Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 36434 dokumen yang sesuai dengan query
cover
Ika Hariyati
"Akuisisi citra sistem digital perlu dioptimasi untuk mendapatkan kombinasi parameter fisis paling optimum, sehingga menghasilkan kualitas citra yang cukup dengan dosis radiasi atau mengikuti prinsip ALARA (as low as reasonably achievable). Studi ini dilakukan pada dua anatomi yaitu thoraks dan abdomen dengan fantom in-house yang dibuat khusus sebagai alat kuantisasi kualitas citra. Parameter Figure of Merit (FOM) dikalkulasi sebagai perbandingan antara SDNR kuadrat dan dosis yang aplikasinya diuji pada studi ini. Parameter kualitas citra lainnya direpresentasikan oleh Modulation Transfer Function (MTF) dan Contrast Consistency (CV).
Pada pengukuran menggunakan fantom In-house menghasilkan nilai FOM tertinggi pada thoraks ketika kombinasi faktor eksposi di 57 kV, 8 mAs, 1 mm Al + 0.1 mm Cu; 55 kV, 6.3 mAs, 1 mm Al +0.1 mm Cu dan 63 kV, 5 mAs, 1 mm Al +0.1 mm Cu untuk ketebalan 15 cm, 20 cm, dan 24 cm. Pada abdomen, kombinasi faktor eksposi di 102 kV, 12.5 mAs; 96 kV, 12.5 mAs; 81 kV, 8 mAs, dengan 1 mm Al +0.2 mm Cu menghasilkan nilai FOM tertinggi untuk ketebalan 20 cm, 25 cm, dan 30 cm. Studi ini menunjukkan perlunya penelitian lanjutan untuk mendeskripsikan parameter lain untuk keperluan optimasi.

Digital image acquisition system needs to be optimized to get the most optimum combination of physical parameters, to produce sufficient image quality with radiation doses following ALARA (as low as reasonably achievable) principles. This study was carried out on two anatomies, namely thorax and abdomen with in-house phantoms specifically constructed as image quality quantization tool. The Figure of Merit (FOM) parameter is calculated as the ratio between squared Signal Different to Noise Ratio (SDNR) and the dose for which the application was tested in this study. Other image quality parameters are represented by Modulation Transfer Function (MTF) and Contrast Consistency (CV).
The measurements using the in-house phantom produced the highest FOM values ​​on the thorax when the combination of exposure factors at 57 kV, 8 mAs, 1 mm Al + 0.1 mm Cu; 55 kV, 6.3 mAs, 1 mm Al + 0.1 mm Cu and 63 kV, 5 mAs, 1 mm Al + 0.1 mm Cu for thicknesses of 15 cm, 20 cm, and 24 cm. On the abdomen, a combination of exposure factors at 102 kV, 12.5 mAs; 96 kV, 12.5 mAs; 81 kV, 8 mAs, with 1 mm Al +0.2 mm Cu was resulting in the highest FOM value for 20 cm, 25 cm, and 30 cm thickness. This study shows the need for further research to describe other parameters for optimization purposes.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Dwinda Fildzah Hani
"Penelitian ini bertujuan untuk mendapatkan kombinasi parameter eksposi optimum pada pemeriksaan sinar-x diagnostik menggunakan Computed Radiography (CR). Kombinasi faktor eksposi yang diuji berada dalam rentang 55 kVp-66 kVp dan 15 mAs-24 mAs untuk toraks, 81 kVp-102 kVp dan 8 mAs-20 mAs untuk abdomen, serta filter tambahan 0 mmAl, 1 mm Al + 0.1 mm Cu, 1 mm Al + 0.2 mm Cu, dan 2 mm Al. Figure of Merit (FOM) sebagai rasio antara kuadrat Signal Difference to Noise Ratio (SDNR) dan dosis dipilih sebagai parameter uji, dengan parameter kualitas citra tambahan berupa Modulation Transfer Function (MTF) dan Contrast Consistency (CV). Meskipun didapatkan kombinasi dengan FOM tertinggi, hasil penelitian menunjukkan bahwa FOM tidak dapat digunakan sebagai parameter optimisasi tunggal dan penggunaannya harus disertai parameter lain. Karenanya, diperlukan penelitian lanjutan sebelum metode ini dapat diterapkan secara klinis.

