Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 134324 dokumen yang sesuai dengan query
cover
Janice Diani Putri
"ABSTRACT
Utang swasta Indonesia mengalami pertumbuhan yang pesat pada dekade terakhir, hingga mencapai 49 dari total utang luar negeri Indonesia di akhir 2017. Hal ini disebabkan oleh semakin banyaknya perusahaan Indonesia yang menggunakan pembiayaan dari luar negeri. Kecenderungan perusahaan untuk meminjam uang dalam jumlah besar dari investor asing dapat meningkatkan produktivitas dan keuntungan perusahaan, tetapi di sisi lain juga dapat menyebabkan pembengkakan pada nilai utang perusahaan tersebut karena tren depresiasi nilai tukar yang terjadi di Indonesia. Skripsi ini menggunakan salah satu metode machine learning yaitu Support Vector Regression untuk mempelajari hubungan antara faktor-faktor terkait utang luar negeri dengan ketahanan suatu perusahaan, dan hasilnya akan dibandingkan dengan hasil yang diperoleh dari metode regresi data panel yang sudah sering digunakan untuk menganalisis masalah serupa. Penelitian ini menggunakan data dari laporan keuangan 189 perusahaan yang menjadi emiten di Bursa Efek Indonesia di tahun 2011 hingga 2017. Penelitian ini menunjukkan bahwa metode Support Vector Regression menghasilkan model dengan akurasi yang lebih baik daripada model yang dihasilkan metode regresi data panel. Secara umum kedua metode memberikan kesimpulan bahwa balance-sheet effect lebih dominan daripada competitiveness effect pada perusahaan-perusahaan Indonesia, dan sangat disarankan bagi perusahaan untuk meminimumkan besar utang luar negeri dan transaksi impor, serta sebisa mungkin meningkatkan ekspor.Kata kunci: Machine learning; Regresi data panel; Support Vector Regression; Utang luar negeri; Utang swasta.

ABSTRACT
Indonesian corporations have been borrowing large sums of money from foreign investors in the past decade, such that private debt ratio has reached 49 of Indonesia rsquo s total external debt by the end of 2017. This act of borrowing might improve the borrowing firms rsquo performance which leads to increase in profit, but in other hand it might result on debt value expansion, due to the exchange rate depreciation trend in Indonesia. This paper employs Support Vector Regression, a machine learning method, to study the relationship between factors that might affect corporate performance and compares the results with that of the conventional panel data regression method. The study was done using data from annual financial statements of 189 firms in Indonesia during 2011 2017. It is shown that the machine learning approach discussed in this study gave better accuracy than the previously employed panel data regression method. Both methods generally showed that balance sheet effect is more dominant than competitiveness effect in Indonesian corporations, and it is recommended for companies to minimize their foreign debts and imported purchases, and if possible, export more of their products. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Viane Angelia De Deeva
"Utang luar negeri Indonesia selama periode tahun 2011 sampai dengan 2022 cenderung terus meningkat. Pada tahun 2022, utang luar negeri Indonesia mengalami kenaikan pertumbuhan sebesar 4,1% YoY (Year on Year) dari tahun 2021. Selain disebabkan oleh pemerintah dan sektor swasta, masalah ini juga dipengaruhi oleh pelemahan mata uang dolar Amerika Serikat terhadap mayoritas mata uang global. Skripsi ini menganalisis ketahanan perusahaan di Indonesia yang memiliki utang luar negeri terhadap kebangkrutan saat terjadi depresiasi nilai tukar mata uang menggunakan metode machine learning yaitu Ridge Regression dan Support Vector Regression. Skripsi ini mengamati neraca perusahaan dari 50 perusahaan sektor non-keuangan yang menjadi emiten di Bursa Efek Indonesia dari tahun 2011 sampai dengan 2022. Hasil penelitian ini menunjukkan bahwa metode Ridge Regression dan Support Vector Regression memiliki kinerja yang setara dalam menghasilkan akurasi prediksi. Hasil analisis untuk keseluruhan sampel dan kelompok importir (baik eksportir maupun non-eksportir) menunjukkan competitiveness effect lebih dominan dari balance-sheet effect. Namun, untuk kelompok non-importir (baik eksportir maupun non-eksportir) menunjukkan balance-sheet effect lebih dominan dari competitiveness effect. Sehingga, kelompok perusahaan tersebut disarankan untuk meminimalisasikan transaksi utang luar negeri agar perusahaan dapat tetap bertahan.

