Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 121013 dokumen yang sesuai dengan query
cover
Muhammad Rizky Adha
"ABSTRACT
Pemodelan regresi telah diterapkan dalam perbankan ritel karena kemampuannya dalam menganalisis data kontinu maupun diskrit. Hal tersebut merupakan alat yang penting dalam penilaian risiko kredit, stress testing, serta evaluasi aset kredit. Pada tugas akhir ini, pendekatan yang digunakan adalah dengan menggunakan model regresi logistik multinomial untuk mengetahui faktor-faktor yang memengaruhi terjadinya default dan attrition pada suatu kredit. Selain itu, pada tugas akhir ini juga akan diperkenalkan pendekatan regresi spline dengan menggunakan truncated power basis untuk memodelkan fungsi hazard. Fleksibilitas dari fungsi spline memberikan kemampuan untuk memodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kemudian, dengan menggunakan regresi spline dan regresi logistik multinomial, akan diperoleh sebuah hasil dan interpretasi yang lebih baik. Terdapat beberapa kelebihan dari penggunaan kedua model tersebut. Pertama, dengan menggunakan fungsi regresi spline yang fleksibel, dapat dimodelkan fungsi hazard yang berbentuk nonlinier dan tidak beraturan. Kedua, mudah dipahami dan diterapkan, dan bentuk parametrik model regresi logistik multinomial yang sederhana dapat memudahkan dalam interpretasi model. Ketiga, memiliki kemampuan untuk prediksi. Pada akhir pembahasan, dengan menggunakan sebuah data kartu kredit akan dilakukan pengaplikasian dari model regresi logistik multinomial dan regresi spline, dilengkapi dengan penjelasan secara statistika dan akurasi prediksi.

ABSTRACT
Regression modeling has been adapted in retail banking because of its capability to analyze the continuous and discrete data. It is an important tool for credit risk scoring, stress testing and credit asset evaluation. In this thesis, the approach used is multinomial logistic regression model to gain the information regarding the factors that affect the occurrence of default and attrition. In addition, this thesis will also introduce spline regression approach using truncated power basis to model the hazard function. The flexibility of spline function allows us to model the nonlinear and irregular shapes of the hazard functions. Then, by using spline regression and multinomial logistic regression model, there will be a better result and interpretation. There are several advantages by using those both models. First, by using the flexible spline regression function, it can model nonlinear and irregular shapes of the hazard functions. Second, it is easy to understand and implement, and its simple parametric form from multinomial logistic regression model can make it easy in model interpretation. Third, the model has the ability to do prediction. Furthermore, by using a credit card dataset, we will demonstrate how to build these model, and we also provide statistical explanatory and prediction accuracy."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tengku Nuzulul Qurriyani
"Prediksi potensi kebangkrutan bank berbasis rasio keuangan adalah topik penelitian yang tiada henti diteliti. Upaya ini dilakukan agar dapat menemukan model prediksi yang dianggap mampu menjelaskan tingkat kesehatan bank, mampu memprediksi dan mendeteksi secara dini potensi kebangkrutan bank, menemukan formula yang bisa diterapkan untuk semua bank, demi menyelamatkan bank dan sekaligus menciptakan kemakmuran perekonomian negara terkait dengan peran perbankan sebagai tulang punggung perekonomian negara. Hal ini dimungkinkan dengan bantuan teknik statistik berbasis model regresi logistik multinomial—variabel dependen bersifat kategorik sebagai suatu fungsi dari sejumlah variabel independen. Model prediksi potensi kebangkrutan bank yang dikembangkan dalam penelitian ini menemukan bahwa rasio keuangan mengenai capital adequacy sebuah bank adalah signifikan secara statistik (signifikan dalam dua fungsi logit) dalam mendeteksi secara dini potensi kebangkrutan bank. Ini terbukti dari ketepatan prediksi yang bisa diraih, yaitu bank gagal (bank likuidasi) (BL) adalah 75%, bank dalam penyelamatan (BDP) adalah 62.50%, dan bank sehat (bank survive) (BS) adalah 97.14%. Rasio keuangan dipercaya memiliki andil dalam model prediksi kebangkrutan sebesar 89.36%.

