Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 60545 dokumen yang sesuai dengan query
cover
Saragih, Glori Stephani
"ABSTRAK
Pada tahun 1994, Turki mengalami krisis keuangan yang sangat berpengaruh negatif terhadap sektor perbankan, sehingga banyak bank yang dinyatakan bangkrut. Kebangkrutan bank memiliki dampak yang besar pada sektor riil dan rumah tangga. Oleh karena itu, penting untuk memprediksi kebangkrutan bank. Tahun 2009, Boyacioglu, Kara dan Baykan telah memprediksi kebangkrutan bank di Turki pada periode 1994-2004 dengan menggunakan CAMELS sebagai variabel prediktor dan Artificial Neural Network, Support V ector Machine serta metode statistik peubah ganda sebagai metode klasifikasi. Namun, pada penelitian ini akan dibuat pembaruan dengan menggunakan random forest. Dari hasil yang didapat, random forest memiliki akurasi 100 performa training dan 94 performa testing dengan mengunakan 20 rasio. Salah satu kelebihan random forest adalah perhitungan variabel penting, apabila dibentuk model dengan menggunakan variabel prediktor terpilih didapat hasil 100 performa training dan 96 performa testing dengan menggunakan 6 rasio. Jika dibandingkan dengan model yang digunakan pada makalah Boyaciaglu, Kara dan Baykan 2009, meskipun pada performa testing random forest tidak memiliki akurasi yang lebih tinggi dari Learning Vector Quantization dengan performa testing 100, namun tingkat akurasinya tidak terlalu berbeda jauh dan random forest tidak memerlukan normalisasi. Pada penelitian ini didapat enam variabel yang paling penting, yaitu: CA2, E1, CA3, SMR1, SMR2 dan E2.

ABSTRACT
In 1994, there was a financial crisis in Turkey. Many banks were declared failed because of the negative impact from the crisis. The failure of individual banks has a huge impact on the real sector and households. Therefore, it is important to predict bank failure. The 2009, Boyacioglu, Kara, and Baykan had predicted bank failures in Turkey, during the period 1994 2004 using CAMELS as a predictor variable and Artificial Neural Network, Support Vector Machine, multivariate statistical methods as classifier method. However, in this research we will make novelty by using random forest. Based on our results, random forest has accuracy 100 training performance and 94 testing performance with used 20 ratios. One of advantage in random forest is variable importance measure, if we build model again with variable predictor selection, the result are accuracy 100 training performance and 96 testing performance with used 6 ratios. If we compare with Boyacioglu, et.al 2009, even random forest does not have accuracy more than Learning Vector Quantization with 100 testing performance, but its accuracy is not far away and doesn rsquo t need normalization. In this research we got CA2, E1, CA3, SMR1, SMR2 and E2 are six most important variables. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fiftitah Repfian Aszhari
"

Stroke merupakan salah satu penyakit dengan risiko kematian dan kecacatan yang tinggi. Secara umum, stroke diklasifikasikan menjadi dua jenis, yaitu stroke iskemik dan stroke hemoragik. Klasifikasi jenis stroke secara cepat dan tepat diperlukan untuk menentukan jenis pengobatan dan tindakan yang tepat guna mencegah terjadinya dampak yang lebih fatal pada pasien stroke. Pada penelitian ini, klasifikasi stroke dilakukan menggunakan pendekatan machine learning. Adapun data penelitian yang digunakan adalah data stroke yang terdiri atas pemeriksaan laboratorium. Pada data penelitian tersebut, terdapat berbagai komponen pemeriksaan laboratorium yang dicatat serta memungkinkan adanya suatu pemeriksaan yang kurang relevan atau informatif dalam mengklasifikasi stroke. Apabila data tersebut tidak ditangani, akan mempengaruhi kinerja serta waktu komputasi model dalam mengklasifikasi stroke. Oleh karena itu, pada penelitian ini, Random Forest (RF) dengan seleksi fitur Recursive Feature Elimination (RFE) digunakan dalam mengklasifikasi data stroke. Dengan menerapkan metode tersebut, diperoleh kinerja model yang lebih baik saat melakukan klasifikasi menggunakan sejumlah fitur yang diperoleh dari hasil seleksi fitur, dibandingkan menggunakan keseluruhan fitur dalam data stroke. Selain itu, pada penerapan metode tersebut, diperoleh kinerja model yang baik dalam mengklasifikasi data kelas stroke iskemik, akan tetapi tidak cukup baik dalam mengklasifikasi data kelas stroke hemoragik. Hal ini dikarenakan proporsi jumlah data pada kelas stroke iskemik lebih banyak dibandingkan stroke hemoragik. Dalam hal ini dibutuhkan suatu metode penanganan agar kinerja model tetap optimal dalam mengklasifikasi data kelas stroke iskemik dan stroke hemoragik. Pada penelitian ini, Synthetic Minority Oversampling Technique (SMOTE) digunakan untuk menyeimbangkan kedua kelas data stroke guna memperoleh kinerja model yang optimal dalam mengklasifikasi kedua kelas data stroke. Berdasarkan penerapan metode RF dengan RFE serta SMOTE dalam mengklasifikasi data stroke, diperoleh kinerja model yang lebih baik dibandingkan melakukan klasifikasi pada data stroke yang tidak diseimbangkan dengan SMOTE.


