Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 148603 dokumen yang sesuai dengan query
cover
Pranedya Aldis Satriya
"ABSTRAK
Bisnis digital merupakan salah satu bisnis yang menjanjikan pada era informasi saat ini. Informasi penting dapat diperoleh dari mewawas data yang berkualitas, sehingga dapat dimanfaatkan untuk kepentingan organisasi. Data pelanggan yang dimiliki oleh PT XYZ menjadi bahan inti dalam strategi pengembangan program digital. Data yang terkumpul dari beberapa unit bisnis memiliki kualitas data yang rendah. Tantangan tersebut menjadi perhatian manajemen, sehingga butuh pengelolaan kualitas data yang baik untuk meningkatkan kualitas data pelanggan.Penelitian ini menggunakan metode kualitatif, pengumpulan data dilakukan dengan melakukan wawancara terhadap empat narasumber dan studi dokumen perusahaan. Penilaian kualitas data dilakukan dengan menggunakan Big Data Quality Assessment dari lsquo;Cai and Zhu rsquo; dan tingkat kematangan kualitas data menggunakan Data Quality Framework dari Loshin untuk mengetahui karakteristik yang kurang dalam pengelolaan kualitas data. Hasil tersebut dipetakan berdasarkan praktik manajemen kualitas data Data Management Body of Knowledge DMBOK dari DAMA institute untuk menyusun rekomendasi strategi pengelolaan kualitas data.Pengukuran tingkat kematangan kualitas data pelanggan PT XYZ berada pada level 2 repeatbele . Rekomendasi yang dihasilkan yaitu: menentukan proses dan prosedur untuk menetapkan tanggung jawab dan akuntabilitas untuk semua aspek manajemen data, penerapan pengelolaan metadata, melakukan proses analisis data pelanggan, melakukan penambahan proses validasi data terhadap setiap elemen kualitas data, merumuskan Service Level Agreements SLA , merumuskan data profiling untuk data pelanggan, menyusun Standard Operating Procedure SOP , menerapkan manajemen pelacakan insiden, dan melakukan evaluasi pengelolaan data secara berkala.
ABSTRACT
Digital business is one of the promising businesses in this information age. Important information can be obtained from data which has quality, so it can be utilized for the benefit of the organization. Customer data owned by PT XYZ becomes the core ingredient in digital program development strategy. The data collected from several business units has low data quality. The challenge become a concern of management, so it takes the management of good data quality to improve the quality of customer data.This research use qualitative method, data retrieval is done by interviewing four resource person and company rsquo;s document. Data quality assessment is performed using Big Data Quality Assessment from 39;Cai and Zhu 39; and data maturity level using Data Quality Framework from Loshin to know the quality of data. The results are mapped based on data management quality management practices of DMBOK from DAMA institutions to develop recomendation of data quality management strategy.Measurement of PT XYZ customer data quality maturity level is at level 2 repeatbele . Recommendations of the strategies are: determine the processes and procedures for assigning responsibilities and accountability for all aspects of data management, implementation of metadata management, conducting customer data analysis process, adding data validation process to each element of data quality, formulating Service Level Agreements SLA , formulate profiling data for customer data, develop Standard Operating Procedures SOP , implement incident tracking management, and conduct periodic data management evaluations."
2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Siahaan, Hilman Wisnu
"Data pelanggan merupakan salah satu data yang paling penting digunakan dalam OVO untuk menjalankan strategi dan mencapai visi perusahaan. Untuk itu dibutukan strategi yang baik dalam melakukan pengelolaan data pelanggan tersebut untuk mendapatkan kualitas data yang lebih baik. Penelitian ini dilakukan untuk mengukur tingkat kematangan pengelolaan kualitas data yang saat ini dilakukan dan memberikan strategi manajemen kualitas data berdasarkan kerangka kerja Loshin (2011) dan DAMA-DMBOK. Dari hasil pengukuran tingkat kematangan didapatkan bahwa secara umum pengelolaan data kualitas di OVO sudah berada di level 3 (defined) dengan beberapa dimensi masih berada pada level 2 (repeatable). Selanjutnya dilakukan analisis kesenjangan terhadap harapan yang kemudian menjadi input untuk menyusun strategi manajemen untuk meningkatkan kualitas data di OVO. Adapun rekomendasi strategi manajemen yang disarankan yaitu penggunaan dimensi kualitas data yang diselaraskan dengan hasil review business rules, implementasi single source of truth, membentuk dan menentukan data stewards, membentuk dewan pengawas kualitas data, melakukan sertifikasi sumber data yang terpercaya, memberikan partisipasi terhadap business partner dalam aktifitas DQM, membangun metrik kualitas data yang selaras dengan bisnis, menetapkan SLA, melakukan pemantauan aturan kualitas data, melakukan analisis dampak data, menyusun prosedur terkait DQM, melakukan pelaporan data quality scorecard secara rutin, menggunakan tools dalam pengecekan, menambahkan detail prosedur dalam pengawasan dengan metode otomatis, membangun aturan data yang selaras dengan bisnis, dan melakukan validasi data menggunakan aturan yang sudah didefenisikan.