Indonesia's foreign debt has exhibited a continuous upward trajectory during the period 2011 to 2022. In 2022, the country's foreign debt experienced a year-on-year growth of 4.1% compared to 2021. In addition to being caused by government and private sector activities, this issue was also influenced by the depreciation of the United States dollar against the majority of global currencies. This thesis analyzes the resilience of Indonesian companies with foreign debt against bankruptcy during exchange rate depreciation using machine learning methods, specifically Ridge Regression and Support Vector Regression. This study examines the balance sheets of 50 non-financial sector companies listed on the Indonesia Stock Exchange from 2011 to 2022. The results of this research indicate that the Ridge Regression and Support Vector Regression methods have comparable performance in producing prediction accuracy. The results of the analysis for all samples and and the importer groups (both exporters and non-exporters) show that the competitiveness effect is more dominant than the balance-sheet effect. However, for the non-importer group (both exporters and non-exporters) it shows that the balance-sheet effect is more dominant than the competitiveness effect. Thus, it is recommended for companies within this group to minimize foreign debt transactions so that these companies can enhance their resilience."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puteri Kintandani
"Investasi saham merupakan salah satu jenis investasi yang paling populer karena saham memberikan tingkat keuntungan yang tinggi dibandingkan dengan jenis investasi lainnya, tetapi saham juga memiliki tingkat risiko yang tinggi. Fluktuasi harga saham memberikan peluang bagi investor untuk mendapatkan keuntungan yang tinggi. Dibutuhkan sebuah model prediksi harga saham untuk melihat pergerakan harga saham di masa yang akan datang, sehingga investor dapat menentukan waktu yang tepat untuk membeli, menahan, dan menjual saham mereka. Dengan demikian, mereka terlepas dari risiko kerugian dan memperoleh keuntungan yang besar. Terdapat beberapa studi yang membahas tentang prediksi harga saham menggunakan machine learning. Salah satunya yaitu menggunakan Support Vector Regression (SVR). Oleh karena itu, pada skripsi ini akan diuji penerapan SVR menggunakan Particle Swarm Optimization (PSO) sebagai seleksi fitur dalam memprediksi harga saham di Indonesia. Pada skripsi ini digunakan data historis saham harian dari Jakarta Stock Index dan beberapa saham pada sektor real estate dan properti. Beberapa indikator teknikal digunakan sebagai fitur dalam memprediksi harga saham. Studi ini menunjukkan bahwa prediksi harga saham menggunakan SVR dengan PSO sebagai seleksi fitur memiliki kinerja yang baik untuk semua data, fitur, dan jumlah data training yang digunakan pada skripsi ini memiliki nilai error yang kecil. Oleh karena itu, diperoleh model yang akurat untuk memprediksi harga saham di Indonesia.

Stock investing is one of the most popular types of investments since it provides the highest return among all investment types, although it is associated with considerable risk. Fluctuating stock prices provide an opportunity for investors to make a high profit. A stock price prediction model is needed to see future stock price movements, so investors can decide the right time to buy, hold, and sell their stocks which regardless of the risk of loss and gain a big profit. Several studies have focused on the prediction of stock prices using machine learning. One of them is Support Vector Regression (SVR). Therefore, this study examines the application of SVR using Particle Swarm Optimization (PSO) as feature selection in predicting Indonesian stock price. This thesis used historical daily stock data from Jakarta Stock Index (JKSE) and several real estates and property stock sectors. Some technical indicators are used as a feature in predicting stock price. The study found that stock price prediction using SVR with PSO as feature selection showed good performances for all data, features and the amount of training data used by the study have relatively low error probabilities. Therefore, an accurate model is obtained to predict stock price in Indonesia."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anita Setianingrum
"Prediksi harga saham merupakan hal yang sangat penting bagi investor karena sangat berguna untuk menentukan nilai masa depan dari suatu perusahaan yang sahamnya sedang diperdagangkan di bursa efek. Investor akan mendapatkan keuntungan yang besar dengan prediksi yang tepat, sebaliknya investor akan mendapatkan kerugian jika prediksi yang digunakan tidak tepat. Pada skripsi ini, akan dibahas pembuatan model prediksi Adaptive Neuro Fuzzy Inference System ANFIS dengan menggunakan variabel indikator teknikal terbaik berdasarkan Support Vector Regression SVR yang dilihat dari kecenderungan data historis saham 25 perusahaan dari sub sektor Bank, sektor Keuangan, yang tercatat di Bursa Efek Indonesia. Melalui metode ini, akan didapatkan nilai akurasi model yang cukup baik sedemikian sehingga dapat menjadi rekomendasi bagi investor dalam melakukan prediksi harga saham berdasarkan variabel indikator teknikal terpilih.