Prediction of potential bank bankruptcy based on financial ratios is a continuing research. This study is aimed to provide prediction model capable of explaining bank's health, predicting or detecting early potential bankruptcy of bank, finding formula that can be applied to all banks, promoting sound banking and simultaneously creating economic prosperity of the country considering that bank is the country's economic infrastructure. Statistical technique based on multinomial logistic regression model is used as method to test the model with categorical dependent variables given a set of independent variables. It is found that financial ratio related to bank's capital adequacy is statistically significant (in two logit functions) in providing early detection of potential bank insolvency. The accuracy of predictions by the model is 75% for failed banks (BL), 62.50% for banks classified under special surveillance or banks in resolution (BDP), and 97.14% for healthy banks (BS). Financial ratios are believed to have contributed to the bankruptcy prediction model by 89.36%.
"
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Akmal Fatah Fainusa
"ABSTRAK
E-Wallet merupakan aplikasi pada smartphone yang berfungsi untuk melakukan pembayaran digital. Salah satu faktor yang menentukan keberhasilan pada aplikasi E-Wallet adalah kepuasan pengguna. Sehingga penelitian mengenai kepuasan pengguna E-Wallet penting untuk dilakukan. Penelitian ini bertujuan untuk mengetahui tingkat kepuasan pengguna E-Wallet berdasarkan kesenjangan antara persepsi dengan ekspektasi pengguna, mengevaluasi tingkat kepuasan pengguna antar E-Wallet, dan menentukan prioritas peningkatan dari faktor-faktor yang memengaruhi kepuasan pengguna E-Wallet. Hasil penelitian ini diketahui bahwa perbandingan antara persepsi dan ekspektasi pengguna didapatkan nilai kesenjangan kepuasan bernilai negatif untuk semua objek penelitian. Hal ini menunjukkan bahwa pengguna E-Wallet belum merasa puas. Berdasarkan hasil perbandingan kesenjangan kepuasan antar E-Wallet didapatkan hasil bahwa untuk faktor keamanan, faktor efisiensi, faktor keandalan, faktor desain tampilan aplikasi, dan faktor manfaat ekonomi terdapat perbedaan kesenjangan kepuasan yang signifikan antar E-Wallet. Sedangkan faktor layanan pelanggan tidak terdapat perbedaan kesenjangan kepuasan yang signifikan antar E-Wallet. Berdasarkan perbandingan antar E-Wallet diketahui bahwa LinkAja tidak lebih baik dari Gopay, OVO, dan Dana. Hasil analisis model Kano menunjukkan bahwa seluruh variabel dalam penelitian ini masuk dalam kategori one-dimensional yang berarti bahwa jika variabel tersebut ada dan berfungsi dengan baik maka pengguna akan merasa puas, jika tidak ada maka pengguna akan merasa tidak puas. Dalam penelitian ini didapatkan prioritas perbaikan yang berbeda-beda untuk setiap objek E-Wallet. Prioritas peningkatan didapatkan dari kombinasi antara pemetaan ekspektasi dan persepsi, model Kano, dan regresi logistik multinomial.

