Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 127979 dokumen yang sesuai dengan query
cover
Josephine Natasya
"Sistem kelistrikan rumah tangga off-grid terus mengalami perkembangan. Dengan berkembangnya teknologi energi terbarukan, teknologi komputasi, teknologi informasi dan teknologi komunikasi, fungsi dan peran sistem kelistrikan rumah tangga dalam menurunkan emisi gas buang dan meningkatkan efisiensi semakin penting. Untuk merancang sistem kelistrikan rumah tangga diperlukan suatu alat. Saat ini pemodelan dan simulasi menjadi alat yang efektif untuk mendapatkan rancangan sistem yang diinginkan.
Dalam penelitian ini, dirancang pemodelan dan simulasi sistem kelistrikan rumah tangga. Sistem ini terdiri dari panel surya, turbin angin, baterai dan beban yang terkoneksi melalui konverter. Pemodelan diturunkan dari model matematik sistem sedangkan simulasi menggunakan MATLAB/Simulink. Dalam penelitian ini, rancangan sistem kendali supervisi juga diimplementasikan. Kendali ini berfungsi menyeimbangkan antara pasokan energi dan beban yang terus berubah. Dari hasil simulasi yang dilakukan didapatkan bahwa model dan simulasi dapat bekerja dengan baik. Perubahan beban dan pasokan energi dapat diantisipasi dengan bekerjanya baterai dan juga fuel cell.

The off-grid household electrical system continues to develop. With the development of renewable energy technology, computational technology, information technology and communication technology, the function and role of off-grid household electrical systems in reducing exhaust emissions and increasing efficiency are increasingly important. To design an off-grid household electrical system, a tool is needed. Currently modeling and simulation are effective tools to get the desired system design.
In this study, a household electrical system modeling and simulation was designed. This system consists of solar panels, wind turbines, fuel cells, batteries and loads connected through a converter. Modeling is derived from system mathematical models while the simulation uses MATLAB / Simulink. In this study, the design of the supervision control system was also implemented. This control functions to balance the energy supply and the ever-changing burden. From the results of the simulations carried out, it was found that the model and simulation could work well. Changes in load and energy supply can be anticipated by the operation of the battery and also the fuel cell.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Fathoni Fikri
"Nusa Penida adalah pulau terbesar di Kabupaten Klungkung, Provinsi Bali. Pulau ini begitu indah dan salah satu tujuan wisata favorit. Luas wilayah Nusa Penida termasuk Nusa Lembongan dan Nusa Ceningan adalah 202.840 hektar dengan total populasi 47.448 orang. Nusa Penida hanya memiliki satu sistem kelistrikan interkoneksi dalam sistem distribusi 20 kV, kebutuhan energi di sistem Nusa Penida pada 2018 adalah sebesar 44.538.220 kWh/tahun dengan beban puncak sebesar 7,9 MW. Beban ini dipasok oleh pembangkit diesel di Kutampi, total kapasitas terpasang 13.84 MW sedangkan kapasitas bersih 11.4 MW.
Pemenuhan kebutuhan listrik dengan hanya bergantung pada satu sumber ini tentunya memiliki kekurangan, selain Biaya Pokok Penyediaan yang tinggi, penggunakan BBM tentunya tidak sejalan dengan target capaian bauran energi terbarukan sebesar 23 pada tahun 2025. Ada dua langkah yang sudah dilakukan dalam rangka memitigasi problematika di atas yaitu penyediaan Pembangkit EBT (PLTS dan PLTB) dan konstruksi sistem interkoneksi kabel bawah laut 20 kV Bali- Nusa Lembongan. Untuk kabel bawah laut gagal pada saat instalasi dan untuk pembangkit EBT yang terpasang tidak optimal. Penelitian ini menyajikan Simulasi dan Analisa dengan menggunakan perangkat lunak HOMER untuk didapatkan skenario pembangkit hibrida yang memiliki kehandalan baik dan biaya pembangkitan yang optimal.