Forecasting stock price has become an important issue for stock investors because it is very useful to determine the future value of a company whose its share are traded on the stock exchange. Investors will get a profit with a sharp predictions, otherwise they will get loss if the predictions is inappropriately used. This undergraduate thesis will study how to make a model prediction Adaptive Neruo Fuzzy Inference System ANFIS using the best technical indicators. These technical indicators chosen by using Support Vector Regression SVR referred from the tendencies of stock time series data for 25 companies of Banking sub sector, Financial sector, that listed on Indonesian Stock Exchange. Through this method, analyst will get the value of the model rsquo s accuracy, that is good enough. So that it could be a recommendation for investors for forecasting the stock prices using this method with the selected technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S66167
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tobing, Joseph H.
"ABSTRACT
Musik memiliki pengaruh yang besar dalam kehidupan manusia. Berbagai macam bunyi dapat memunculkan emosi tertentu dalam pendengarnya. Music Emotion Recognition MER adalah sebuah bidang yang bertujuan untuk mendeteksi emosi dalam sebuah karya musik. Proses untuk pendeteksian ini dilakukan menggunakan sistem-sistem terotomasi yang berkaitan dengan machine learning. MER sudah terbukti dalam menggolongkan berbagai jenis lagu kedalam kategori emosi tertentu dan juga dalam mendeteksi emosi yang terdapat dalam sebuah karya musik menggunakan berbagai macam algoritma machine learning. Pada penelitian ini, dilakukan analisis terhadap hubungan melodi dalam pendeteksian emosi dalam musik dengan mengamati nilai rata-rata not MIDI yang terdapat dalam sebuah lagu dan mengkomputasikan tingkat ketepatan yang dihasilkan dalam memprediksi tingkat emosi dalam karya musik tersebut menggunakan algoritma Support Vector Regression SVR . Sistem MER yang digunakan dalam penelitian ini adalah sistem dimensional yang memiliki nilai arousal dan valence. Hasil dari penelitian adalah bahwa terdapat hubungan antara melodi dengan emosi yang terdapat dalam sebuah lagu, yang dapat dilihat dari selisih data prediksi dan data referensi arousal dan valence. Nilai rata-rata dari selisih pengujian arousal adalah 0.00273 dan standar deviasinya adalah 1.15528, sementara itu nilai rata-rata dari selisih pengujian valence adalah -0.08 dan standar deviasi 0.96.