Stroke is one of the diseases with the high risk of death and disability. Stroke generally can be classified into two types, namely ischemic stroke and hemorrhagic stroke. A quick and accurate stroke classification is needed to find the right treatment to prevent a dangerous effect on the stroke patients. In this study, the stroke classification was applied using a machine learning approach. The data used in this study is stroke data that consists of laboratory examinations. The data consists of various laboratory examination components, therefore, it might be possible that some of the components are less relevant and has less informative related in classifying stroke. If the data is not well handled, it might affect the performance and computation time of the model in classifying stroke. Therefore, in this study, Random Forest (RF) with Recursive Feature Elimination (RFE) method is used to classify the stroke data. The result showed that by applying the method in classifying several amounts of features obtained from the feature selection results has better performance rather than classifying the method using all features in stroke data. Moreover, based on applying this method, the result showed that the model has better performance in classifying ischemic stoke class data but not good enough in classifying hemorrhagic stroke class data. This result might occur because the proportion of numbers the ischemic stroke more than hemorrhagic stroke class data. Therefore, the handling method is needed to obtain optimal model performance in classifying ischemic stroke and hemorrhagic stroke class data. In this study, Synthetic Minority Oversampling Technique (SMOTE) is applied to balance the two classes of stroke data so optimal performance of the classification model can be obtained. Based on the application of the RF with RFE methods and SMOTE in the classification of stroke data, better model performance is obtained compared to classifying the stroke data that is not balanced with SMOTE.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ervaran Panjilara Putra
"E-learning Management Systems (EMAS) merupakan aplikasi pembelajaran jarak jauh Universitas Indonesia yang memiliki berbagai fitur untuk membantu pendidik dalam proses perkuliahan. Dalam pembelajaran jarak jauh, perilaku mahasiswa memiliki peran penting dalam meningkatkan proses pembelajaran yang berpengaruh pada kelulusan mahasiswa. Pada tugas akhir ini Recurrent Neural Network (RNN) dengan 1 input layer, 1 hidden layer, dan 1 output layer digunakan untuk memprediksi perilaku mahasiswa pada mata kuliah daring X di EMAS, dimana perilaku tersebut berupa aktivitas mahasiswa di EMAS seperti menjawab pertanyaan dalam forum diskusi, melihat berkas pembelajaran dan aktivitas lainnya. Sebelum dilakukan implementasi model RNN, ditentukan terlebih dahulu perilaku mahasiswa yang paling berpengaruh terhadap kelulusan mahasiswa menggunakan feature selection, yaitu Recursive Feature Elimination Random Forest (RFE-RF). Hasil RFE-RF terdapat 3 fitur yang terpilih yaitu Course View (CV), File View (FV) dan Discussion Viewed (DV). Implementasi Model RNN menggunakan optimizer function yaitu Stochastic Gradient Descent (SGD) dan performa model ditentukan berdasarkan Mean Square Error (MSE). Implementasi RNN dilakukan dengan 2 skenario berbeda, yaitu skenario data 75 hari pertama dan skenario data 115 hari. RNN model terbaik menggunakan data 75 hari pertama adalah model dengan jumlah nodes pada input layer, hidden layer, dan output layer secara berturut- turut sebanyak 1, 10 dan 1 dengan 500 epoch, learning rate 0,01, dan perbandingan data training dan data testing adalah 60%: 40%. Nilai MSE untuk fitur CV 0,00055, untuk fitur FV 0,00051 dan fitur DV sebesar 0,00019. Model RNN terbaik menggunakan data 115 hari menghasilkan nilai MSE untuk fitur CV 0,00054, fitur FV 0,00041 dan fitur DV 0,00027.