ABSTRACT
E-Wallet is an application on a smartphone that functions to make payments digitally. One of the factors that determine the success of the E-Wallet application is user satisfaction. Research on user satisfaction is important because user satisfaction is the key to success in digital business. This study aims to determine the level of satisfaction of E-Wallet users based on the gap between user perceptions and user expectations, evaluate the level of user satisfaction between E-Wallet, and determine the priority of improvement for each E-Wallet. The results of this study note that based on a comparison between users' perceptions and expectations, the satisfaction gap value is negative for all research objects. This shows that E-Wallet users are not satisfied. Based on the comparison of satisfaction gaps between E-Wallet, the results show that for security factors, efficiency factors, reliability factors, application interface design factors, and economic benefit factors, there are significant differences in satisfaction gaps between E-Wallet. Based on the comparison between E-Wallet, it is known that LinkAja is no better than Gopay, OVO, and Dana. The results of Kano's analysis show that all variables in this study fall into the one-dimensional category. In this study, the priority of improvement is different for each E-Wallet object. Priority for improvement is derived from a combination of expectation and perception mapping, Kano's model, and multinomial logistic regression."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Risfania Nurdinda Sari
"COVID-19 adalah penyakit yang disebabkan oleh virus SARS-CoV-2 dan menyerang sistem pernapasan manusia. Selain menganggu kesehatan fisik, pandemi COVID-19 juga memberikan dampak psikologis, salah satunya adalah tingkat stres yang meningkat pada masyarakat. Penelitian ini bertujuan untuk mengidentifikasi faktor-faktor yang berasosiasi dengan tingkat stres pada pandemi COVID-19. Dalam mencapai tujuan tersebut, penelitian ini menggunakan metode classification tree dan regresi logistik multinomial. Sebelum melakukan proses identifikasi faktor menggunakan classification tree, dilakukan penanganan masalah imbalance data menggunakan metode SMOTE. Selanjutnya, dilakukan kuantifikasi risiko faktor-faktor yang teridentifikasi pada classification tree menggunakan analisis regresi logistik multinomial. Kinerja model diukur menggunakan nilai precision, recall, F1-Score, dan AUC. Hasil yang diperoleh adalah model classification tree dengan penanganan imbalance data menggunakan SMOTE dapat meningkatkan kinerja model dengan nilai precision 0,5980, nilai recall 0,8653, nilai F1-Score 0,7072, dan AUC 0,702. Dengan model tersebut, didapatkan faktor-faktor yang teridentifikasi berasosiasi dengan tingkat stres pada pandemi COVID-19 adalah Total_OECDInsititutions, Total_CoronaConcerns, dan Age. Peningkatan nilai Corona Concerns cenderung memberikan risiko peningkatan tingkat stres, sedangkan peningkatan nilai OECDInsititutions dan Age cenderung memberikan risiko penurunan tingkat stres.

COVID-19 is a disease caused by the SARS-CoV-2 virus that attacks the human respiratory system. In addition to disrupting physical health, the COVID-19 pandemic also has psychological impacts, one of which is an increased level of stress. This study aims to identify factors associated with the level of stress during the COVID-19 pandemic. The study employs the classification tree method and multinomial logistic regression. Prior to the factor identification process using the classification tree, the issue of imbalanced data is addressed using the SMOTE method. Subsequently, the quantification of risk factors identified in the classification tree is conducted using multinomial logistic regression analysis. The model's performance is measured using precision, recall, F1-score, and AUC values. The results obtained indicate that the classification tree model with the handling of imbalanced data using SMOTE can improve model performance, with a precision value of 0,5980, recall value of 0,8653, F1-score value of 0,7072, and AUC value of 0,702. With this model, the identified factors associated with the level of stress during the COVID-19 pandemic are Total_OECDInstitutions, Total_CoronaConcerns, and Age. An increase in Corona Concerns tends to pose a risk of increased stress levels, while an increase in OECD Institutions and Age tends to pose a risk of decreased stress levels."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Teuku Mohamad Anshar Lotan
"ABSTRAK
Tujuan dari permasalahan filtrasi spam adalah mengidentifikasi sebuah e-mail sebagai spam atau bukan spam. Dengan berkembangnya machine learning, semakin banyak permasalahan yang dapat diselesaikan. Salah satunya adalah filtrasi spam. Filtrasi e-mail spam dapat dilakukan dengan bantuan klasifikasi biner dengan machine learning untuk pengklasifikasiannya. Dalam penelitian ini akan menggunakan regresi logistik dan perceptron untuk melakukan proses filtrasi spam. Data yang digunakan menggunakan dataset Enron Spam. Hasil dari analisis menunjukkan bahwa regresi logistik menunjukkan hasil yang lebih baik dari perceptron. Di mana akurasi regresi logistik mencapai 97,02, sedangkan tingkat akurasi perceptron adalah 95,54, tetapi waktu pelatihan perceptron hanya membutuhkan waktu 3,8 sekon, sedangkan regresi logistik membutuhkan waktu 780,94 sekon.