ABSTRACT
Music has a big influence in human life. A variation of sounds can evoke a certain emotion in the listener. Music Emotion Recognition MER is a field that is geared towards the detection of emotions in music. The process to for emotion detection is by using automated systems which are related with machine learning. MER has been proven capable to categorize various sorts of music by their emotional characteristics and also detecting emotion that is in a certain musical piece using various kinds of machine learning algorithms. In this study, we conduct an analysis towards a relation between the melody of a music piece by examining the average MIDI note value in a song and compute the accuracy rate in predicting the emotion contained in a song using the Support Vector Regression SVR algorithm. The result of this study is that there is a connection between the melody and the emotion that is contained in a song, which can be seen by the difference in the predicition value and the reference value in the arousal dan valence tests. The average of the difference in the arousal test is 0.00273 and the standard deviation is 1.15528, while the average of the difference in the arousal test is 0.08 and the standard deviation is 0.96. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diva Arum Puspitasari
"Prediksi trend harga saham dapat berguna bagi trader untuk menentukan nilai saham dimasa yang akan datang. Untuk memprediksi trend dengan analisis teknikal adalah melakukan prediksi harga penutupan saham. Seiring dengan waktu, meningkatnya harga saham setara dengan diperolehnya return saham yang profit. Pada skripsi ini, dilakukan analisis dan prediksi harga penutupan saham selama sebulan menggunakan metode Support Vector Machines ndash; K Nearest Neighbor SVM-KNN . Pertama, terlebih dahulu dilakukan pemilihan indikator teknikal yang berpengaruh terhadap saham perusahaan yang dianalisis menggunakan Support Vector Regression SVR . Kedua, klasifikasi return saham yang terdiri dari profit dan loss dengan SVM. Hasil prediksi label kelas dapat membantu mencari tetangga terdekat dalam memprediksi harga penutupan saham dengan KNN. Percobaan dilakukan menggunakan 3, 4, dan 5 indikator teknikal yang terpilih dan tanpa pemilihan fitur dengan 13 indikator teknikal.

Stock price trend prediction is important for trader to determine whether the stock price is rising up or not. To predict the trend using technical stock analysis is by predicting the close prices. Along the time, when the price is rising up then it can indicate profit return. This undergraduate thesis will study how to analysis and prediction of stock closing prices one month ahead with Support Vector Machines ndash K Nearest Neighbor SVM KNN method. First, feature selection method is applied to select the important technical indicators using Support Vector Regression SVR . Second, classify the stock rsquo s return which consist of profit and loss using SVM. The output of class label is used to help find the nearest neighbor. Next, stock prices are forecasted using KNN. This study will be experimented with 3, 4, and 5 selected indicators and compared with 13 technical indicators."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69143
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurrimah
"Globalisasi membawa dampak besar bagi pertumbuhan ekonomi Indonesia. Sejak tahun 1961, secara umum pertumbuhan ekonomi Indonesia selalu mengalami kenaikan. Banyak faktor yang menyebabkan meningkatnya pertumbuhan ekonomi nasional. Salah satunya adalah investasi. Terdapat berbagai macam instrumen investasi. Sekarang ini yang paling banyak diminati oleh masyarakat umum adalah investasi saham. Bursa Efek Indonesia (BEI) mencatat bahwa per Juni 2018 banyaknya investor pasar modal mencapai 1,12 juta Single Investor Identification (SID) dengan 710.000 Single Investor Identification (SID) merupakan total investor saham ritel. Saham menjadi salah satu usaha dalam pemenuhan kebutuhan hidup di masa depan. Daya tarik utamanya adalah karena saham memberikan potensi keuntungan yang tinggi dalam jangka panjang. Namun, dengan potensi keuntungan yang tinggi tersebut, saham juga memiliki potensi kerugian yang tinggi. Salah satu usaha untuk meminimalkan potensi kerugian saham adalah dengan melakukan prediksi harga saham menggunakan machine learning. Harga saham akan diprediksi menggunakan metode penyelesaian masalah regresi, yaitu Fuzzy Support Vector Regression (FSVR). Fungsi pemetaan dalam fungsi keanggotaan fuzzy digunakan untuk menghasilkan fluktuasi harga saham yang tepat. Untuk memastikan keefektifan dan keefisienan penggunaan fitur, Fisher Score digunakan untuk memilih fitur yang paling berpengaruh dan informatif dalam model prediksi sehingga kesalahan hasil prediksi dapat diminimalkan. Fitur-fitur terpilih tersebut akan dijadikan sebagai variabel input dalam model prediksi. Evaluasi hasil prediksi dari data dengan dan tanpa dilakukan pemilihan fitur selanjutnya akan dianalisis menggunakan Normalized Mean Square Error (NMSE) dan dibandingkan sebagai bagian dari evaluasi performa model prediksi. Dari hasil prediksi pada salah satu data yang digunakan, tanpa pemilihan fitur, diperoleh model terbaik dengan nilai NMSE terendah sebesar 0,179 dan persentase data training 80%, sedangkan dengan pemilihan fitur Fisher Score, diperoleh model terbaik menggunakan sembilan fitur dengan nilai NMSE terendah sebesar 0,011 dan persentase data training 90%.

