natural gases. To reform the LNG into natural gas, there is process called regasification. In this process, cold energy of LNG is wasted. The cold energy which is transferred into intermediate fluide that used to heat the LNG, can be utilized. For example on cold storage refrigeration. The intermediate fluid can be used as refrigerant for cold storage cooling system. Because LNG is stored at 162 C, there is huge energy potential that can be utilized and affected the capacity of cold storage. In this case, the cold energy can be obtained with HYSYS software. Then we can determine the capacity of the cold storage and to design the heat exchanger that will be used to overcome cooling load. Therefore, the objective of this case is to know the utilization of LNG cold energy and how to utilize it. The cold storage has capacity of 47.59 kW or 15.35 TOR. The evaporator model is finned tube and has 5 fans to coverage the cooling load
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deju Kevin Paulus
"Gas alam merupakan campuran gas yang mudah terbakar dari senyawa hidrokarbon sederhana. Gas alam sudah menjadi sumber energi alternatif yang banyak digunakan banyak kalangan. LNG merupakan salah satu contoh gas alam. Tahapan pendistribusian LNG diawali dengan mengeksplor gas alam, lalu menyaring hingga sesuai dengan spesifikasi yang dikehendaki, setelah itu ada proses liquefaction yang bertujuan untuk mengubah fase gas menjadi fase cair. Setelah gas sudah menjadi cair, LNG akan ditransportasikan dengan kapal tanker khusus. Ketika sampai tujuan, LNG akan dimasukan kedalam tangka penyimpanan (storage). Sebelum didistribusikan, LNG akan diubah lagi fasenya menjadi gas kembali dengan proses regasifikasi. Proses regasifikasi ini melibatkan air laut atau fluida lain dalam proses peningkatan suhu LNG. Dalam prosesnya banyak sekali energi dingin dari proses regasifikasi yang terbuang. Energi dingin yang terbuang ini dapat dimanfaatkan sebagai alat penukar kalor yang ada pada organic rankine cycle. Organic rankine cycle menggunakan fluida propane sebagai fluida kerjanya dikarenakan titik didih lebih rendah daripada air. Perancangan ORC ini dilakukan dengan cara mendesain alat penukar kalor yang ada pada rancangan tersebut. Hasil rancangan alat penukar kalor memiliki batas agar tidak over design dan minimnya pressure drop. Hasil rancangan alat penukar kalor dari siklus ORC ini memiliki effisiensi 75% hingga 99%.

Natural gas is a flammable mixtured gas of simple hydrocarbon compounds. Natural gas has become an alternative energy source that is commonly used. LNG is one of natural gas. The LNG distribution stage begins with exploring natural gas, then filtering it according to the desired specifications, then there is a liquefaction process that aims to change the gas phase into a liquid phase. After the gas has become liquefied, the LNG will be transported by special tankers. When it reaches its destination, LNG will be included in the storage tank. Before being distributed, LNG will be converted into gas again by a regasification process. This regasification process involves seawater or other fluids in the process of increasing the temperature of LNG. In regasification process, a lot of cold energy is wasted. This wasted cold energy can be used as a heat exchanger in the organic rankine cycle. Organic rankine cycle uses propane as its working fluid because its boiling point is lower than water. The design of this ORC, started in heat exchanger of ORC. The results of the design of the heat exchanger have a limit so heat exchanger not to get over design and minimalize pressure drop. The design results of the heat exchanger from the ORC cycle have an efficiency of 75% up to 99%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah Barii Redhanta
"Tingginya kebutuhan gas bumi yang di sertai menurunnya pasokan dari sumur migas sekitarnya diperkirakan akan membuat terjadinya defisit neraca gas sebesar 1.322 MMSCFD untuk wilayah Jawa Bagian Barat di tahun 2020. Oleh karena itu, Jawa Barat membutuhkan Fasilitas Regasifikasi LNG untuk menerima gas bumi dari luar daerah untuk dapat masuk ke jaringan pipa. Dalam penelitian dilakukan perbandingan efisiensi pemanfaatan energi dingin LNG untuk gudang pendingin dengan kapasitas 200 ton ikan dan pembangkit listrik dengan kapasitas 70% pemanfaatan energi dingin dari terminal apabila diterapkan di wilayah Jawa Bagian Barat. Regasifikasi dengan pemanfaatan energi dingin LNG menggunakan siklus rankine dan brayton untuk pembangkit listrik combined cycle dan sebagai media pendingin gudang pendingin. Selain dari itu dilakukan perbandingan nilai ekonomi untuk aplikasi dari masing-masing fasilitas yang terintegrasi.