Dari hasil simulasi dan optimasi didapatkan PLTH optimum untuk diterapkan di area studi adalah integrasi antara PLTB, PLTS dan PLTD. Pada Kondisi optimum ini Total produksi listrik yang dihasilkan oleh PLTH adalah 57.447,48 MWh/tahun dengan optimisasi kapasitas sebesar 39 (22.440,74 MWh) untuk PLTS, 25(14.368,8 MWh) untuk PLTB, 35,9% (20.637,9 MWh) untuk PLTD. COE mengalami penurunan setelah masuknya sistem PLTH yaitu menjadi 13,5 cent/kWh. Sedangkan COE pada konfigurasi sistem eksisting (PLTD) adalah sebesar 19 cent/kWh. Skenario terbaik ini selanjutnya akan dilakukan evaluasi ekonomi nya, didapatkan NPV = USD 21.136.331 ; IRR = 14,3% ; PBP = 6 tahun.

Nusa Penida is the largest island in Klungkung Regency, Bali Province. This island is so beautiful and one of the favorite tourist destinations. The area of Nusa Penida including Nusa Lembongan and Nusa Ceningan is 202,840 hectares with a total population of 47,448 people. Nusa Penida only has one interconnection electricity system in a 20 kV distribution system, the energy requirements in the Nusa Penida system in 2018 are 44.538.220 kWh / year with a peak load of 7.9 MW. This load is supplied by diesel plants in Kutampi, the total installed capacity is 13.84 MW while the net capacity is 11.4 MW.
The fulfillment of electricity needs by relying solely on this one source certainly has drawbacks, in addition to the high Cost of Supply, the use of BBM is certainly not in line with the target of achieving the renewable energy mix of 23% in 2025. There are two steps taken to mitigate for the provision of EBT Generators (PLTS and PLTB) and construction of the 20 kV Bali submarine cable interconnection system- Nusa Lembongan. The Project failed during installation and for EBT plants installed are not optimal. This study presents Simulation and Analysis using HOMER software to obtain hybrid generator scenarios that have good reliability and optimal generation costs.
From the simulation and optimization results, the optimum PLTH to be applied in the study area is the integration between PLTB, PLTS and PLTD. In this optimum condition the total electricity production generated by PLTH is 57,447.48 MWh / year with capacity optimization of 39% (22,440.74 MWh) for PLTS, 25% (14,368.8 MWh) for PLTB, 35.9% (20,637 , 9 MWh) for PLTD. COE declined after the inclusion of the PLTH system, which was 13.5 cent $ / kWh. Whereas COE in the existing system configuration (PLTD) is 19 cents / kWh. This best scenario will be evaluated for its economic study. From the analysis, NPV = USD 21.136.331 ; IRR = 14,3% ; PBP = 6 years.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T52540
UI - Tesis Membership  Universitas Indonesia Library
cover
Yosi Aditya Sembada
"Biodiesel adalah bahan bakar alternatif pengganti solar yang diperoleh dari sumber-sumber energi yang dapat diperbaharui. Bahan baku utama dari biodiesel adalah minyak tumbuhtumbuhan dan alkohol. Biodiesel dihasilkan salah satunya melalui reaksi trans-esterifikasi. Trans-esterifikasi adalah reaksi antara minyak sawit (triacyglicerol) dengan methanol dibantu Natrium Hidroksida sebagai katalis yang menghasilkan biodiesel (alkyl ester) dan gliserol sebagai produk sampingan. Pada Thesis ini dibahas pemodelan reaksi pembentukan biodiesel dengan penurunan persamaan reaksi dan persamaan energi yang terjadi pada Continous Stirred Tank Reactor (CSTR) biodiesel. Dari model yang diperoleh selanjutnya akan dilakukan simulasi dan linierisasi pada titik kerja. Selanjutnya dirancang sistem kendali untuk mendapatkan kendali yang terbaik. Dari hasil perancangan sistem kendali, sistem berhasil dikendalikan dan memenuhi stabilitas yang diinginkan walaupun masih terdapat overdamped.

Biodiesel is an alternatif of renewable fuel for petrodiesel replacement. The main raw materials used for biodiesel is vegetabel oils and alkohol. Biodiesel is produced by trans-esterification reaction. Trans-esterification is the reaction of palm oil (triacyglicerol) and methanol with Natrium Hidroxyde as catalyst which yields biodiesel (alkyl ester) and glycerol as secondary product. This paper will study the modeling of biodiesel reaction by deriving reaction equation and energi equation in biodiesel CSTR. The next step is simulation and linearization in steady state point. The simulation result will become a reference for the best control system design. The system is managed to be controlled eventhough there are still some overdamped."