ABSTRACT
The goal of spam filtering is to identify an e mail as spam or not spam. With the rapid development of machine learning, more problem can be solved. One of it is spam filtration. E mail spam filtering can be done with the help of binary classifier using machine learning for the classification. This research would use logistic regression and perceptron technique to filter spam. Data taken from Enron Spam dataset. The result indicate that logistic regression show better result than perceptron. Whereas the accuracy from logistic regression could reach 97,02, while accuracy from perceptron is 95,54, meanwhile the training time for perceptron takes only 3,8 second, while logistic regression takes about 780,94 second. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilang Rendra Hadinata
"Industri asuransi jiwa di Indonesia belakangan ini sedang mengalami tren positif, dengan mencatat kenaikan laba sebesar 148,05 pada tahun 2017, dari tahun sebelumnya. Perusahaan asuransi sampai sekarang pun masih berfokus pada pertumbuhan bisnis, namun metode yang akan diambil bukan lagi melalui marketing dan saluran agen, namun melalui metode kalkulasi yang baru untuk jumlah manfaat bagi produk-produk asuransi jiwa. Penghitungan manfaat dihasilkan dengan mempertimbangkan dua hal yang penting, yakni risiko dari pemegang polis, dan kondisi keuangan perusahaan. Penelitian ini berfokus pada klasifikasi risiko dari pemegang polis yang dilakukan dengan dua metode yakni regresi logistik dan jaringan saraf tiruan, yang menghasilkan bahwa metode jaringan saraf tiruan menghasilkan performa yang lebih baik dalam mengklasifikasikan risiko dibandingkan regresi logistik.

Life insurance businesses in Indonesia are currently developing at a significant pace. Stated by Otoritas Jasa Keuangan, life insurance businesses in Indonesia recorded 148,05 increase in their total income from December 2016, while already gaining positive results life insurance companies still aiming to extent their businesses by marketing and agency strategies, however life insurance companies currently are looking to extent their profits by formulating new models to calculate to value the policyholder. The insured value calculated by assessing risk the policyholder would face and by considering the company rsquo s financial status. This research focused on the risk classification process to assess the risk faced by the policy holder, by using logistic regression methods and neural network, and resulting a slight favor to neural network for having better results in classifying risks of policyholder."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Azri Nabilah
"Penyakit Jantung Koroner (PJK) merupakan penyebab utama kematian di seluruh dunia termasuk di Indonesia. Berdasarkan Sample Registration System (SRS), PJK menjadi penyebab kematian tertinggi di Indonesia pada semua umur pada tahun 2014 setelah stroke yaitu sebesar 12,9%. Terdapat beberapa faktor risiko yang menyebabkan PJK seperti merokok, umur, obesitas, jenis kelamin, diabetes, dan lain-lain. Penelitian ini menggunakan 3 model yaitu model Bootstrapping parametic regresi logistik, model Bootstrapping nonparametic regresi logistik dan model regresi logistik. Bootstrapping digunakan untuk meningkatkan akurasi hasil klasifikasi pada model. Metode Bootstrapping merupakan metode yang dilakukan dengan cara resampling dan replicate data awal. Data yang digunakan adalah data yang berasal dari Rumah Sakit Ibnu Sina Yarsi Padang pada bulan Januari tahun 2020. Berdasarkan penelitian ini, dapat disimpulkan bahwasannya akurasi, sensitivity, specivity pada model Bootstrapping parametic regresi logistic adalah 83.87%, 83.33%, dan 84.21% dan model Bootstrapping nonparametic regresi logistik adalah 74%, 72.72%, 75% lebih baik dibandingkan dengan model regresi logistic adalah 71%, 77.8%, dan 61.58%.