Customer data is one of the most critical data in OVO to carry out strategies and achieve the company's vision. Therefore, the company requires a good strategy in managing customer data to get better data quality. This research was conducted to measure the current maturity level of data quality management, and provide data quality management strategies based on the Loshin data quality maturity framework and DAMA-DMBOK framework. From the assessment of data quality maturity level, found that in general the quality data management in OVO was already at the third level (Defined), although some dimensions are still at the second level (Repeatable). Furthermore, an analysis of the gap against expectations is conducted which it’s results later become an input for formulating data management strategies to improve data quality in OVO. The results of data management strategy recommendations are use the data quality dimensions that are aligned with the results of reviewing business rules, implementation of a single source of truth, develop data stewards, develop data quality oversight board, certifying reliable data sources, giving participation to business partners in DQM activities, building data quality metrics that are aligned with the business, setting SLAs, monitoring data quality rules, conducting data impact analysis, compiling procedures related to DQM, reporting on data quality scorecards regularly, using tools in checking, adding detailed procedures for data monitoring with automated methods, develop data rules that comply with business, and perform data validation using predefined."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Albert Kurniawan
"ABSTRAK
Dalam era informasi saat ini, data menjadi sumber daya yang vital dan menjadi kebutuhan yang memasuki level sangat penting untuk organisasi. Data yang berkualitas baik akan menghasilkan informasi yang bermanfaat untuk kemajuan organisasi. Data profil pelanggan berdasarkan aktifitas digitalnya atau dikenal dengan broadband customer profile BCP merupakan salah satu strategi Telkomsel untuk menciptakan peluang baru dalam rangka meningkatkan revenue. Dengan berjalannya platform BCP selama dua tahun lebih, data BCP mempunyai kondisi kualitas data yang rendah. Hal ini menjadi perhatian manajemen mengingat pentingnya data ini, sehingga dibutuhkan pengelolaan kualitas data yang baik.Penelitian ini dilakukan untuk memberikan rekomendasi strategi data quality management untuk meningkatkan kualitas data berdasarkan penilaian tingkat kematangan pengelolaan kualitas data menggunakan Data Quality Framework dari David Loshin, praktik manajemen kualitas data Data Management Body of Knowledge DMBOK dari DAMA institute, dan Big Data Quality Assessment dari Cai dan Zhu. Penelitian menggunakan metode kualitatif dengan melakukan wawancara ke tiga orang narasumber di bagian pengelolaan data BCP dan data governance di PT. Telkomsel, hasil yang didapatkan dari wawancara diolah dengan menggunakan metode data reduction dan data coding.Tingkat kematangan kualitas data diperoleh secara umum berada pada level 2 repeatable . Berdasarkan beberapa kesenjangan dari harapan yang ada, diperlukan strategi untuk meningkatkan kualitas data dari aktivitas manajemen kualitas data DMBOK. Rekomendasi strategi yang dihasilkan, yaitu: pertemuan komite DG secara berkala, evaluasi peran data steward, sosialisasi KD DG secara berkala untuk promosi data quality awareness, penambahan informasi kebutuhan secara detail dan analisis dampak bisnis di dokumen request report/data, penerapan master data management dan metadata management, penambahan proses validasi dan prosedur pemeriksaan data untuk tiap dimensi kualitas data, menetapkan SLA kualitas data, evaluasi kinerja incident tracking system, laporan kualitas data secara berkala, dan evaluasi pengelolaan data secara regular.