Perhitungan teknis dilakukan menggunakan perangkat lunak proses simulasi dengan hasil dari analisa simulasi terminal regasifikasi efisiensi thermal didapatkan sebesar 58,44% dengan 70,05% gudang pendingin, 67,67% pembangkit listrik dan 97,61% regasifikasi. Sedangkan efisiensi energi listrik yang didapatkan adalah sebesar 58,21% dengan energi listrik yang dihasilkan 186 MW. Pada nilai ekonomi dilakukan perhitungan levelized cost untuk biaya produksi regasifikasi pada gudang pendingin yaitu sebesar 0,73 $/MMBtu, pada pembangkit listrik sebesar 0,75 $/MMBtu dan regasifikasi sebesar 1,20 $/MMBtu. Biaya pembangkitan listrik didapatkan sebesar 0,08$/kWh dan biaya penyimpanan gudang pendingin sebesar 0,67 $/pallet hari.

The high demand of natural gas which is accompanied by a declining supply of oil and gas wells surrounding areas is expected to create a deficit gas balance by 1.322 MMSCFD for the region of Western Java in 2020. Therefore, West Java requires LNG Regasification facilities to receive natural gas from outside of the region to be able to get into the pipeline network in this study, a comparison of efficiency cold energy LNG utilization for refrigeration warehouse with capacity of 200 tons fish and power plant with 70% capacity of cold energy utilization from terminal when applied in Western Java area. Regasification with LNG cold energy utilization using rankine and brayton cycles for combined cycle power plants and as cooling cooler medium for cold storage. In addition, economic value comparisons for applications of each integrated facility are performed.
Technical Calculations are performed using process simulation software with the result of regasification terminal simulation analysis of thermal efficiency which are 58,44% with 70,05% for cold storage, 67,67% for power plant and 97,61% for regasification. While the electrical energy efficiency obtained is 58.21% with electric energy generated 186 MW. The economic value of regasification are calculated by using levelized cost to obtain production cost in for cold storage that is equal to 0.73 $ / MMBtu, for power plant equal to 0,75 $ / MMBtu and regasification equal to 1,20 $ / MMBtu. Electricity generation costs were obtained at 0.08 $ / kWh and cooling storage cost of 0.67 $ / pallet days.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50372
UI - Tesis Membership  Universitas Indonesia Library
cover
Wahyu Riansyah
"ABSTRAK
Regasifikasi merupakan proses pengubahan kembali LNG berfasa cair menjadi fasa gas. Setelah melalui proses regasifikasi, gas akan digunakan sebagai bahan bakar untuk pembangkit listrik dengan kapasitas 15, 30, 45 dan 60 MW. Untuk keperluan tersebut, maka pada studi ini dilakukan pemilihan teknologi mini regasifikasi secara kualitatif, perancangan desain serta perhitungan keekonomiaan untuk kapasitas 5, 10, 15 dan 20 MMSCFD. Sebagai basis desain dan perhitungan digunakan kapasitas 10 MMSCFD. Berdasarkan perhitungan yang dilakukan untuk basis desain, didapatkan estimasi biaya investasi sebesar USD 12 juta dengan biaya regasifikasi USD 2.6/MMBTU.

ABSTRACT
Regasification of LNG is a process that convert the LNG which is in liquid phase into a gas phase. After the regasification process, gas will be used as fuel for power plant that has capacity 15, 30, 45 and 60 MW. For this purpose, in this study we make a qualitative decision to choose the technology that fit for mini scale regasification, design the equipment and calculate the economic value for 5, 10, 15, and 20 MMSCFD. The basic design is 10 MMSCFD. For this basis, the capital investment is about USD 12 million with regasification fee USD 2.6/MMBTU.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54870
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Dewi Verinasari
"Penelitian ini bertujuan untuk melakukan optimisasi pada sistem rantai suplai LNG agar didapatkan biaya suplai yang paling murah dari kilang LNG hingga sampai ke FSRU (Floating Storage Regasification Unit) dan juga jumlah LNG yang seharusnya dipasok oleh setiap kilang dengan menggunakan metode optimasi. Metode optimasi harus menentukan fungsi objektif, variabel keputusan dan juga constrain. Untuk mendapatkan biaya suplai yang murah maka akan menggunakan harga dari ex kilang dan harus mendapatkan biaya transportasi yang murah. Kapasitas kapal yang akan digunakan pada penelitian ini adalah 150.000 m3 dan kecepatan 18 knot.