Coronary Heart Disease (CHD) is the leading cause of death worldwide, including in Indonesia. Based on the Sample Registration System (SRS), CHD is the leading cause of death in Indonesia at all ages in 2014 after stroke, amounting to 12.9%. There are several risk factors that cause CHD such as smoking, age, obesity, gender, diabetes, and others. This study used 3 models, namely the parametric Bootstrapping logistic regression model, the nonparametric Bootstrapping logistic regression
model and the logistic regression model. Then 3 models are compared to see the accuracy of each model. Bootstrapping method is a method that is done by resampling and replicating the initial data. The data used are data from the Ibnu Sina Yarsi Hospital Padang in January 2020. Based on this research, it can be concluded that the accuracy, sensitivity, specivity of the logistic regression parametric Bootstrapping model is 83.87%, 83.33%, and 84.21%, then nonparametric logistic regression Bootstrapping model 74%, 72.72%, 75%, both of them are better than the logistic regression model 71%, 77.8%, dan 61.58%.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ramadhani Fitri
"ABSTRAK
Penaksiran parameter dalam model regresi memiliki dua pendekatan yaitu pendekatan regresi parametrik dan pendekatan regresi nonparametrik. Dalam regresi parametrik bentuk dari kurva hubungan antara variabel respon dan variabel prediktor sudah ditentukan berdasarkan plot data, sedangkan dalam regresi nonparametrik bentuk dari kurva tidak diketahui. Salah satu regresi nonparametrik yang dapat digunakan adalah regresi spline. Regresi spline adalah suatu piecewise polynomial yang dihubungkan oleh titik-titik bersama yang disebut dengan knot. Regresi spline yang menggunakan fungsi basis B Spline disebut dengan regresi B Spline. Pada umumnya estimasi parameter regresi B Spline dilakukan dengan menggunakan metode OLS Ordinary Least Square. Namun, dengan metode OLS akan menyebabkan plot taksiran kurva regresi menjadi fluktuatif apabila pemilihan jumlah knot terlalu banyak. Untuk itu diperlukan suatu tambahan kendala berupa penalty yang didalamnya mengandung smoothing parameter sehingga diperoleh taksiran ideal. Metode estimasi parameter ini dikenal dengan metode PLS Penalized Least Square . Metode PLS dengan penalty yang merupakan integral kuadrat derivatif kedua dari taksiran kurva disebut juga dengan metode o rsquo;sullivan penalized spline. Pada penerapan contoh data, didapat 23 buah knot dan smoothing parameter sebesar 0.68.

ABSTRACT
Parameter estimation of regression model has two approaches, that is parametric and nonparametric regression approach. In parametric regression, the shape of regression curve is determined based on scatterplot of dependent variable vs independent variable, whereas in the nonparametric regression, the shape of the curve is unknown. One of the nonparametric regression is spline regression. Spline regression is piecewise polynomials that connected by the knots. Spline regression using B Spline basis function is B Spline regression. In B spline regression, parameter estimation were fitted by OLS Ordinary Least Square method. However, the OLS method will lead the plot of estimated regression curve be fluctuative when using too much knots. Therefore, it needs additional constraint of penalty that contain smoothing parameter to obtain ideal fit result. This parameter estimation method known as PLS Penalized Least Square method. The estimate PLS method used penalty which is the integral of the square of second derivative of the estimate curve that called o 39 sullivan penalized spline method. In the application of sample data, 23 is used knots and the smoothing parameters is 0.68. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fatma Irmadani
"

Credit Scoring adalah metode yang digunakan untuk memprediksi kemungkinan adanya risiko calon peminjam akan gagal bayar atau menunggak. Credit scoring digunakan oleh penyedia jasa pinjaman ketika calon peminjam dana mengajukan pinjaman. Salah satu perusahaan yang menggunakan credit scoring terhadap peminjamnya adalah Lending Club. Lending Club adalah salah satu penyedia jasa pinjam meminjam online Peer-to-Peer (P2P) di Amerika Serikat. Pada penelitian ini, dilakukan klasifikasi multikelas credit scoring berdasarkan status pinjaman (Loan Status) dari dataset Lending Club. Status pinjaman memiliki 3 kelas, yaitu default, fully paid, dan late. Dengan menggunakan pendekatan machine learning, yaitu supervised learning, klasifikasi multikelas credit scoring dapat dilakukan dengan menggunakan Multinomial Logistic Regression (MLR). MLR merupakan pengembangan dari Logistic Regression yang mampu menangani klasifikasi multikelas. Pada implementasi model MLR, digunakan 3 skenario sampling strategy pada SMOTE yang berbeda dalam mengklasifikasikan multikelas. Hasil klasifikasi multikelas dievaluasi dengan menggunakan metrik accuracy, precision, recall, F1-Score dan AUC (Area Under the Curve) One versus All. Hasil implementasi dengan evaluasi terbaik adalah model MLR dengan nilai accuracy sebesar 0,67 dan nilai rata-rata AUC One versus All sebesar 0,724932. Sedangkan evaluasi pada setiap kelas, kelas default memiliki nilai precision sebesar 0,47,recall sebesar 0,02 dan F1-Score sebesar 0,04; kelas fully paid memiliki nilai precision sebesar 0,85, recall sebesar 0,83 dan F1-Score sebesar 0,84; dan kelas late memiliki nilai precision sebesar 0,02, recall sebesar 0,84 dan F1-Score sebesar 0,04. Hasil tersebut menunjukkan bahwa kelas default memiliki hasil evaluasi yang kurang baik untuk setiap metrik evaluasi, kelas fully paid memiliki hasil evaluasi yang baik untuk setiap metrik evaluasi, sedangkan kelas late memiliki nilai yang cukup baik hanya pada nilai recall (0,84). Hasil yang kurang baik diduga dipengaruhi oleh adanya data yang tidak seimbang dan kelas yang saling tumpang tindih.