Depok: Fakultas Teknik Universitas Indonesia, 2010
T28364
UI - Tesis Open  Universitas Indonesia Library
cover
Yosi Aditya Sembada
"Biodiesel adalah bahan bakar alternatif pengganti solar yang diperoleh dari sumber-sumber energi yang dapat diperbaharui. Bahan baku utama dari biodiesel adalah minyak tumbuh-tumbuhan dan alkohol. Biodiesel dihasilkan salah satunya melalui reaksi trans-esterifikasi. Trans-esterifikasi adalah reaksi antara minyak sawit (triacyglicerol) dengan methanol dibantu Natrium Hidroksida sebagai katalis yang menghasilkan biodiesel (alkyl ester) dan gliserol sebagai produk sampingan.
Pada Thesis ini dibahas pemodelan reaksi pembentukan biodiesel dengan penurunan persamaan reaksi dan persamaan energi yang terjadi pada Continous Stirred Tank Reactor (CSTR) biodiesel. Dari model yang diperoleh selanjutnya akan dilakukan simulasi dan linierisasi pada titik kerja. Selanjutnya dirancang sistem kendali untuk mendapatkan kendali yang terbaik. Dari hasil perancangan sistem kendali, sistem berhasil dikendalikan dan memenuhi stabilitas yang diinginkan walaupun masih terdapat overdamped.

Biodiesel is an alternatif of renewable fuel for petrodiesel replacement. The main raw materials used for biodiesel is vegetabel oils and alkohol. Biodiesel is produced by trans-esterification reaction. Trans-esterification is the reaction of palm oil (triacyglicerol) and methanol with Natrium Hidroxyde as catalyst which yields biodiesel (alkyl ester) and glycerol as secondary product.
This paper will study the modeling of biodiesel reaction by deriving reaction equation and energi equation in biodiesel CSTR. The next step is simulation and linearization in steady state point. The simulation result will become a reference for the best control system design. The system is managed to be controlled eventhough there are still some overdamped.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T40933
UI - Tesis Open  Universitas Indonesia Library
cover
Bilkis Mukhlisoti
"Meningkatnya penetrasi Energi Baru Terbarukan Intermittent akan berpotensi mengganggu kestabilan sistem, terutama pengaturan frekuensi sistem. Hal tersebut dikarenakan sifat karakteristik unik yaitu intermittency daya, variability output, dan reduksi inersia. Sistem pengaturan frekuensi sekunder, Automatic Generator Control, yang terinstall pada sistem kelistrikan Jawa Madura Bali membutuhkan sebuah pengembangan design sebagai langkah mitigasi respon frekuensi terhadap fenomena EBT Intermittent. Penelitian ini bertujuan untuk mengusulkan perbaikan sistem AGC dengan merancang design kontrol baru yaitu Proportional Integral Derivative dan menambahkan faktor EBT Intermittent dalam simulasi. Hal tersebut memberikan hasil peningkatan kinerja dinamis AGC sehingga diperoleh peningkatan kecepatan respon sistem menuju frekuensi nominal yaitu sebesar 9.504 detik lebih cepat dan meredam undershoot sebesar 0.72 Hz dari pada menggunakan design kontrol eksisting. Peningkatan kinerja dinamis AGC tersebut sangat penting untuk mendapatkan manajemen energi sistem Kelistrikan JAMALI yang sesuai dengan kriteria operasi, yaitu andal, mutu dan ekonomis.

