Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 4354 dokumen yang sesuai dengan query
cover
Chartrand, Gary
Boca Raton: CRC Press, 2015
511.5 CHA g
Buku Teks SO  Universitas Indonesia Library
cover
Uchi Damaliah
"Suatu graf berarah adalah pasangan himpunan tak kosong V dan himpunan busur berarah A. Busur berarah a ∈ A dapat direpresentasikan sebagai pasangan terurut dengan dimana dengan adanya arah maka tidak sama dengan . Line digraph dari , adalah graf berarah dengan himpunan simpul sedemikian sehingga terdapat busur jika dan hanya jika kepala dari adalah ekor dari . Graf dumbbell berarah adalah graf berarah yang terdiri dari dua graf lingkaran berarah yang dihubungkan oleh graf lintasan berarah. Suatu graf berarah dikatakan mempunyai pelabelan- apabila tiap simpulnya dapat dilabel dengan dengan dan memenuhi sifat yaitu tiap simpulnya memiliki label yang berbeda dan untuk setiap busur berarah, jika dan hanya jika untuk dengan dan . Pelabelan quasi- memiliki definisi yang hamper sama, perbedaannya jika busur berarah maka untuk dengan dan . Pada skripsi ini diberikan konstruksi pelabelan- pada line digraph dari graf dumbbell berarah. Ditunjukkan juga bahwa graf dumbbell berarah merupakan graf DNA jika , dimana adalah banyak simpul.

A directed graph (digraph) is a pair of non empty vertex set and an arc . An arc can be represented as an ordered pair with where the existence of direct makes is not the same as . Line digraph of , is a digraph that has vertex set and there is an arc if only if the head of is the tail of . Digraph dumbbell is digraph consist of two dicycle which connected by adipath. A directed graph can be - labeled if every vertex assigned a label with and , all vertices have different labels, amd for any arc if and only if for with and . A quasi- labeling almost have the same definition with - labeling, except for the arc, if then for with and . In this skripsi gives the construction of -labeling on the line digraph of didumbbell. It ais also shown that didumbbell is DNA graph if , where n is the number of vertices."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2012
S45551
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kurnia Dara Mutia
"Tujuan penelitian ini adalah untuk menganalisis bottleneck yang dapat berpotensi menjadi faktor penghambat pada aktivitas knowledge sharing di Divisi IT/IS Development PT. X. Divisi IT/IS Development PT. X merupakan salah satu organisasi berbasiskan proyek dalam menjalankan proses bisnisnya. Identifikasi bottleneck dan faktor – faktor penghambat pada knowledge sharing perlu dilakukan oleh organisasi untuk memastikan aktivitas knowledge sharing di organisasi tersebut telah berjalan dengan lancar. Penelitian ini akan menggunakan pendekatan Social Network Analysis (SNA) sebagai metode yang digunakan dalam proses analisis dan identifikasi bottleneck dari knowledge sharing. Hasil dari penelitian ini berupa visualisasi push dan pull network dari aktivitas knowledge sharing, identifikasi key person pada aktivitas knowledge sharing, dan analisis bottleneck yang berpotensi muncul sebagai faktor penghambat dalam proses knowledge sharing.

The purpose of this research is to identify and analyze bottleneck and inhibiting factor that blocked knowledge sharing activities in IT/IS Development Division of PT X. IT/IS Development Division of PT. X is one of project based organization in order to run their business process. Identification of bottleneck and inhibiting factors is necessary to ensure all of knowledge sharing processes are run properly. This research will be using Social Network Analysis (SNA) approach as bottleneck’s analyzing and identifying method. This research results are visualization of push and pull network in knowledge sharing activities, identification of key person in knowledge sharing process, and knowledge sharing’s bottlenecks occurance probability analysis, to identify inhibiting factors in the organization knowledge sharing process."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and laplace and seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association schemes, p-ranks of configurations and similar topics. Exercises at the end of each chapter provide practice and vary from easy yet interesting applications of the treated theory, to little excursions into related topics. Tables, references at the end of the book, an author and subject index enrich the text."
New York: [Springer, ], 2012
e20419499
eBooks  Universitas Indonesia Library
cover
Xueliang, Li
"Rainbow connections are natural combinatorial measures that are used in applications to secure the transfer of classified information between agencies in communication networks. Rainbow connections of graphs covers this new and emerging topic in graph theory and brings together a majority of the results that deal with the concept of rainbow connections, first introduced by Chartrand et al. in 2006.
The authors begin with an introduction to rainbow connectedness, rainbow coloring, and rainbow connection number. The work is organized into the following categories, computation of the exact values of the rainbow connection numbers for some special graphs, algorithms and complexity analysis, upper bounds in terms of other graph parameters, rainbow connection for dense and sparse graphs, for some graph classes and graph products, rainbow k-connectivity and k-rainbow index, and, rainbow vertex-connection number.
"
New York: [Springer, ], 2012
e20419466
eBooks  Universitas Indonesia Library
cover
"Spectral radius of graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the book delves deeper into the properties of the principal eigenvector; a critical subject as many of the results on the spectral radius of graphs rely on the properties of the principal eigenvector for their proofs. A following chapter surveys spectral radius of special graphs, covering multipartite graphs, non-regular graphs, planar graphs, threshold graphs, and others. Finally, the work explores results on the structure of graphs having extreme spectral radius in classes of graphs defined by fixing the value of a particular, integer-valued graph invariant, such as: the diameter, the radius, the domination number, the matching number, the clique number, the independence number, the chromatic number or the sequence of vertex degrees.
"
London: Academic Press, 2015
e20427720
eBooks  Universitas Indonesia Library
cover
Carre, Bernard
Oxford: Clarendon Press, 1979
511.5 CAR g
Buku Teks SO  Universitas Indonesia Library
cover
Michelle Leticia Lawrence
"Suatu graf G = (V,E) terdiri dari himpunan simpul V dan himpunan busur E.
Pelabelan-k busur f : E(G) ! {1, 2, ..., k}, k 2 Z+, sedemikian sehingga semua bobot
simpul graf berbeda disebut pelabelan tak teratur. Bobot simpul u, dinotasikan dengan
wf (u), merupakan jumlah seluruh label busur yang hadir pada simpul u dengan
wf (u) = ⌃uv2E(G)f(uv). Kekuatan tak teratur yang dinotasikan dengan s(G)
merupakan nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur
dengan maksimum k label. Sedangkan, pelabelan-k busur f : E(G) ! {1, 2, .., k}
dengan k 2 Z+ dikatakan pelabelan tak teratur modular graf G apabila terdapat fungsi
bobot bijektif wf (u) : V (G) ! Zn dengan wf (u) = ⌃f(uv). Zn adalah grup bilangan
bulat modulo n. Nilai minimum k agar graf G mempunyai pelabelan tak teratur modular
dengan maksimum k label disebut kekuatan tak teratur modular, dinotasikan dengan
ms(G). Graf middle dari graf lingkaran dinotasikan dengan M(Cn) dan dibangun dari
sebuah graf lingkaran dengan tambahan simpul bertetangga. Penelitian ini menentukan
konstruksi pelabelan tak teratur modular pada graf middle dari graf lingkaran dan
menentukan kekuatan tak teratur modularnya.