Metode pengiriman yang digunakan pada penelitian ini adalah metode Hub and Spoke. Pada penelitian ini yang akan menjadi sumber yaitu Kilang Tangguh, Masela, Donggi Senoro dan Bontang dengan tujuannya FSRU yang terletak dipulau Jawa dan Sumatera. Yang sangat berpengaruh pada biaya suplai adalah jarak dari setiap kilang LNG menuju FSRU. Dan hasil yang didapatkan kilang Bontang menyuplai LNG ke FSRU Aceh 3,0 MTPA selama 20 tahun dengan biaya suplai tahun ke-1 6,3 $/MMBtu. Kilang Tangguh akan menggunakan 2 kapal untuk memasok LNG 2,1 MTPA ke FSRU Jawa Tengah dengan 35 biaya suplai ditahun ke-1 6,64 $/MMBtu dan 0,9 MTPA untuk FSRU Lampung dengan biaya suplai pada tahun ke-1 6,63 $/MMBtu. Kilang Masela akan menggunakan 3 kapal untuk memasok LNG ke FSRU Jawa Tengah 0,9 MTPA dengan biaya suplai pada tahun ke-4 9,50 $/MMBtu dan FSRU Jawa Barat 3 MTPA dengan biaya suplai pada tahun ke-4 yaitu 9,58 $/MMBtu. Kilang Donggi Senoro akan menggunakan 1 kapal untuk memasok LNG ke FSRU Lampung sebanyak 0,6 MTPA dengan biaya suplai pada tahun ke-1 yaitu sebesar 6,7 $/MMBtu.

This research aims to optimize the LNG supply chain system in order to get the lowest supply cost from the LNG plant to FSRU (Floating Storage Regasification Unit) and also the amount of LNG that is supposed to be supplied by each plant by using optimization methods. Optimization method must determine the objective function, decision variables and constrain. To get a low supply cost, low price of ex plant and transportation cost must be used. Vessels with capacity of 150,000 m3 and a speed of 18 knots will be used.
Shipping method used in this research is Hub and Spoke. In this study, the LNG source is Tangguh, Masela, Donggi Senoro and Bontang plant with the destination are FSRU located in Java and Sumatra. Supply cost is affected by distance of each LNG plant to the FSRU. From the results, it is obtained that Bontang LNG plant supply 3.0 MTPA to the FSRU Aceh for 20 years with supply cost in the first year $ 6.3 / MMBtu. Tangguh plant will use two ships to supply 2.1 MTPA LNG to Central Java FSRU with first year supply costs of $ 6.64 / MMBtu and 0.9 MTPA to Lampung FSRU with first year supply cost of $ 6.63 / MMBtu. Masela plant will use three ships to supply 0.9 MTPA LNG to the Central Java FSRU with the lowest costs in the 4th year of $ 9.50 / MMBtu and 3 MTPA to west Java FSRU 3 with the lowest supply cost in the 4th year of $ 9.58 / MMBtu. Donggi Senoro will use one ship to supply 0.6 MTPA LNG to Lampung FSRU with supply costs in the first year of $ 6.7 / MMBtu.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59902
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Azkia Rifqi Amarullah
"Adanya kesepakatan Paris 2015 mengenai emisi gas rumah kaca membuat gas bumi mulai banyak dipilih sebagai bahan baku untuk pembangkit listrik. Distribusi gas bumi sebagai sumber bahan bakar alternatif mengharuskan dalam bentuk cair (Liquefied Natural Gas) apabila jarak yang ditempuh cukup jauh. Selain itu, apabila LNG akan digunakan sebagai sumber bahan bakar pembangkit listrik, dibutuhkan proses regasifikasi terlebih dahulu Oleh karena itu value chain dari rantai pasok LNG menjadi yang terpanjang dibanding bahan bakar lain. Penelitian ini bertujuan untuk mendapatkan skema distribusi LNG yang optimal dengan melakukan optimisasi meminimalkan biaya distribusi dan biaya regasifikasi. Optimisasi dilakukan dengan cara mencari data investasi dan spesifikasi dari kapal LNG dan terminal regasifikasi, beserta permintaan LNG di lokasi pemenuhan rantai pasok. Optimisasi dilakukan dengan metode MILP menggunakan perangkat lunak GAMS dengan solver CPLEX. Hasil optimisasi memperlihatkan bahwa klaster Bangka-Belitung-Pontianak menggunakan jaringan distribusi hub-spoke dengan kapal LNG berukuran 1.500 m3 sebanyak satu buah, 2.500 m3 sebanyak satu buah, 10.000 m3 sebanyak empat buah, dan 12.