ABSTRACT
In this information era, data has become a vital resource and a necessity that enters a very important level for the organization. Good data quality will produce useful information for organization. Customer profile data based on digital activity or known as broadband customer profile BCP is one of Telkomsel 39 s strategy to create new opportunities in order to increase revenue. With the running of BCP platform over the next two years, BCP data has low data quality conditions. This is a concern of management given the importance of this data, so that required good data quality management.This research was conducted to give recommendation of data quality management strategy to improve data quality based on the assessment of data quality management maturity level using Data Quality Framework from David Loshin, data quality management practices Data Management Body of Knowledge DMBOK from DAMA institute, and Big Data Quality Assessment From Cai and Zhu. This research use qualitative method by conducting interviews to three interviewees in the data management section of BCP and data governance at PT. Telkomsel, the results obtained from interviews processed using data reduction and data coding methods.The maturity level of data quality is generally found at level 2 repeatable . Based on some gaps in existing expectations, strategies are needed to improve data quality from DMBOK data quality management activities. Recommendations of the strategies are regular meetings of DG committees, evaluation of steward data roles, regular socialization of KD DGs for promotion of data quality awareness, detail information of needs and business impact analysis in document request report data, implementation of master data management and metadata management, additional validation process and data checking procedures for each data quality dimension, establishing data quality SLA, incident tracking system performance evaluation, regular data quality reporting, and regular data management evaluation."
2017
TA-Pdf;
UI - Tugas Akhir  Universitas Indonesia Library
cover
Muhammad Fuad Dwi Rizki
"ABSTRAK
Kualitas data bawah tanah adalah hal yang sangat penting untuk menunjang kegiatan eksplorasi dan eksploitasi perusahaan hulu migas. Dari hasil assesment pihak eksternal mengenai manajemen data di PT XYZ, salah satu hal krusial yang harus dibenahi adalah kualitas data bawah tanah yang masih rendah. Untuk itu diperlukan suatu kebijakan mengenai manajemen kualitas data sehingga dapat membantu meningkatkan kualitas data bawah tanah di PT. XYZ. Pada penelitian ini data bawah tanah yang akan dijadikan objek penelitian adalah data sumur pengeboran migas. Dalam menyusun kebijakan manajemen kualitas data, penelitian ini menggunakan kerangka kerja Data Quality Management DMBOK pada grup Planning dan Development yang relevan dengan pembuatan kebijakan. Aktivitas-aktivitas ini adalah mendefinisikan data quality requirement, membuat data quality business rule dan membuat data quality metrics. Penelitian berhasil merumuskan rancangan kebijakan manajemen kualitas data sumur pengeboran migas berupa 116 data quality requirement, 119 data quality business rule, dan data quality metrics yang tersusun berdasarkan persentase keberhasilan data memenuhi data quality business rule.