E-learning Management Systems (EMAS) is an online learning application from the University of Indonesia with various features to help educators in the lecture process. In online learning, student behavior is important in improving the learning process that affects final student scores. In this final task, Recurrent Neural Network (RNN) with one input layer, one hidden layer, and one output layer is used to predict student behavior in online course X in EMAS. The behavior is student activity in EMAS, such as answering questions in discussion forums, viewing learning files, and other activities. Before implementing the RNN model, the behavior of students who have the most influence on final student scores is determined in advance using feature selection, namely Recursive Feature Elimination Random Forest (RFE-RF). RFE-RF results there are three features selected, namely Course View (CV), File View (FV), and Discussion Viewed (DV). The implementation of the RNN Model using optimizer function stochastic gradient descent (SGD) and the model's performance is determined based on Mean Square Error (MSE). RNN implementation is divided into two different scenarios, the first 75-days data scenario, and the 115-days data scenario. The best RNN models using the first 75 days of data are models with the number of nodes on the input layer, hidden layer, and output layers respectively as much as 1, 10, and 1 with 500 epoch, learning rate 0,01, and comparison of training data and testing data is 60%: 40%. The MSE value for the CV features is 0,00055, FV feature is 0,00051 and DV feature is 0,00019. The best RNN models using 115 days of data generate MSE values for the CV features, which are 0,00054, FV features are 0,00041, and DV features are 0,00027."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Iqbal
"Penelitian ini bertujuan untuk menganalisis faktor mana yang paling penting dalam memprediksi freelancer berkualitas tinggi. Krisis dan pandemi covid memaksa perusahaan melakukan efisiensi biaya sehingga merekrut freelancer online menjadi solusi yang bisa dipertimbangkan. Rekrut freelancer online cukup mudah, kamu tinggal masuk ke website freelance marketplace, lalu pilih freelancer dan pekerjaan yang kamu inginkan, lalu ajukan penawaran. Namun, perusahaan perlu merekrut pekerja lepas berkualitas tinggi tetapi berbiaya rendah untuk efisiensi biaya. Artinya, perusahaan perlu merekrut freelancer yang memiliki kualitas top-rated tapi belum top-rated. Berbeda dengan penelitian sebelumnya, penulis menggunakan variabel Top Rated sebagai dependen yang mencerminkan kualitas tinggi dan menganalisisnya menggunakan algoritma Random Forest dan Logistic Regression. Dataset tersebut berisi 5.825 sample size yang diunduh dari Kaggle.com. Dari penelitian sebelumnya, Similar-Job-Experience dan Past-Rating merupakan faktor terpenting yang mencerminkan kualitas. Sementara itu, dalam penelitian ini, atribut totalRevenue, BilledAssignments, dan totalHourlyJobs masing-masing menjadi variabel terpenting yang berhasil memprediksi 30 freelancer Top Rated di masa depan. Temuan ini berguna bagi perusahaan untuk mempertimbangkan faktor-faktor ini dalam merekrut pekerja lepas. Sepengetahuan penulis, saat ini penelitian yang membahas tentang kriteria freelancer yang menggunakan machine learning masih terbatas

This study aims to analyze which factors are most important in predicting high-quality freelancer. The crisis and the covid pandemic forced companies to make cost efficiency so that recruiting online freelancers was a solution that could be considered. Online recruitment is quite easy, you just have to go to the freelance marketplace website, then select the freelancer and job you want, then offer freelance. However, companies need to hire high-quality but low-cost freelancers for cost efficiency. This means that companies need to recruit freelancers who are top-rated but not yet top-rated. In contrast to previous studies, the author uses the Top Rated variable as the dependent which reflects high quality and analyzes it using the Random Forest and Logistic Regression algorithms. The dataset contains 5,825 samples downloaded from Kaggle.com. From previous research, Similar-Job-Experience and Past-Rating are the most important factors that reflect quality. Meanwhile, this study, the attributes of totalRevenue, BilledAssignments, and totalHourlyJobs became the most important variables that succeeded in predicting the 30 Top Rated freelancers in the future. This finding is useful for companies to consider these factors in recruiting freelancers. To the author's knowledge, currently researching the criteria for freelancers who use machine learning is still limited."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ramlah