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 2.000 m3, 3.000 m3, 3.500 m3, 15.000 m3 dan 17.000 m3. Biaya pengapalan pada klaster Bangka-Belitung-Pontianak berada pada rentang $1,06 - $3,23 per MMBtu dan biaya regasifikasi pada rentang $0,58 - $0,87 per MMBtu. Sedangkan untuk klaster Sulawesi menggunakan jaringan distribusi milk-run dengan ukuran kapal LNG 20.000 m3 sebanyak dua buah dan 23.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 1.000 m3, 2.000 m3, 3.000 m3, 4.500 m3, 8.500 m3, dan 10.000 m3. Biaya pengapalan pada klaster Sulawesi berada pada rentang $1,55 - $1,71 per MMBtu dan biaya regasifikasi pada rentang $1,18 - $1,66 per MMBtu. Perubahan sumber LNG pada masing-masing klaster tidak mengubah jaringan distribusi terpilih, namun tetap mengubah rute dan infrastruktur logistik sehingga mengubah pula biaya pengapalan dan biaya regasifikasi.

Paris agreement on greenhouse gas emissions has made natural gas chosen as a raw material for electricity generation. Natural gas distribution as an alternative fuel source requires in the form of liquid (Liquefied Natural Gas) if the distance traveled is far enough. Also, if LNG is to be used as a fuel source for power plants, a regasification process is needed. Therefore, the value chain of the LNG supply chain is the longest compared to other fuels. This study aims to obtain an optimal LNG distribution scheme by optimizing distribution costs and regasification costs. The optimization is carried out by finding investment data and specifications from the LNG ship and regasification terminal, along with LNG demand at the supply chain fulfillment location. Optimization using MILP method with GAMS software with the CPLEX solver. Optimization results show that Bangka-Belitung-Pontianak cluster uses hub-spoke distribution network with one 1,500 m3 LNG vessel, one 2,500 m3, four 10,000 m3, and two 12,000 m3 also storage capacity is 2,000 m3, 3,000 m3, 3,500 m3, 15,000 m3 and 17,000 m3. Shipping costs in Bangka-Belitung-Pontianak cluster are in the range of $1.06 - $3.23 per MMBtu and regasification costs in the range of $0.58 - $0.87 per MMBtu. As for the Sulawesi cluster, it uses milk-run distribution network with two 20,000 m3 LNG vessels and two 23,000 m3 LNG vessels also storage capacity is 1,000 m3, 2,000 m3, 3,000 m3, 4,500 m3, 8,500 m3, and 10,000 m3. Shipping costs in the Sulawesi cluster are in the range of $1.55 - $1.71 per MMBtu and regasification costs in the range of $1.18 - $1.66 per MMBtu. Changes in LNG sources in each cluster do not change the distribution network, but still change the route and logistics infrastructure so that it also changes shipping costs and regasification costs."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mirza Akbar Maulana
"Gas alam merupakan sumber energi yang saat ini dibutuhkan oleh negara maju maupun negara berkembang. Selama ini gas bumi diangkut menggunakan pipa dari sumber gas ke pembeli gas, namun di Indonesia tentunya hal ini menjadi tantangan tersendiri mengingat Indonesia merupakan negara kepulauan yang didominasi oleh perairan, sehingga membangun jaringan pipa tentunya membutuhkan biaya investasi yang besar. Dalam proses komersialisasi LNG terjadi proses jual beli antara pihak-pihak yang berkepentingan, dimana proses jual beli ini akan dilakukan dengan metode custody transfer untuk menghitung volume LNG yang dibeli atau dimasukkan ke tangki penyimpanan di terminal penerima LNG. Perhitungan penentuan jumlah LNG mengacu pada beberapa standar yang telah disepakati antar pihak. Tujuan dari makalah ini adalah untuk menentukan jumlah energi Liquefied Natural Gas (LNG) selama bongkar muat di terminal Floating Storage Regasification System