ABSTRACT
The quality of subsurface data is very important to support the exploration and exploitation activities of upstream oil and gas companies. From the external assessment of data management in PT XYZ, one of the crucial things that must be addressed is the low quality of subsurface data. For that we need a policy on data quality management so that it can help improve the quality of subsurface data at PT. XYZ. In this research, subsurface data that will be used as research object is oil and gas well drilling data. In preparing data quality management policies, this study uses the DMBOK Data Quality Management framework in the Planning and Development group relevant to policy making. These activities are defining data quality requirements, creating quality business rule data and creating data quality metrics. The research succeeded in formulating the draft of quality management policy of oil and gas well drilling data in the form of 116 data quality requirement, 119 data quality business rule, and data quality metrics compiled based on percentage of data success to meet the data quality business rules."
2018
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rahmad Mulyadi
"Target PT XYZ yang bergerak di industri keuangan untuk menjadi perusahaan terkemuka di Asia Tenggara telah didukung oleh lebih dari 200 juta data pelanggan yang ada di core system-nya. Data dengan jumlah yang sangat besar tersebut diharapkan dapat menciptakan peluang bisnis, membangun budaya sadar risiko dan menambah keunggulan dalam strategi bisnis PT XYZ. Hal tersebut dapat tercapai jika data yang digunakan adalah data yang berkualitas baik. Pada kenyataannya, ditemukan anomali pada sejumlah besar data pelanggan. Untuk dapat memberikan rekomendasi perbaikan kualitas data pelanggan, perlu dilakukan penilaian kualitas data pelanggan. Penilaian kualitas data pelanggan yang dilakukan pada penelitian ini menggunakan metode yang diperkenalkan oleh Loshin (2011). Loshin's Data Quality Management Model ini mengadopsi tingkat capability maturity model dalam penyusunan matriks karakteristiknya. Nilai kematangan yang diperoleh adalah 3,6 (expectation), 3,6 (dimension), 4,4 (policy), 3,8 (procedure), 4,2 (governance), 3,8 (standardization), 4,2 (technology), dan 3,8 (performance management). Dengan harapan senior management yang dapat mencapai level tertinggi pada kualitas data, dihasilkan 9 rekomendasi strategi. 9 rekomendasi strategi yang diajukan kepada PT XYZ merupakan hasil pemetaan antara kriteria yang belum terpenuhi dengan data quality management activity atau aktivitas DQM yang ada di Data Management Body of Knowledge (DMBOK) versi 2.0. Pengukuran dan pemantauan terhadap kualitas data yang baik menjadi rekomendasi yang paling berpengaruh untuk PT XYZ.

PT XYZ, engaged in the financial industry, has a target to become a leading company in Southeast Asia and has been supported by more than 200 million customer data in its core system. This huge amount of data is expected to create business opportunities, build a risk-aware culture, and increase supremacy in the business strategy of PT XYZ. These things can be achieved if the data used is of good quality data. In fact, found anomalies in a large number of customer data. To get recommendations for improving the quality of customer data, it is necessary to assess the quality of customer data. The assessment of the quality of customer data carried out in this study was by using the method introduced by Loshin (2011). Loshin’s Data Quality Management Model adopts a capability maturity level model in building its characteristic matrix. Maturity levels obtained are 3.6 (expectations), 3.6 (dimensions), 4.4 (policy), 3.8 (procedures), 4.2 (governance), 3.8 (standardization), 4, 2 (technology), and 3.8 (performance management). Regarding the expectation that senior management can achieve the highest level of data quality, 9 strategic recommendations were produced 9 strategy recommendations were submitted to PT XYZ is the result of mapping between criteria that have not been met with data quality management activity in Data Management Body of Knowledge (DMBOK) version 2.0. Measurement and monitoring of good data quality is the most influential recommendation for PT XYZ."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Syafi Muhammad Tauhid
"Pemanfaatan data untuk menghasilkan informasi yang dapat mendukung pengambilan keputusan bisnis semakin banyak diaplikasikan oleh berbagai perusahaan. Salah satu data yang dimanfaatkan dalam pengambilan keputusan tersebut adalah data pelanggan mengingat perannya dalam mengetahui perilaku pelanggan. Salah satu perusahaan yang memanfaatkan data pelanggan dalam pengambilan keputusan bisnis adalah English First (EF). Dalam membantu menetapkan strategi bisnis untuk meningkatkan perfoma penjualan, perusahaan menghadapi kendala penurunan performa penjualan perusahaan yang disebabkan oleh buruknya kualitas data pelanggan, sehingga strategi bisnis yang dihasilkan kurang tepat. Perusahaan berfokus kepada beberapa dimensi kualitas data pelanggan di perusahaan yaitu completeness, accuracy, dan consistency. Strategi untuk manajemen peningkatan kualitas data pada perusahaan perlu disusun guna penyusunan strategi bisnis yang tepat dan dapat meningkatkan performa penjualan. Penyusunan strategi manajemen peningkatan kualitas data dilakukan dengan melakukan penilaian terhadap dimensi-dimensi kualitas data untuk mengidentifikasi kondisi kualitas data saat ini di perusahaan EF. Selain itu, identifikasi kondisi manajemen dan praktek kualitas data di perusahaan saat ini juga dilakukan untuk dapat mengetahui kesenjangan antara kondisi perusahaan saat ini dengan kondisi yang diharapkan oleh perusahaan. Strategi peningkatan kualitas data yang dihasilkan dari analisis kesenjangan kondisi kualitas data dan manajemen & praktek kualitas data terdiri dari 8 (delapan) domain manajemen kualitas data. Delapan domain tersebut yaitu harapan dari kualitas data, penggunaan dimensi dari kualitas data, kebijakan data, prosedur, tata kelola data, standarisasi data, teknologi, dan pengelolaan kerja. Hasil dari strategi tersebut disusun menjadi rekomendasi solusi dan diurutkan berdasarkan prioritas dengan balance scorecard. Strategi yang memperoleh prioritas tinggi yaitu standardiasi aktifitas dan isu kualitas data serta mengidentifikasi ekspektasi dari kualitas data pada setiap dimensi kualitas data.