"Prediksi dengan model mesin learning regresi telah banyak digunakan untuk penelitian. Salah satu model mesin learning yang digunakan untuk prediksi adalah random forest regressor. Mesin learning membutuhkan data training untuk mempelajari pola dan hubungan antar data. Model regressor yang sedangkan dikembangkan dalam bidang medis saat ini adalah model yang dapat memprediksi dosis pada perencanaan IMRT. Data perencanaan dalam format DICOM (format asli data) dieksport ke bentuk CVS (Comma Separated Values). Kemudian data dibagi menjadi data training dan testing yang dipilih secara random. Algoritma yang digunakan untuk memprediksi adalah random forest yang akan di training menggunakan 7-fold validation dan kemudian model akan di uji dengan data baru yaitu data testing yang belum pernah dilihat oleh model. Data yang dievaluasi yaitu parameter untuk mendapat HI (Homogenety Index) untuk organ target, dan dosis mean dan max untuk OAR (Organ At Risk). Random forest mampu memprediksi nilai sebenarnya dengan kesalahan dievaluasi menggunakan MAE pada fitur PTV D2 (0,012), D50 (0,015) dan D98 (0,018) serta pada fitur OAR (mean dan  max) paru kanan (0,104 dan 0,228), paru kiri (0,094 dan 0,27), jantung (0,088 dan 0,267), spinal cord (0,069 dan 0,121) dan (V95) Body (0,094).

Predictions with machine learning regression models have been widely used for research. One of the machine learning models used for prediction is the random forest regressor. Machine learning requires training data to determine patterns and relationships between data. Nowadays, the regressor model that being developed in the medical field is able to predict dose in IMRT planning. Planning data in DICOM format (original data format) was exported to CVS (Comma Separated Values) format. Then, the data was divided into training and testing data which were selected randomly. The algorithm used to predict is a random forest that was trained using 7-fold validation and the model was evaluated with new data, namely testing data that have not been seen by the model. The evaluated data are parameters to obtain HI (Homogenety Index) for target organs, and mean and max doses for OAR (Organ At Risk). Random forest was able to predict the true value with errors and it was evaluated using MAE for PTV D2 (0,012), D50 (0,015) and D98 (0,018), for OAR (mean and  max) right lung (0,104 and 0,228), left lung (0,094 and 0,27), heart (0,088 and 0,267), spinal cord (0,069 and 0,121) and (V95) Body (0,094).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Remzy Syah Ramazhan
"Coronavirus disease 19 (COVID-19) adalah penyakit pernapasan menular yang pertama kali terdeteksi di Kota Wuhan, Provinsi Hubei, China. Penyakit ini memiliki gejala umum yang mirip dengan gejala penyakit pernapasan lain seperti alergi, flu, dan pilek. Tetapi setiap penyakit membutuhkan obat dan perawatan yang berbeda-beda. Sehingga, penting bagi penderita untuk mendapatkan diagnosis yang tepat atas penyakit yang diderita. Diagnosis biasanya dilakukan dengan pertemuan langsung antara dokter dan pasien. Akan tetapi, cara ini memiliki banyak hambatan, seperti: membutuhkan banyak waktu dan biaya. Selain itu, cara ini juga berpotensi menularkan penyakit kepada orang lain. Oleh karena itu, diajukan implementasi chatbot untuk mengatasi hambatan dalam melakukan diagnosis COVID-19. Chatbot menerima input data berupa gejala yang dialami pasien. Data tersebut terlebih dahulu diubah menjadi data tabular untuk kemudian dilakukan klasifikasi jenis penyakit dengan bantuan algoritma machine learning. Pada Penelitian ini, akan dilakXGBoost pada data gejala yang dipublikasikan oleh Walter Conway di situs Kaggle. Hasil penelitian menunjukkan bahwa model Random Forest memiliki kinerja terbaik pada data testing dengan skor rata-rata accuracy sebesar 93.38%, precision sebesar 96.58%, recall sebesar 93.38%,F1-Score sebesar 94.32%, specificity sebesar 99.73%, Geometric Mean sebesar 95.94%, dan waktu training selama 0.33 detik.