The increasing penetration of Variable Renewable Energy (VRE) sources has the potential to disrupt system stability, especially in frequency control systems. This is caused by the unique characteristics, namely the inability of the generator to produce power continuously (intermittent), variations in the output power of the generator on different time scales based on the energy source (variability), and a decrease in system inertia. The existing Automatic Generator Control (AGC) secondary frequency control system installed on the Java Madura Bali electrical system requires design development as a frequency response mitigation measure for the VRE phenomenon. This research proposes an AGC using a Proportional Integral Derivative control design with the addition of VRE factor. This approach results in improved dynamic performance of AGC leading to faster system response towards the nominal frequency by 9.504 seconds and an increased undershoot of 0.72 Hz compared to using the existing control design. Enhancing the dynamic performance of AGC is crucial to achieve effective energy management in the Java Madura Bali power system system in accordance with the operational criteria of reliability, quality and economy."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Budiyanto
"Sumber energi terbarukan merupakan sumber energi yang potensial untuk dikembangkan, seperti tenaga angin, matahari, dan air. Perkembangan teknologi elektronika daya seperti invertor memberikan solusi atas penggunaan energi terbarukan pada sistem jaringan listrik mikro (microgrid) arus bolak - balik, namun sistem ini sering mengalami persoalan pada frekuensi, tegangan, daya aktif dan daya reaktif saat dua buah atau lebih invertor bekerja bersamaan, sehingga perlu peralatan sinkronisasi dan pengendali yang rumit. Pengembangan sistem jaringan listrik miko arus searah (JLMAS) juga dikembangkan seiring dengan perkembangan peralatan rumah tangga yang dapat dioperasikan dengan sumber arus searah, hal ini juga merupakan solusi dari keterbatasan pada jaringan listrik mikro arus bolak - balik. Dalam sistem JLMAS penggabungan dua buah atau lebih sumber energi terbarukan dapat dengan mudah diparalel, dengan syarat tegangan dan polaritanya sama. Sehingga ini menjadikan peluang untuk mengembangkan sistem JLMAS.
Pembangkit energi terbarukan seperti sel surya dan turbin angin sangat dipengaruhi oleh kondisi alam sehingga produksi listrik yang dihasilkan tidak stabil dan bahkan terhenti sama sekali, untuk itu perlu dilengkapi dengan baterai yang fungsinya selain sebagai penyimpan energi juga untuk menjaga agar pasokan daya listrik ke jaringan listrik mikro menjadi lebih kontinyu. Saat baterai mengalami penurunan dan tidak mampu dalam memberikan suplai energi maka perlu adanya baterai cadangan yang dapat memasok energi ke sistem jaringan. Agar baterai cadangan dapat bekerja maka perlu ada pengendali untuk mengatur kerja baterai tersebut. Beberapa penelitian tentang pengendali tegangan dari pembangkit energi terbarukan telah dilakukan, namun masih dalam satu sistem pembangkit. Penelitian ini bertujuan untuk mengendalikan sistem JLMAS dari dua atau lebih sumber energi terbarukan dan satu baterai cadangan yang mensuplai ke jaringan lisrtik mikro.
Dalam penelitian ini didapatkan sistem pengendali JLMAS yang dapat mendeteksi besarnya tegangan baterai PV dan baterai cadangan pada tegangan 10,8 - 13,6 Vol, yang berfungsi untuk mengatur SOCmin dan SOC maks pada baterai. Tegangan yang digunakan pada sistem JLMAS adalah 254 Vas, tegangan ini dihasilkan dari pengembangan invertor menjadi konvertor penaik tegangan AS-AS dari 12Volt menjadi 254 Volt. Hasil analisa dan perencanaan JLMAS dengan kapasitas daya 1200 VA, dengan penempatan beterai secara terintegrasi besarnya kapasitas pembangkit sel surya pada masing - masing sebesar 9729,42 Wp, sedangkan besarnya kapasitas baterai lokal (baterai PV) sebesar 850 Ah dan baterai cadangan 5000 Ah dengan lama waktu penyimpanan energi 3 hari. Dalam sistem JLMAS beban yang digunakan adalah beban arus bolak - balik berbasis swiching (SMPS) sehingga tanpa harus mengunakan invertor.

The renewable energy source is a source of potential energy to be developed, such as wind, solar, and water energy. The development of power electronics technology such as inverter provides a solution for the use of renewable energy on an AC micro grid system (microgrid), but this system often has problems on frequency, voltage, active power and reactive power when two or more inverters work together, so synchronization and controlling complex equipment are needed. The developing of DC micro grid systems (JLMAS) is also done along with the development of household appliances that can be operated with direct current source. It is also a solution of the limitations on AC micro grid. In JLMAS system combining two or more sources of renewable energy can be easily paralleled, on conditions that the voltage and polarity are the same. So it creates the opportunity to develop a system JLMAS.