Data utilization to generate insights to support business decision making has been implemented in many companies. One of the most utilized data is customer data as it could provide information regarding customer’s behavior. One of the companies that utilize customer data is English First (EF). EF is a company in education sector and have more than 20 years of experience in Indonesia. EF utilize customer data in Customer Relationship Management system to produce a business strategy to boost company performance. However, since data in Customer Relationship Management system is stored by human, it has a low quality and resulted in a mismatch business strategy. Strategy to improve data quality management in the company needs to be produced in order to generate a precise business strategy and could boost company sales performance. Data quality assessment towards data quality dimensions needs to be done to produce a improve data quality management strategy. The assessment is needed to identify current data quality condition in EF. Other than that, identification of data quality management and practices in the company are needed to identify as-is management & practices in the company, company’s data quality expectation, and identify the gap between best practice & current condition. The result of data quality improvement strategy consists of 8 (eight) data quality management domains. Those domains are data quality expectation, data quality management, data quality, data policy, data procedure, data governance, data standardization, technology, and work management. The end result is a solution recommendation to improve data quality in EF and sorted by priority with the help of balance scorecard. The strategies that have high priority are company needs to standardized data quality activities and issues in the company as well as identify business expectation of each data quality dimension."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nugroho Sutarmadi
"ABSTRAK

Di era sekarang ini, informasi telah menjadi kebutuhan yang sangat penting bagi organisasi. Untuk memperoleh informasi yang bermanfaat, data sebagai sumber informasi harus memiliki kualitas yang baik. Salah satu organisasi yang saat ini bergantung pada kualitas informasi adalah PT. Bank Negara Indonesia, Tbk (BNI). BNI dalam usahanya melakukan transformasi bisnis menjadi bank yang berorientasi pada pelanggan melalui BNI Reformasi, sangat bergantung pada kualitas data nasabah yang baik. Kualitas data yang baik didapatkan dari pengelolaan data yang baik, termasuk diantaranya adalah pengukuran dan peningkatan kualitas data.

Penelitian ini dilakukan untuk mengukur tingkat kematangan dari pengelolaan kualitas data dan memberikan rekomendasi peningkatan kualitas data berdasarkan Data Quality Framework dari David Loshin dan Data Management Body of Knowledge (DMBOK) dari DAMA Institute.