Coronavirus disease 19 (COVID-19) is an infectious respiratory disease that was first detected in Wuhan City, Hubei Province, China. This disease has general symptoms that are similar to the symptoms of other respiratory diseases such as allergies, flu, and colds. But each disease requires different medications and treatments. Thus, it is important for patients to get a proper diagnosis of the disease they are suffering from. Diagnosis is usually made by direct meeting between doctor and patient. However, this method has many obstacles, such as: it takes a lot of time and money. In addition, this method also has the potential to transmit the disease to others. Therefore, it is proposed to implement a chatbot to overcome obstacles in diagnosing COVID-19. The chatbot receives input data in the form of symptoms experienced by the patient. The data is first converted into tabular data and then the classification of the type of disease is carried out with the help of machine learning algorithms. In this study, a diagnosis of COVID-19 will be carried out using the Random Forest and XGBoost models on symptom data published by Walter Conway on the Kaggle website. The results showed that the Random Forest model had the best performance on data testing with an average score of 93.38% accuracy, 96.58% precision, 93.38% recall, 94.32% F1-Score, 99.73% specificity, and 95.94% Geometric Mean, and the training time is 0.33 seconds."
Depok: Fakultas Matematika dan Ilmu Penngetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tiara Anggraini Gaib
"Penyakit jantung, seperti yang didefinisikan oleh World Health Organization (WHO) sebagai kumpulan berbagai gangguan yang memengaruhi kesehatan jantung, merupakan salah satu masalah kesehatan global yang memerlukan deteksi dini dan penanganan yang efektif. Faktor risiko yang menyebabkan penyakit jantung seperti usia, jenis kelamin, nyeri dada (chest pain), tekanan darah (resting blood pressure), kolesterol (cholesterol), kadar gula darah (fasting blood sugar), hasil elektrokardiogram (resting electrocardiogram), detak jantung maksimum yang dicapai (maximum heart rate achieved), keberadaan angina yang diinduksi (exercise-induced angina), depresi segmen ST (oldpeak), bentuk kelengkungan pada kurva (slope of the peak exercise st segment), jumlah pembuluh darah utama yang diwarnai oleh flourosopy (Number of Major Vessels Colored by Fluoroscopy/CA), dan jenis thalassemia (thalassemia), memiliki peran signifikan dalam meningkatkan risiko terjadinya penyakit jantung. Penelitian ini dilakukan menggunakan dataset yang berasal dari Klinik Cleveland, yang terdiri dari 303 entri data. Dataset ini digunakan untuk melakukan deteksi terhadap keberadaan atau ketidakhadiran penyakit jantung berdasarkan sejumlah atribut klinis yang diukur. Atribut-atribut ini, atau fitur-fitur, mencakup berbagai informasi seperti tekanan darah, kadar kolesterol, usia, jenis kelamin, dan lainnya. Tujuan dari penelitian ini adalah untuk melakukan deteksi yang dapat memprediksi penyakit jantung berdasarkan informasi klinis pasien dengan akurasi terbaik. Untuk mencapai tujuan ini, model Random Forest dilatih dan dibandingkan dengan model lain meliputi Naive Bayes, Decision Tree, Logistic Regression, Support Vector Machine (SVM), Neural Network dan XGBoost. Hasil evaluasi menunjukkan bahwa Random Forest Algorithm memiliki akurasi yang paling tinggi, mencapai 96,77%. Ini berarti bahwa model Random Forest mampu memprediksi keberadaan atau ketidakhadiran penyakit jantung dengan tingkat keberhasilan yang sangat tinggi. Sebagai hasilnya, Random Forest dipilih sebagai model yang paling sesuai untuk melakukan deteksi penyakit jantung dalam dataset ini. Model ini diharapkan dapat memberikan kontribusi yang signifikan dalam deteksi dini, pencegahan, dan pengelolaan penyakit jantung secara global.