Let a graph G = (V,E) consists of vertex set V and edge set E. An edge klabeling f : E(G) ! {1, 2, ..., k}, k 2 Z+, such that every weights of the vertices are all different is called irregular labeling of a graph G. The weight of vertex u, denoted by wf (u), is the sum of all vertices adjacent to u, with wf (u) = P uv2E(G) f(uv). Irregularity strength denoted by s(G) is the minimum number k such that a graph G has irregular labeling with largest label k. Otherwise, an edge klabelling f : E(G) ! {1, 2, ..., k} with k 2 Z+ is called modular irregular labeling of a graph G if there exists a bijective weight function wf (u) : V (G) ! Zn with wf (u) = Pf(uv). Zn is a group of modulo n. The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G, denoted by ms(G). Middle graph of cycle graphs is denoted by M(Cn) and is constructed by a cycle graph with additional adjacent vertices. This research constructs the modular irregular labeling for middle graph of cycle graphs and calculates the modular irregularity strength."
Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nisrina Ayu Labibah
"Graf G=(V,E) merupakan pasangan terurut dari himpunan V dan E, di mana V adalah himpunan simpul di G dan E adalah himpunan busur di G. Lintasan u-v antara dua simpul u dan v di G adalah barisan simpul dan busur yang berawal di u dan berakhir di v tanpa adanya pengulangan simpul. Jarak antara simpul u dan v adalah panjang terkecil dari semua lintasan u-v di G. Geodesik u-v adalah lintasan u-v dengan panjang sama dengan jarak u dan v. Misalkan diberikan pewarnaan pada busur-busur graf. Lintasan pelangi adalah lintasan di mana warna semua busurnya berbeda. Geodesik pelangi adalah geodesik tanpa pengulangan warna busur. Pewarnaan pelangi kuat lokal-d merupakan pewarnaan semua busur di G di mana setiap pasangan simpul dengan jarak sampai d terhubung oleh geodesik pelangi. Bilangan keterhubungan pelangi kuat lokal-d pada graf G, dinotasikan dengan lsrc_d (G), adalah bilangan terkecil banyak warna yang digunakan dalam pewarnaan pelangi kuat lokal-d. Graf bintang dengan m+1 simpul adalah graf dengan satu simpul berderajat m dan m simpul berderajat 1. Graf lintasan adalah graf dengan n simpul yang membentuk himpunan busur {u_i u_(i+1)|i=1,2,...,n-1}. Graf stacked book merupakan hasil kali Kartesius antara graf bintang dan graf lintasan. Pada penelitian ini, dicari bilangan keterhubungan pelangi kuat lokal pada graf stacked book untuk d=2 dan d=3.

A graph G=(V,E) is an ordered pair of sets V and E, where V is the set of vertices in G and E is the set of edges in G. The u-v path between two vertices u and v in G is a sequence of vertices and edges that starts at u and ends at v without any vertex repetition. The distance between vertices u and v is the minimum length of all u-v paths in G. The u-v geodesic is a u-v path with the length equal to the distance. Suppose all edges of graph is colored. A rainbow path is a path in which the colors of all its edges are different. A rainbow geodesic is a geodesic with no repeating edge colors. A d-local strong rainbow coloring is the coloring of all edges in G where every pair of vertices with a distance of up to d is connected by a rainbow geodesic. The d-local strong rainbow connection number of graph G, denoted by lsrc_d (G), is the smallest number of colors used in the d-local strong rainbow coloring. A star graph with m+1 vertices is a graph with a vertex of degree m and m vertices of degree 1. A path graph is a graph with n vertices and set of edges {u_i u_(i+1)|i=1,2,...,n-1}. A stacked book graph is the Cartesian product between the star graph and the path graph. In this research, we give the local strong rainbow connection number of stacked book graphs for d=2 and d=3."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gondran, Michel
New York: John Wiley & Sons, 1984
511.5 GON g
Buku Teks SO  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>