Kerangka kerja yang lengkap dimiliki oleh Data Quality Framework sehingga dapat dihasilkan tingkat kematangan kualitas data yang dimiliki BNI untuk domain harapan, dimensi kualitas data, kebijakan, prosedur, tata kelola, standar, teknologi, dan pengukuran kinerja. Berdasarkan tingkat kematangan dan harapanharapan dari BNI, penulis menentukan kesenjangan yang digunakan untuk meningkatkan kematangan kualitas data di BNI. Berdasarkan best practice dan kerangka kerja yang ada di DMBOK, berhasil didapatkan rekomendasi peningkatan kualitas data, yaitu: perbaikan terhadap data quality requirements, menetapkan dan mengevaluasi data quality service levels, memantau prosedur operasional dan kinerja data quality management, serta melakukan pembersihan dan perbaikan data.


ABSTRAK

In this era, information has become critical for organization. To gain a maximum benefit from information, data as a source for information must have a good quality. PT. Bank Negara Indonesia (BNI) is one of organization that depends on good information quality. BNI is on their way to transforming from product centric to customer centric, they called this transformation as BNI Reformed. This transformation success is depends on their good customer data quality. Good data quality obtained from well data management, including the measurement and improvement of data quality.

This research was conducted to measure the maturity level of data quality management and provide recommendations on data quality improvement based Data Quality Framework from David Loshin and Data Management Body of Knowledge (DMBOK) of DAMA Institute.

Data Quality Framework has complete framework so that the maturity level of data quality in BNI can be measured for each domain: expectations, the data quality dimensions, policies, procedures, governance, standards, technology, and

performance measurement. Based on the level of maturity and expectations of BNI, the authors determine the gaps that are used to improve data quality maturity in BNI. Based on best practices and frameworks that exist in DMBOK, we can get data quality improvement recommendations, namely: improvements to data quality requirements, define and evaluate the data quality service levels,
operational procedures and monitoring the performance of data quality management, as well as cleaning and repair data.

"
2014
TA-PDF
UI - Tugas Akhir  Universitas Indonesia Library
cover
Dzul Azhar Iskandar
"Instansi keuangan di Indonesia termasuk bank memiliki kewajiban dalam melaporkan
data debitur yang dimiliki dalam bentuk pelaporan Sistem Layanan Informasi Keuangan (SLIK) ke pihak regulator. Berdasarkan hasil wawancara menyebutkan bahwa pelaporan data debitur SLIK yang dilaporkan oleh Bank XYZ masih menerima sanksi administrasi dari regulator. Penelitian ini bertujuan untuk mengemukakan prioritas strategi yang dapat meningkatkan kualitas data pelaporan dan meminimalisir sanksi administrasi dari regulator. Penelitian dilakukan menggunakan metode Quality Function Deployment (QFD) yang menggabungkan kebutuhan pengguna dan kebutuhan teknis yang didapat berdasarkan hasil wawancara dengan Subject Matter Expert (SME) SLIK yang ada dalam Bank XYZ. Kebutuhan pengguna dan kebutuhan teknis tersebut digambarkan dalam bentuk House of Quality (HoQ) untuk selanjutnya hasil penelitian didapat berdasarkan skema yang ada dalam QFD. Selain QFD, penelitian ini juga menggunakan Analytic Hierarchy Process (AHP) untuk menentukan bobot serta prioritas dari dimensi kualitas data beserta kebutuhan pengguna. Geometric Mean juga digunakan dalam penelitian ini untuk menghitung ratarata dari nilai kuesioner. Dengan QFD, prioritas strategi dapat dihasilkan sekaligus tujuan dan hasil penelitian didapatkan demi meningkatkan kualitas data pelaporan SLIK. Hasil penelitian ini mengemukakan strategi berupa kebutuhan pengguna dengan urutan prioritasnya dari yang terpenting yaitu pengawasan kualitas data input di setiap cabang, sistem untuk melakukan validasi data SLIK, aplikasi DQM mengakomodir kualitas data kredit SLIK, parameter ceklis yang wajib dipenuhi setiap ada penambahan requirement baru SLIK, prosedur preventive sebelum proses pelaporan, parameter valid untuk menentukan alamat nasabah yang memiliki lebih dari satu value, kebijakan dan prosedur untuk perbaikan data SLIK secara manual, meningkatkan kecepatan proses data SLIK. Strategi lain berupa prioritas dari kebutuhan teknis yang perlu diadakan ataupun ditingkatkan kualitasnya berdasarkan yang terpenting yaitu proses audit cabang, pembuatan kebijakan, prosedur, parameter ceklis, utilisasi dan optimasi server, pengembangan aplikasi DQM, dan pembuatan sistem validasi data.