Heart disease, as defined by the World Health Organization (WHO) as a collection of various disorders affecting heart health, is one of the global health issues requiring early detection and effective management. Risk factors contributing to heart disease such as age, gender, chest pain (angina), blood pressure (trestbps), cholesterol (cholesterol), blood sugar levels (fbs), electrocardiogram results (restecg), maximum heart rate achieved (thalach), presence of induced angina (exang), ST segment depression (oldpeak), slope of the ST segment (slope), number of major vessels colored by fluoroscopy (ca), and type of thalassemia (thal), play a significant role in increasing the risk of heart disease. This research was conducted using a dataset obtained from the Cleveland Clinic, consisting of 303 data entries. This dataset was utilized to classify the presence or absence of heart disease based on various measured clinical attributes, including blood pressure, cholesterol levels, age, gender, among others. The aim of this study is to perform detection that can predict heart disease based on patient clinical information with the highest accuracy. To achieve this objective, the Random Forest model was trained and compared with other models, including Naive Bayes, Decision Tree, Logistic Regression, Support Vector Machine (SVM), Neural Network, and XGBoost. Evaluation results demonstrate that the Random Forest Algorithm achieved the highest accuracy, reaching 96,77%. This implies that the Random Forest model can predict the presence or absence of heart disease with a very high success rate. Consequently, Random Forest was chosen as the most suitable model for classifying heart disease in this dataset. This model is anticipated to significantly contribute to the early detection, prevention, and management of heart disease globally."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wahyu Nuryaningrum
"Pesatnya perkembangan ekonomi menyebabkan kebutuhan manusia menjadi tidak terbatas. Usaha yang dapat dilakukan untuk pemenuhan kebutuhan hidup di masa yang akan datang adalah dengan melakukan investasi. Saham merupakan salah satu instrumen investasi dengan tingkat keuntungan yang menarik, namun memiliki risiko kerugian yang tinggi. Hal ini disebabkan oleh adanya pergerakan harga saham yang cenderung tak menentu selama periode waktu tertentu. Untuk meminimalkan risiko kerugian, perlu dilakukan prediksi pergerakan harga saham. Prediksi yang akurat akan membantu para investor dalam menentukan nilai saham di masa yang akan datang. Pada penelitian ini, dilakukan perbandingan untuk memprediksi pergerakan harga saham menggunakan tiga algoritma supervised machine learning yaitu Random Forest, Support Vector Regression (SVR) dan K- Nearest Neighbor (KNN) berdasarkan tingkat akurasinya. Sutau model dikatakan akurat jika memiliki nilai Root Mean Square Error (RMSE) dan Mean Absolute Error (MAE) yang lebih rendah. Pada penelitian ini, diperoleh hasil prediksi harga penutupan saham terbaik menggunakan metode Support Vector Regression dengan melihat rendahnya nilai RMSE dan MAE yang dihasilkan dibandingkan dengan dua metode lain. Dalam perhitungannya, penelitian ini menggunakan histori data harian dari website investing.com. periode Maret 2017 hingga Februari 2020 dari tiga perusahaan di Indonesia yang terdaftar dalam IDX30.

The fast growth of economic development causes human needs to be immeasurable. One of the efforts that could be done to fulfill life needs in the future was Investation. Stock is one of the Investation instruments with interesting benefits but has high- risk loss caused by the unstable stock market trend between some period. For minimalizing the risky loss, the literati need to predicting the stock rate trend. The accurate prediction will help the investor in choosing a stock value in the future. In this study, the literati make a comparison to predict stock market trend with three kinds of algorithms supervised machine learning that are Randon Forest, Support Vector Regression (SVR), and K-Nearest Neighbor (KNN) based on their accurate level. A model could be said accurate just if they have a lower value of Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). The best Stock Closing Price prediction will be obtained by the Support Vector Regression method and see how low the result of RMSE and MAE value is compared with another method. To calculate, the study uses a daily data history from investing.com website between March 2017 to February 2020 period. The object data is a three big company in Indonesia which listed in IDX30."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Gustrina Neonatasha
"Banjir merupakan bencana besar yang kerap kali melanda Indonesia. Jakarta sebagai Ibukota beberapa tahun sekali mengalami banjir besar ini. Salah satu wilayah yang mengalami dampak negatif bencana ini ialah Kampung Melayu, Jakarta Timur. Terletak dekat daerah aliran sungai Ciliwung, bencana banjir di Kampung Melayu tak terelakkan terjadi. Penelitian ini bertujuan untuk membuat sistem deteksi bencana banjir di Kampung Melayu dengan implementasi algoritma Random Forest. Temperatur, tekanan udara, intensitas curah hujan, intensitas radiasi sinar matahari dan kelembaban relatif dari Stasiun Cuaca Citeko digunakan sebagai dataset dengan data tambahan berupa tinggi muka air di Pos Air Bendung Katulampa, Pos Air Depok dan Pos Air Manggarai. Hasil prediksi berupa empat kelas klasifikasi status siaga banjir dari tiap pos. Selain menggunakan algoritma Random Forest, penelitian ini juga menggunakan algoritma Decision Tree sebagai pembanding untuk melihat kinerja terbaik dari keduanya. Kedua algoritma ini merupakan metode yang kerap kali digunakan untuk pemodelan data time -series. Random Forest mencapai akurasi sebesar 99,17% dan Decision Tree mencapai 98,90%. Hasil ini menunjukkan bahwa sistem deteksi bencana banjir di Kampung Melayu, Jakarta dapat bekerja lebih baik dengan pengimplementasian Random Forest.