Globalization has a big impact on Indonesias economic growth. Since 1961, in general Indonesias economic growth has always increased. Many factors have led to an increase in national economic growth. One of which is investment. There are many investment instruments. The most popular among the public is stock investment. Indonesia Stock Exchange (IDX) recorded as of June 2018 total of capital market investors reached 1,12 million Single Investor Identification (SID) with 710,000 Single Investor Identification (SID) representing total retail stock investors. Stock has become one of the activities to fulfill the needs of life in the future. Its main attraction is that stock provides high potential return of profit in long run. However, as high return of profit, stock also has high potential return of risks. One of the ways to minimize the potential return of risks is by predicting stock prices using machine learning. The stock prices will be predicted using a regression problem solving method, namely Fuzzy Support Vector Regression (FSVR). The mapping function in fuzzy membership function is used to produce the right stock price fluctuations. To ensure the effectiveness and the efficiency of using features, Fisher Score is used to select the most influential and informative features in the prediction model so that the prediction errors can be minimized. These selected features will be used as input variables in the stock price prediction model. The evaluation of the prediction results from the data with and without feature selection will be analyzed using Normalized Mean Square Error (NMSE) and compared as part of the performance evaluation of the prediction model. From the prediction results on one of data used, without doing feature selection, the best model is obtained with the lowest error is 0.179 and 80% training data, while with doing Fisher Score feature selection, the best model is obtained by using nine features with the lowest error is 0.011 and 90% training data."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Melina Dewi Murjadi
"ABSTRAK
Setiap bank pasti memiliki aktivitas pemberian kredit. Bank memiliki beberapa kriteria untuk menentukan apakah kredit akan diberikan atau tidak karena setiap kredit yang diberikan memiliki risiko dimana kredit tersebut tidak dikembalikan. Dengan kata lain, bank perlu menganalisis pengaju kredit sebelum memberikan kredit. Pemberian kredit merupakan salah satu kasus klasifikasi biner. Klasifikasi data pengaju kredit dapat menolong bank dalam memberi pertimbangan apakah pengaju kredit tersebut dapat mengembalikan kredit yang diberikan atau tidak. Support Vector Machines SVM merupakan salah satu teknik klasifikasi biner yang efektif dengan prinsip structural risk minimization. Metode SVM dikembangkan menjadi metode Fuzzy Support Vector Machines FSVM sehingga pengaruh data outlier dalam mencari solusi hyperplane dapat diperkecil. Metode Adaptive Particle Swarm Optimization APSO merupakan metode ekstensi dari Particle Swarm Optimization PSO . Pada metode FSVM berbasis APSO, APSO digunakan dalam memberikan nilai fuzzy dengan mencari titik pusat kelas setiap atribut yang dapat menghasilkan tingkat akurasi terbaik. Dalam penelitian ini, metode FSVM berbasis APSO dapat menghasilkan tingkat akurasi tertinggi dalam setiap pengolahan data. Tingkat akurasi tertinggi yang dicapai pada penelitian ini adalah sebesar 75,67 dengan metode FSVM berbasis APSO menggunakan training data sebesar 70 dan kernel linier.

ABSTRACT
Every bank has loaning activities. Banks have several criteria for determining whether credit will be given or not because every credit loan has a risk that the credit might not be returned. In other words, banks need to analyze the credit applicant before granting the loan. Credit loan is a case of binary classification. The classification from applicant rsquos data might be helpful for the bank in consideration whether the applicant will return the loan or not. Support Vector Machines SVM is a classification technique based on structural risk minimization which is effective for binary classification. This method was developed into Fuzzy Support Vector Machines FSVM , which is able to minimize the influence of outlier in finding the best hyperplane. Adaptive Particle Swarm Optimization APSO is an extension of Particle Swarm Optimization PSO. In APSO based FSVM, APSO is used to determine the fuzzy score by finding the class center of each attribute that may give the highest accuracy. In this paper, APSO based FSVM can give the highest accuracy for each process. The highest rate of accuracy is 75,67, which used APSO based FSVM with 70 of training data and linear kernel."