Financial institution in Indonesia included Bank have an obligation of reporting the debtor data had in form of Sistem Layanan Informasi Keuangan (SLIK) reporting to the regulator side. Based on interview result which is mentioned that the reporting of SLIK debtor data has been reported by Bank XYZ still received an administrative punishment from regulator. The objective of this research is to conclude strategy priority which could improve the quality of reporting data and minimalize an administrative punishment from regulator. This research used Quality Function Deployment (QFD) method which is combined user needs and technical needs resulted from interview with Subject Matter Expert (SME) of SLIK in Bank XYZ. Those user needs and technical needs described in form of House of Quality (HoQ) and the next is the result of this research resulted based on the schema on QFD. Beside QFD, this research is also used Analytic Hierarchy Process (AHP) to decide the weight and the priority from both of data quality dimensions and user needs. Geometric Mean is also used in this research to calculate the average of questionnaire value. With QFD, the strategy priority could resulted and also the objective of the research is achieved for improving the data quality of SLIK reporting. The result of this research proposed strategies that is user needs with their priority based on the most important is the controlling data input quality in every branches, the system to do validate SLIK data, the application of DQM which accomodates the quality of SLIK credit data, the to do list parameter which has to be fulfilled in every adding of SLIK new requirement, the preventive procedures before doing reporting process, the valid parameters to decide customer address which has more than one record, the policy and procedures to fix SLIK data manually, improving the quickness of SLIK data processes. The other strategies is the priority of technical needs which has to be done or improve those qualities based on the most important is branches audit process, the making of policies, procedures, to do lists, the utilization and optimation of server, the development of DQM application, and the making of validating data system."
Depok: Fakultas Ilmu Komputer, 2019
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Azizah Endrastaty
"Organisasi pemerintah baik di tingkat pusat maupun daerah seperti Kementerian atau Lembaga setingkat dengan Kementerian, maupun di Pemerintah Provinsi/Kabupaten/Kota, membutuhkan data yang memiliki kualitas tinggi untuk melakukan perencanaan dan evaluasi pembangunan yang matang. Untuk keperluan penyediaan data dan informasi pengawasan dan dukungan yang dibutuhkan oleh pimpinan, telah dikembangkan Teknologi Informasi berupa aplikasi Sistem Informasi Manajemen Akuntabilitas (SIMA). Namun pada kenyataannya, kualitas data SIMA saat ini masih belum memenuhi standar karena isian data SIMA yang ada saat ini kurang memadai. Kurangnya kualitas data hasil pengawasan yang disebabkan oleh beberapa faktor seperti kelengkapan data, keakuratan data, ketepatan waktu data, dan konsistensi data yang berdampak pada hasil pengawasan BPKP kurang bisa memberikan rekomendasi strategis kepada Presiden. Penelitian ini dilakukan untuk mengukur tingkat kematangan dari pengelolaan kualitas data dan memberikan rekomendasi peningkatan kualitas data berdasarkan Data Quality Maturity/Capability Model Loshin dan Data Management Body of Knowledge (DMBOK). Kemudian juga dilakukan pegukuran dimensi kualitas data antara lain dimensi completeness, accuracy, timeliness. Dari hasil penelitian ditemukan permasalahan dimensi disebabkan karena validasi pada sistem yang belum memadai. Pada pengukuran tigkat kematangan manajemen data dari delapan komponen penilaian diperoleh tingkat maturitas mencapai level 3 atau defined. Kemudian untuk menentukan strategi dipetakan berdasarkan harapan untuk mencapai level 5 atau optimized diperoleh 37 rekomendasi untuk perbaikan kualitas data hasil pengawasan.