Natural gas is an energy source that is currently very much needed by both developed and developing countries. So far, natural gas has been transported using pipes from gas sources to gas buyers, but in Indonesia, of course, this will be a challenge considering that Indonesia is an archipelagic country that is dominated by waters, so building a pipeline will certainly require a large investment cost. In the LNG commercialization process, there is a buying and selling process between interested parties, where this buying and selling process will be carried out by Custody Transfer to calculate the energy of LNG purchased or put into storage tanks at the LNG receiving terminal. The calculation for determining the amount of LNG refers to several standards that have been agreed upon between parties. The objective of this paper is to share a method to determine the energy of Liquefied Natural Gas (LNG) during loading/unloading in FSRU/LNG terminal, as a result, given the understanding of LNG custody measurement in LNG operation and commercial terms.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
D. Gusnoto Harywendro
"ABSTRAK
Proses penurunan tekanan dan temperatur suatu gas bumi pada entropi konstan dengan bantuan Turboexpander banyak digunakan dalam proses pengolahan gas bumi.
Residu gas bumi di Central Plant lapangan Arjuna ARII yang sebagian komposisinya metana, diekpansikan melalui turboexpander untuk dimanfaatkan efek pendinginannya.
Besarnya penurunan temperatur yang dapat dihasilkan dengan turboexpander berkisar antara 80 ± 90°F pada effisiensi berkisar antara 80 ± 100%.
Penulis juga membahas bagaimana cara memperoleh harga effisiensi yang optimum, dan apa saja yang bias dilakukan untuk menaikkan effisiensi.
Jika proses penurunan temperatur dan tekanan gas bumi ini dilakukan dengan fjafltuan Joule Thomson Valve, diperoleh penurunan temperatur hanya berkisar 40 ± 50°F.
Akibatnya jika Expander dimafkan dan prctses gas di bypass melalui JT valve, temperatur jadi kurang dingin sehingga banyak propana yang tidak mencair dan terbawa dalam bentuk fase gas.
Dalam tugas akhir ini dibahas mengenai perhitungan termis turboexpander dan Joule Thomson Valve, perbandingan unjuk kerjanya serta effisiensi yang optimum dari turboexpander.

"
1995
S36513
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hendry Ahmad
"Peningkatan penggunaan gas bumi di masa mendatang memerlukan usaha pengembangan cadangan-cadangan potensial. Salah satunya adalah gas bumi yang berasal dari lapangan gas marginal yang dinilai tidak ekonomis jika dikelola dengan sistim pengelolaan gas dari lapangan yang mempunyai cadangan besar. Hal ini disebabkan lapangan gas marginal mempunyai cadangan dalam jumlah kecil dan pada umumnya berada pada lokasi yang jauh dari sentra-sentra konsumen.
Metode yang dianggap tepat untuk sasaran di atas adalah mencairkan gas bumi menjadi LNG dengan membangun kilang Liquefied Natural Gas (LNG) kapasitas kecil dengan konstruksi peralatan yang dapat dipindah-pindahkan (movable).
Berdasarkan hasil kajian teknis dan ekonomis yang berkaitan dengan teknologi proses kilang LNG skala kecil, serta kelayakan investasi pembangunannya yang dilengkapi dengan sarana pengelolaan, mulai dari lapangan produksi hingga titik distribusi di sentra konsumen gas, maka kilang LNG skala kecil dengan siklus ekspander berpendingin awal propana, menunjukkan prospek yang cukup signifikan untuk mengembangkan lapangan-lapangan gas marginal yang banyak terdapat di wilayah Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2001
T802
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>