The renewable energy such as solar cells and wind turbine are strongly influenced by natural conditions so that electricity production is not stable and even stopped altogether, for it needs to be equipped with a battery that has functions not only as an energy storage but also to ensure the supply of electrical power to the micro grid becomes more continuous. When the battery has decreased and is not able to provide energy supplies, it needs a backup battery that can supply energy to the network system. For backup battery in order to work properly it needs a voltage controller for controlling the battery operation. Some researches on controlling the voltage of renewable energy generation has been done, but still in a generating system. This research aims to control the JLMAS system from two or more sources of renewable energy and a battery backup supplying to the micro electric network.
In this research, it is obtained that the control system of JLMAS that can detect the magnitude of voltage of PV battery and a spare battery at a voltage of 10,8 to 13.6 Volt, which works to regulate SOC min and max on the battery. The voltage used in the JLMAS system is 254Vdc, this voltage is resulted from the development of an inverter to become a boost converter from 12 Volt to 254 Volt. Results of analysis and planning JLMAS with 1200 VA power capacity, with placement of battery in integrating, the magnitude of solar cell generation capacity on each amounting to 9729,42 Wp, while the magnitude of the local battery capacity (battery PV) of 850Ah and a 5000 Ah of battery backup with the duration of energy storage time is 4 days. In JLMAS system is used alternating current load based on switching (SMPS) without using inverter.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1489
UI - Disertasi Membership  Universitas Indonesia Library
cover
Salman Elfarizi
"Microgrid merupakan sistem dengan pembangkit listrik terdistribusi, sistem penyimpanan energi, dan beban yang terinterkoneksi satu sama lain ataupun terhubung ke grid utama. Kemajuan sistem microgrid dengan teknik kontrol, otomatisasi, teknik penyimpanan energi, hingga komunikasi menyebabkan sistem ini memiliki efisiensi dan keandalan yang lebih baik dibandingkan dengan grid tradisional. Kontrol sistem microgrid dibagi ke dalam tiga lapisan, yaitu kontrol primary, secondary, dan tertiary. Pemodelan sistem microgrid pada penelitian ini menggunakan dua inverter dan satu beban dalam kondisi microgrid yang terisolasi. Kontrol primary digunakan pada masing-masing inverter untuk mengatur nilai frekuensi dan tegangan maksimum serta menyesuaikan daya aktif dan reaktif pada setiap DG (distributed generation) menggunakan metode droop control. Sementara itu, kontrol secondary yang digunakan pada sistem ini berfungsi untuk mengembalikan nilai tegangan dan frekuensi pada microgrid pada kondisi tunak. Didapatkan bahwa jika sistem microgrid menggunakan gabungan dua lapisan kontrol primary dan secondary, respon frekuensi dan tegangan sistem pada kondisi tunak mencapai nilai nominalnya.

Microgrid is a system with distributed power plants, energy storage systems, and loads that are interconnected to each other or connected to the main grid. The advancement of microgrid systems with control techniques, automation, energy storage techniques, and communication causes this system to have better efficiency and reliability compared to the traditional grids. Microgrid system control is divided into three layers, namely primary, secondary, and tertiary control. The microgrid system modeling in this study uses two converters and one load in an isolated microgrid condition. Primary control is used on each inverter to set the maximum frequency and voltage values and adjust the active and reactive power on each DG (distributed generation) using the droop control method. Meanwhile, the secondary control used in this system restore the voltage and frequency values in the microgrid during steady state. It is found that if the microgrid system uses a combination of two layers of primary and secondary control, the frequency and voltage response of the system at steady state reaches its nominal value."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bernadeta Giovana Nera De Marsela
"Manggarai Barat adalah kabupaten dengan bentuk kepulauan di Indonesia. Sistem kelistrikan yang ada pada Kabupaten tersebut masih didomunasi oleh pembangkit berbahan bakar fosil. Tujuan studi ini adalah melakukan desain sistem kelistrikan berbasis energi terbarukan hibrida yang terdiri atas Solar PV, angin, panas bumi, dan BESS. Kebutuhan energi listrik akan mencakup sektor residensial, komersial, desalinasi, dan kendaraan listrik. Optimisasi dilakukan dengan piranti lunak HOMER untuk memperoleh Net Present Cost paling rendah tanpa dan dengan adanya skenario interkoneksi untuk 3 pulau. Hasil untuk skenario non interkoneksi menghasilkan NPC sebesar 282,644,479.06 USD dengan sistem kelistrikan hibrida berupa 39.93 MW Solar PV, 56 MW turbin angin, 28.3 MWh BESS, dan impor listrik sebesar 29,194,37MWh panas bumi dari grid (per tahun). Skenario dengan interkoneksi mengasilkan NPC yang lebih tinggi dibandingkan skenario tanpa interkoneksi (299,770,404.04 USD) dengan bauran pembangkit 29.35 MW Solar PV, 59.2 MW turbin angin, 50 MWh BESS, dan impor listrik sebesar 26,566.59 MWh panas bumi dari grid (per tahun). Skenario non-interkoneksi menjadi opsi dengan biaya yang lebih rendah, namun masih relatif tinggi terhadap tarif tenaga listrik yang ada di Indonesia.