Government organizations, both at the central and regional levels, such as ministries or institutions at the level of the ministry, as well as at the provincial/district/city governments, need high-quality data to carry out careful planning and evaluation of development. For the purpose of providing data and information on supervision and support needed by the leadership, Information Technology has been developed in the form of an Accountability Management Information System (SIMA) application. However, in reality, the current SIMA data quality still does not meet the standards because the current SIMA data entry is inadequate. The lack of quality of data from supervision results caused by several factors such as completeness of data, accuracy of data, timeliness of data, and consistency of data which has an impact on results of supervision of BPKP less able to provide strategic recommendations to the President. This study was conducted to measure the maturity level of data quality management and provide recommendations for improving data quality based on the Loshin Data Quality Maturity/Capability Model and the Data Management Body of Knowledge (DMBOK). From the results of the study, it was found that dimensional problems were caused by inadequate validation of the system. Measuring the maturity level of data management from the eight assessment components, it is obtained that the maturity level reaches level 3 or defined. Then to determine the mapped strategy based on the expectation to reach level 5 or optimized, 37 recommendations were obtained for improving the quality of the monitoring data."
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ira Sulistyowati
"Dalam rangka mendukung pengambilan keputusan yang tepat bagi pimpinan berbasis data (data driven organization), Kemenkeu menyusun inisiatif strategis optimalisasi Sistem Layanan Data Kementerian Keuangan (SLDK) dan pengembangan proyek data analytics. Dalam pengembangan data analytics, terdapat permasalahan rendahnya kualitas data sehingga data driven organization belum terwujud dengan optimal. Penelitian ini meggunakan metode kualitatif dengan melalui proses wawancara dan observasi. Pengukuran kualitas data dan tingkat kematangan kualitas data menggunakan kerangka kerja Loshin’s Data Quality, DAMA-Data Management Book of Knowledge (DMBoK), dan Government Data Qualiaty (GDQ). Hasil pengukuran kualitas data menunjukkan terdapat permasalahan data tidak akurat dan tidak lengkap dan tingkat kematangan kualitas data Kemenkeu berada pada level Repeatable. Menyusun strategi kualitas data, ketentuan teknis, tim kualitas data, dan prosedur pengelolaan kualitas data; identifikasi harapan dan aturan kualitas data; mengukur, memantau, dan melaporkan kualitas data; mengelola aturan, knowledge base, dan metadata; meningkatkan kesadaran; melakukan pelatihan; menyediakan tools, menerapkan aturan dan menangani permasalahan; memutakhirkan SLA; mengelola kinerja kualitas data; dan melakukan audit kualitas data merupakan strategi peningkatan kualitas data yang dilaksanakan dalam empat tahap pada Tahun 2022-2023.

To support the right decision making for data-driven organizations, the Ministry of Finance (MoF) has developed a strategic initiative for optimizing the MoF's Data Service System (SLDK) and developing a data analytics project. In the development of data analysis, there is a problem of low data quality so that data-driven organizations have not been realized optimally. This study uses a qualitative method through interview and observation. Measurement of data quality and maturity level of data quality uses the Loshin's Data Quality framework, DAMA-Data Management Book of Knowledge (DMBoK), and Government Data Quality (GDQ). The results of the measurement of data quality indicate that there are problems with inaccurate and incomplete data and the MoF's data quality level is at the Repeatable level. Develop a data quality strategy, technical provisions, data quality team, and data quality management procedures; identification of data quality expectations and rules; measure, monitor, and report on data quality; manage rules, knowledge base, and metadata; raise awareness; conduct training; provide tools, apply rules and carry out problem solving; updating SLAs; manage data quality performance; and conducting data quality audits is a data quality improvement strategy implemented in four stages in 2022-2023.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>