Flooding is a severe disaster that happens frequently in Indonesia. Jakarta, as the capital city of Indonesia, experiences this big flood every few years. One of the areas which experienced the negative impact of this disaster was Kampung Melayu, East Jakarta. Located near the Ciliwung river basin, flooding in Kampung Melayu is inevitable. The research aims to create a flood detection system in Kampung Melayu with the implementation of the Random Forest algorithm. Temperature, air pressure, rainfall, solar radiation, and relative humidity from the Citeko Weather Station were used as datasets with the addition of water level at the Katulampa Dam Water Post, Depok Water Post, and Manggarai Water Post. Prediction results in the form of four classes of flood alert status classification from each water post. In addition to using the Random Forest algorithm, this research also uses the Decision Tree algorithm as a comparison to see the best performance of the two algorithms. Both algorithms are methods which often used for time – series data modelling. Random Forest achieved 99,17% accuracy and Decision Tree achieved 98,90%. These results show that the flood detection system in Kampung Melayu, Jakarta can work better with the implementation of Random Forest.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adinda Gustrina Neonatasha
"Banjir merupakan bencana besar yang kerap kali melanda Indonesia. Jakarta sebagai Ibukota beberapa tahun sekali mengalami banjir besar ini. Salah satu wilayah yang mengalami dampak negatif bencana ini ialah Kampung Melayu, Jakarta Timur. Terletak dekat daerah aliran sungai Ciliwung, bencana banjir di Kampung Melayu tak terelakkan terjadi. Penelitian ini bertujuan untuk membuat sistem deteksi bencana banjir di Kampung Melayu dengan implementasi algoritma Random Forest. Temperatur, tekanan udara, intensitas curah hujan, intensitas radiasi sinar matahari dan kelembaban relatif dari Stasiun Cuaca Citeko digunakan sebagai dataset dengan data tambahan berupa tinggi muka air di Pos Air Bendung Katulampa, Pos Air Depok dan Pos Air Manggarai. Hasil prediksi berupa empat kelas klasifikasi status siaga banjir dari tiap pos. Selain menggunakan algoritma Random Forest, penelitian ini juga menggunakan algoritma Decision Tree sebagai pembanding untuk melihat kinerja terbaik dari keduanya. Kedua algoritma ini merupakan metode yang kerap kali digunakan untuk pemodelan data time -series. Random Forest mencapai akurasi sebesar 99,17% dan Decision Tree mencapai 98,90%. Hasil ini menunjukkan bahwa sistem deteksi bencana banjir di Kampung Melayu, Jakarta dapat bekerja lebih baik dengan pengimplementasian Random Forest.

Flooding is a severe disaster that happens frequently in Indonesia. Jakarta, as the capital city of Indonesia, experiences this big flood every few years. One of the areas which experienced the negative impact of this disaster was Kampung Melayu, East Jakarta. Located near the Ciliwung river basin, flooding in Kampung Melayu is inevitable. The research aims to create a flood detection system in Kampung Melayu with the implementation of the Random Forest algorithm. Temperature, air pressure, rainfall, solar radiation, and relative humidity from the Citeko Weather Station were used as datasets with the addition of water level at the Katulampa Dam Water Post, Depok Water Post, and Manggarai Water Post. Prediction results in the form of four classes of flood alert status classification from each water post. In addition to using the Random Forest algorithm, this research also uses the Decision Tree algorithm as a comparison to see the best performance of the two algorithms. Both algorithms are methods which often used for time – series data modelling. Random Forest achieved 99,17% accuracy and Decision Tree achieved 98,90%. These results show that the flood detection system in Kampung Melayu, Jakarta can work better with the implementation of Random Forest. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>