[, ]: 2017
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Noverlianto Tanawi
"Demam Berdarah Dengue (DBD) disebabkan oleh virus dengue yang disebarkan oleh nyamuk Aedes aegypti dan Aedes albopictus. Menurut WHO, sebagai negara yang berada di daerah tropis, Indonesia adalah negara yang berisiko DBD tinggi. DBD dapat menyebar dari penderita DBD ke orang yang sehat melalui gigitan nyamuk yang telah terinfeksi virus dengue. Faktor cuaca yang terdiri dari temperatur, kelembaban, dan curah hujan mempunyai pengaruh terhadap jumlah insiden DBD. Dengan memprediksi jumlah insiden DBD, diharapkan pemerintah dan masyarakat lebih siap menangani DBD ketika jumlah insiden DBD diprediksi tinggi jumlahnya.
Pada tugas akhir ini, jumlah insiden DBD diprediksi dengan support vector regression, dengan jumlah insiden dan faktor cuaca sebelumnya yang terdiri dari temperatur, kelembaban, dan curah hujan sebagai variabel prediktor. Fungsi kernel yang digunakan adalah kernel linear dan kernel gaussian radial basis function (radial). Variabel prediktor ditentukan dengan mencari time lag dari masing-masing variabel prediktor terhadap jumlah insiden menggunakan korelasi silang. Model yang dibentuk dievaluasi dengan Root Mean Squared Error dan Mean Absolute Error. Pada tugas akhir ini, support vector regression dengan kernel linear memberikan performa yang lebih baik daripada kernel radial.

Dengue fever is a disease caused by dengue virus, which is spread by Aedes aegypti and Aedes albopictus mosquitoes. According to WHO, as a tropical country, Indonesia is a country at risk for dengue. Dengue can spread to other people by mosquitoes bite. Weather factors, such as temperature, humidity, and rainfall have effects on the number of dengue incidences. It is important to predict the number of incidences so that the government and people will be ready to prevent a dengue outbreak when the number of incidences is predicted high.
In this final paper, number of dengue incidences in DKI Jakarta is predicted using support vector regression, with weather and the previous number of incidences as predictor variables. Linear and gaussian radial basis function kernel are used. These predictor variables are determined by analyzing the time lag between each predictor variables and the number of incidences by using cross correlation. Models for prediction are evaluated by Root Mean Squared Error and Mean Absolute Error. The result shows that support vector regression with linear kernel have better performance than support vector regression with gaussian radial basis function kernel for predicting dengue incidences number.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nadia Hartini Kusumawijaya
"Penuaan adalah salah satu faktor utama resiko terjadinya penyakit dan kematian. Laju
penuaan individu dengan usia kronologis yang sama terbukti bervariasi. Maka dari
itu, muncul kebutuhan untuk alat pengukuran penuaan yang lebih akurat, robust, dan
dapat diandalkan dibandingkan usia kronologis, yakni usia biologis. Pada penelitian
ini, penulis membangun model menggunakan Metode Random Forest Regression (RF)
dan Metode Support Vector Regression (SVR) untuk memprediksi umur biologis pada
data pemeriksaan medis, menilai dan mengevaluasi hasil kinerjanya, serta melakukan
komparasi kinerja kedua metode. Terkait metode yang digunakan, Metode RF adalah
metode yang mengaplikasikan Teknik Ensemble Learning dengan cara menggabungkan
beberapa decision tree untuk menghasilkan prediksi. Sedangkan, Metode SVR adalah
metode yang berkerja dengan cara membangun hyperplane atau kumpulan hyperplane
dalam ruang berdimensi tinggi yang dapat digunakan untuk regresi linier atau nonlinier.
Dataset yang digunakan adalah data medis yang berasal dari Kementrian Kesehatan
Republik Indonesia. Pada dataset dilakukan data preprocessing, yakni data diproses pada
aspek missing values handling, encoding, dan outliers detection and outliers handling.