Credit Scoring is a method used to predict the possible risk that a prospective borrower will default or delinquency. Credit scoring is used by loan service providers when prospective borrowers apply for loans. One company that uses credit scoring for its borrowers is the Lending Club. Lending Club is a Peer-to-Peer (P2P) online lending and borrowing service provider in the United States. In this study, a multiclass credit scoring classification was carried out based on loan status from the Lending Club dataset. Loan status has 3 classes, namely default, fully paid, and late. By using a machine learning approach, namely supervised learning, multiclass classification of credit scoring can be done using Multinomial Logistic Regression (MLR). MLR is a development of Logistic Regression which is able to handle multiclass classification. In the implementation of the MLR model, 3 different sampling strategy scenarios are used in SMOTE in classifying multiclasses. The multiclass classification results are evaluated using accuracy, precision, recall, F1-Score and AUC (Area Under the Curve) One versus All metrics. The result of the implementation with the best evaluation is the MLR model with an accuracy value of 0.67 and an average value of AUC One versus All of 0.724932. While the evaluation for each class, the default class has a precision value of 0.47, a recall of 0.02 and an F1-Score of 0.04; the fully paid class has a precision value of 0.85, a recall of 0.83 and an F1-Score of 0.84; and the late class has a precision value of 0.02, a recall of 0.84 and an F1-Score of 0.04. These results show that the default class has poor evaluation results for each evaluation metric, the fully paid class has good evaluation results for each evaluation metric, while the late class has a fairly good value only on the recall value (0.84). Unfavorable results are thought to be influenced by the presence of unbalanced data and overlapping classes.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Hariyanto
"ABSTRAK
Penelitian ini bertujuan mengukur tingkat risiko kredit dan menganalisis faktor yang memengaruhi default pembiayaan kepemilikan rumah (KPR) Musyarakah Mutanaqisah (MMQ) dan KPR Murabahah di Bank Syariah ABC periode Januari 2012 ? Februari 2016. Pengukuran tingkat risiko kredit dilakukan menggunakan metode Credit Risk+. Analisis faktor yang memengaruhi default KPR dengan menggunakan metode Regresi Logistik. Hasil penelitian menunjukan tingkat risiko kredit yang meningkat selama periode penelitian dan terdapat perbedaan tingkat risiko kredit antara KPR MMQ dan KPR Murabahah. Tingkat risiko kredit KPR MMQ lebih tinggi dibandingkan KPR Murabahah. Faktor yang signifikan memengaruhi default pembiayaan KPR Bank Syariah ABC berbeda untuk KPR MMQ dan KPR Murabahah, kecuali faktor rasio Financing to Value (FTV) yang berpengaruh signifikan pada kedua akad tersebut

ABSTRACT
This study to measure level of credit risk and to analyze factors that influence mortgage default based on Musharaka Mutanaqisah (MMQ) and Murabaha contract at ABC Islamic Bank in the period January 2012-February 2016. Credit risk measurements using CreditRisk+. To analyze factors that influence mortgage default using Logistic Regression. The results showed that level of credit risk has increased and there is a difference between the level of credit risk mortgage based on MMQ and Murabaha contract. Credit risk in mortgage based on MMQ contract is higher than Murabaha contract. Factors that significantly influence on those mortgage default are different, except Financing to Value (FTV) ratio that has significant influence on both contract"
2016
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>