West Manggarai is a multi-island regency in east Indonesia. The existing electricity system is still dominated by fossil based-power systems. The aim of the study is to design 100% Hybrid Renewable Energy System of Solar PV, wind, geothermal, and BESS. The electricity demand covers residential, commercial, desalination, and electric vehicle. Optimization is conducted by using HOMER software with the objective function to obtain the lowest Net Present Cost (NPC) in 2025 with and without an interconnection scenario among the three main islands. The result of hybrid system for the nointerconnection scenario has the lowest NPC of 282,644,479.06 USD with 39.93 MW Solar PV, 56 MW Wind power, 28.3 MWh BESS, 29,194,37MWh of of net import from geothermal grid and also 14.02 MW inverter. The interconnection scenario has a higher NPC of 299,770,404 USD with 29.35 MW Solar PV, 59.2 MW Wind power, 50 MWh BESS, 26,566.59 MWh geothermal grid net (yearly), and also 35 MW inverter. No Interconnection scenario prived lower cost, but the tariff is still higher than the existing regulated electricity tariff in Indonesia."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Inggrid Audia
"Penggunaan pembangkit listrik energi terbarukan belum dapat diandalkan karena sumbernya tergantung pada kondisi lingkungan. Microgrid dapat menjadi solusi untuk masalah yang dimiliki oleh pembangkit listrik energi terbarukan karena mereka dapat mengintegrasikan beberapa sumber energi baik dari jaringan utama maupun dari pembangkit listrik energi terbarukan. Microgrid membutuhkan simulasi untuk menganalisis sistem sebelum diterapkan.
Penelitian ini memodelkan dan merancang simulasi Microgrid Berbasis Inverter menggunakan perangkat lunak MATLAB / Simulink. Setiap sub-modul dimodelkan dalam bentuk ruang-negara dan semua digabungkan pada frekuensi referensi umum. Dalam model ini tiga Generasi Terdistribusi (DG) digunakan dan setiap DG mensimulasikan sumber energi terbarukan. Dalam simulasi, tiga percobaan berbeda dilakukan, yaitu perubahan tegangan referensi, beban, dan konstanta pengontrol untuk melihat respons sistem terhadap berbagai perubahan.
Diperoleh bahwa sistem Microgrid mampu mengikuti perubahan pada kedua nilai beban pasir tegangan referensi. Model keseluruhan microgrid juga linierisasi dan matriks sistem digunakan untuk memperoleh nilai eigen. Nilai eigen menunjukkan bahwa konstanta pengontrol mempengaruhi stabilitas sistem. Nilai untuk setiap konstanta harus dipilih yang paling cocok dengan sistem, karena setiap konstanta pengontrol memiliki dampak yang berbeda pada respons transien sistem.

The use of renewable energy power plants cannot be relied upon because the source depends on environmental conditions. Microgrids can be a solution to problems that are owned by renewable energy power plants because they can integrate several energy sources both from the main grid and from renewable energy power plants. Microgrid requires a simulation to analyze the system before it is implemented.
This study models and designs an Inverter-based Microgrid simulation using MATLAB / Simulink software. Each sub-module is modeled in the form of space-state and all are combined at a common reference frequency. In this model three Distributed Generations (DG) are used and each DG simulates a renewable energy source. In simulations, three different experiments are carried out, namely changes in reference voltage, load, and controller constants to see the system's response to various changes.