Kemudian, dilakukan feature selection menggunakan Spearman’s Rank Correlation
Coefficient. Setelah itu, dilakukan pembangunan model dengan Metode RF dan model
dengan Metode SVR secara terpisah untuk masing - masing jenis kelamin. Terakhir,
performa model dievaluasi dan dibandingkan kinerjanya menggunakan metrik evaluasi
Root Mean Square Error (RMSE), Coefficient of Determination (R2), Adjusted R2, dan
running time. Metode RF menggunakan hyperparameter terbaik {’max depth’: 15,
’n estimators’: 1150} untuk dataset pria, dan {’max depth’: 15, ’n estimators’: 1250}
untuk dataset wanita. Sedangkan, Metode SVR menggunakan hyperparameter terbaik
{’C’: 2,’epsilon’: 0,2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’tol’: 0,005} untuk dataset pria,
dan {’C’: 3, ’epsilon’: 0,2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’tol’: 0,005} untuk dataset
wanita. Metode RF memiliki kinerja yang cukup baik, dengan nilai RMSE = 7,532; R2
= 0,403; Adjusted R2 = 0,351; running time = 0,154 untuk pria dan RMSE = 6,889;
R2 = 0,340; Adjusted R2 = 0,264; running time = 0,179 untuk wanita. Selain itu, SVR
juga memiliki performa yang cenderung sama namun sedikit lebih buruk, dengan nilai
RMSE = 7,692; R2 = 0,376; Adjusted R2 = 0,321; running time = 0,035 untuk pria dan
RMSE = 6,905; R2 = 0,337; Adjusted R2 = 0,306; running time = 0,080 untuk wanita.
Berdasarkan analisis kinerja model yang dilakukan pada penelitian ini model yang
dibangun dengan Metode Random Forest Regression lebih unggul dalam memprediksi
usia biologis dibandingkan dengan Metode Support Vector Regression.

Aging is one of the main risk factors for disease and death. The aging rate of individ- uals of the same chronological age has been shown to vary. So therefore, a need arises for a more accurate, robust, and reliable aging measurement tool than chronological age, namely biological age. In this research, the author build a model using the Random For- est Regression (RF) Method and the Support Vector Regression (SVR) Method to predict biological age from patient clinical data, assess and evaluate the performance results, and compare the performance of the two models. Regarding the method used, the Random Forest Regression Method is a method that applies the Ensemble Learning Technique by combining several decision trees to produce predictions. Meanwhile, the Support Vector Regression Method is a method that works by building a hyperplane or collection of hy- perplane in high-dimensional space which can be used for linear or nonlinear regression. The dataset used is medical data originating from the Ministry of Health of the Republic of Indonesia. On the dataset, data preprocessing is carried out, namely the data is processed in the aspects of missing values handling, encoding, and outliers detection and outliers handling. Then, feature selection is carried out using Spearman’s Rank Correlation Co- efficient. After that, machine learning model using RF Method and machine learning model using SVR Method were created separately for each gender. Finally, the model performance is evaluated and its performance compared using evaluation metrics, namely Root Mean Square Error (RMSE), Coefficient of Determination (R2), and Adjusted R2, as well as running time. The RF Method used best hyperparameters {’max depth’: 15, ’n estimators’: 1150} for the male dataset, and {’max depth’: 15, ’n estimators’: 1250 } for the female dataset. Meanwhile, the SVR Method used best hyperparameters {’C’: 2, ’epsilon’: 0.2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’toll’: 0.005} for the male dataset, and {’C’: 3, ’epsilon’: 0, 2, ’gamma’: ’scale’, ’kernel’: ’rbf’, ’toll’: 0.005} for female dataset. The result is that the model built using the RF Method has quite good performance, with an RMSE value of = 7.532; R2 = 0.403; Adjusted R2 = 0.351; running time = 0.154 for men and RMSE = 6.889; R2 = 0.340; Adjusted R2 = 0.264; running time = 0.179 for women. Apart from that, SVR also has performance that tends to be the same but slightly worse, with an RMSE value of = 7,692; R2 = 0.376; Adjusted R2 = 0.321; running time = 0.035 for men and RMSE = 6.905; R2 = 0.337; Adjusted R2 = 0.306; running time = 0.080 for women. Based on the model performance analysis carried out in this research, the model built using the Random Forest Regression Method is superior in predicting biological age compared to the Support Vector Regression Method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>