It was found that the Microgrid system was able to keep up with changes in both the reference voltage sand load values. The overall microgrid model is also linearized and the system matrix is ​​used to obtain the eigenvalue. Eigenvalues ​​indicate that the controller constant affects the stability of the system. The value for each constant must be chosen that best matches the system, because each controller constant has a different impact on the transient response of the system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ade Firmansyah
"Negara kesatuan Republik Indonesia memiliki tujuh wilayah besar dengan karakteristik yang berbeda dalam system kelistrikan, perkembangan kebijakan kelistrikan di Indonesia dimulai pada abad ke-19 dan mulai berkembang dengan adanya pemberian hak konsesi oleh Pemerintah kolonial Hindia Belanda kepada swasta di beberapa daerah, kemudian ketika Jepang menguasai Indonesia, sektor kelistrikan berubah fungsi sebagai alat pertahanan dalam peperangan. Indonesia memperoleh kemerdekaan pada tahun 1945 dibarengi dengan proses nasionalisasi aset-aset yang dimiliki oleh Hindia-Belanda dan Jepang, kemudian sektor kelistrikan dikuasai sepenuhnya oleh Negara yang diamanahkan melalui Badan Usaha Milik Negara yaitu PLN. Pada tahun 1966, sektor ketenagalistrikan merupakan bagian dari proses pembangunan yang digaungkan dalam RPLT (Rencana Pembangunan Lima Tahun), di era tahun 1998 terjadilah pergolakan reformasi, yang berdampak pada kebijakan ketenagalistrikan, dimana porsi swasta/Independent Power Producer (IPP) meningkat signifikan menjadi 3.169 MW pada tahun 2003, rentan waktu era reformasi kebijakan sektor ketenagalistrikan mengalami 2 kali perubahan, konsepnya masih sama yaitu demonopolisasi, namun ada beberapa konsep yang diluruskan oleh Mahkamah Konstitusi, sehingga sektor ketenagalistrikan tetap menjadi bagian dari kontrol negara. Indonesia telah meratifikasi Paris Agreement, dimana konsep perencanaan kelistrikan akan berbasis pada energi baru terbarukan, berbagai skenario telah dipersiapkan pemerintah namun baru bersifat pemenuhan kebutuhan supply-demand dengan mengoptimalkan pemanfataan energi terbarukan untuk kebutuhan pembangkit listrik, belum ada kebijakan yang mengatur terkait agregasi energi terbarukan sehingga diperlukan proyeksi kebutuhan energi dengan alat bantu perangkat lunak Powersim dan Arena untuk menghitung kebutuhan energi secara skenario BAU (Business As Usual) dan skenario penambahan supply dari 20% dari PLTS Atap dan variabel lainnya dari PLT Energi Terbarukan sebesar 10 s.d 15 TWh dan penambahan demand dari adanya peningkatan penggunaan electric vehicle, kompor induksi dan ekspor listrik ke Singapura dan Timor Leste.

The unitary state of the Republic of Indonesia has seven large regions with different characteristics in the electricity system, the development of electricity policy in Indonesia began in the 19th century and began to develop with the granting of concession rights by the Dutch East Indies colonial government to the private sector in some areas, then when Japan controlled Indonesia, the electricity sector changed its function as a means of defense in warfare. Indonesia gained independence in 1945 coupled with the process of nationalization of assets owned by the Dutch East Indies and Japan, then the electricity sector was fully controlled by the State mandated through state-owned enterprises, namely PLN. In 1966, the electricity sector was part of the development process echoed in the RPLT (Five-Year Development Plan), in the era of 1998 there was a reform upheaval, which had an impact on electricity policy, where the portion of private / Independent Power Producer (IPP) increased significantly to 3,169 MW in 2003, vulnerable when the era of electricity sector policy reform experienced 2 changes,  The concept is still the same as demonopolisation, but there are several concepts straightened out by the Constitutional Court, so that the electricity sector remains part of state control. Indonesia has ratified the Paris Agreement, where the concept of electricity planning will be based on new renewable energy, various scenarios have been prepared by the government but only meet the needs of supply-demand by optimizing the utilization of renewable energy for electricity generation needs, there is no policy that regulates the aggregation of renewable energy so that it requires the projection of energy needs with Powersim and Arena software tools for electricity generation.  Calculate the energy needs in the BAU (Business As Usual) scenario and the scenario of increasing supply from 20% of roofing power plants and other variables of renewable energy power plants of 10 to 15 TWh and the addition of demand from the increased use of electric vehicles, induction stoves and electricity exports to Singapore and Timor Leste."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>