This study aims to obtain an optimum combination of exposure parameters on diagnostic x-ray examinations using Computed Radiography (CR). The combination of exposure parameters tested were in the range of 55 kVp-66 kVp and 15 mAs-24 mAs for thorax, 81 kVp-102 kVp and 8 mAs-20 mAs for the abdomen, and additional filters 0 mmAl, 1 mm Al + 0.1 mm Cu, 1 mm Al + 0.2 mm Cu, and 2 mm Al. Figure of Merit (FOM) as a ratio between the squared Difference to Noise Ratio (SDNR) signal and the Entrance Surface Dose (ESD) was chosen as optimization parameter alongside with additional image quality parameters such as Modulation Transfer Function (MTF) and Contrast Consistency (CV). Although the combination with the highest FOM was obtained, the results showed that FOM cannot be used as a single optimization parameter and its use must be accompanied by other parameters. Therefore, further research is needed before this method can be applied clinically."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabila Nurharini Apriliastri
"Penelitian ini bertujuan untuk mendapatkan kombinasi parameter yang optimal dalam simulasi pemeriksaan kranial, toraks, dan abdomen menggunakan sistem digital radiography (DR). Optimasi dilakukan menggunakan phantom in-house dengan objek kontras pada DR Siemens Luminos Agile Max. Pasien pediatrik dipisahkan menjadi empat kelompok usia; grup A (0-1 tahun), grup B (1-5 tahun), grup C (5-10 tahun), dan grup D (10-15 tahun). Kombinasi lapisan PMMA dan cork dengan ketebalan total yang berbeda digunakan untuk mensimulasikan pasien yang termasuk dalam setiap kelompok usia untuk wilayah anatomis yang berbeda (kranial, toraks, dan abdomen). Optimasi dilakukan dalam tiga langkah; kVp, diikuti oleh mAs, dan kemudian optimasi filter tambahan. Semua langkah optimasi dilakukan berdasarkan nilai FOM (figure of merit) yang dihitung sebagai rasio SDNR (signal difference to noise ratio) kuadrat dan entrance surface dose dengan FOM tertinggi yang mewakili kondisi optimum.
Hasil dari optimasi ini dievaluasi berdasarkan FOM tertinggi yang dihasilkan dari setiap eksposi. Adapun MTF dan CV digunakan sebagai parameter pembanding terhadap nilai FOM yang rancu. Dalam pemeriksaan kranial, FOM tertinggi dihasilkan oleh faktor eksposi 44 kV, 3.2 mAs, dan 0 mmCu atau tanpa filter (A), 46 kV, 5.6 mAs, dan 0.1 mmCu (B), 49 kV, 7.1 mAs, dan 0.2 mmCu (C) dan 50 kV, 9 mAs, dan 0.1 mmCu (D). Untuk pemeriksaan toraks, nilai FOM tertinggi dihasilkan oleh faktor eksposi 45 kV, 2,5 mAs, dan 0,2 mmCu (A), 45 kV, 4 mAs, dan 0.2 mmCu (B), 46 kV, 5.6 mAs, dan 0.2 mmCu (C), dan 47 kV, 6.3 mAs, dan 0.2 mmCu (D). Untuk pemeriksaan abdomen, nilai FOM tertinggi dihasilkan oleh faktor eksposi 48 kV, 4 mAs, dan 0.1 mmCu (A), 50 kV, 6.3 mAs, dan 0.2 mmCu (B), 53.5 kV, 8 mAs, dan 0 mmCu (C), dan 58.5 kV, 8 mAs, dan 0 mmCu (D).

This study was aimed to obtain optimum parameter combination in simulated cranial, thorax, and abdominal examinations using digital radiography (DR) systems. Optimization was performed using in-house phantom with contrast objects on Siemens Luminos Agile Max DR. Paediatric patients were separated into four age groups; group A (0-1 year), group B (1-5 years), group C (5-10 years), and group D (10-15 years). Slab phantoms consisted of PMMA and cork with different total thickness were used to simulate patients belonging to each age group for different anatomical region (cranial, thorax, and abdomen). Optimization were performed in three steps; first kVp, followed by mAs, and then additional filter optimization. All the steps of optimization were performed based on FOM (figure of merit) values calculated as ratio of squared SDNR (signal difference to noise ratio) and entrance surface dose with the highest FOM representing the optimum condition.
The results of this optimization were evaluated based on the highest FOM generated from each exposure. For this DR, optimum parameters (i.e. highest FOM) are different for each age group and anatomical region. In cranial examination, the highest FOM are generated by exposure factors of 44 kV, 3.2 mAs, and 0 mmCu filter (A), 46 kV, 5.6 mAs, and 0.1 mmCu filter (B), 49 kV, 7.1 mAs, and 0.2 mmCu filter (C) and 50 kV, 9 mAs, and 0.1 mmCu filter (D). For thorax examination, the highest FOM value is generated by exposure factor 45 kV, 2.5 mAs, and 0.2 mmCu (A), 45 kV, 4 mAs, and 0.2 mmCu (B), 46 kV, 5.6 mAs, and 0.2 mmCu (C), and 47 kV, 6.3 mAs, and 0.2 mmCu (D). For abdominal examination, the highest FOM value is produced by exposure factor 48 kV, 4 mAs, and 0.1 mmCu (A), 50 kV, 6.3 mAs, and 0.2 mmCu (B), 53.5 kV, 8 mAs, and 0 mmCu (C), and 58.5 kV, 8 mAs, and 0 mmCu (D).
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Renita Hasna Febrianti
"Penelitian ini membahas karakter dua digital radiography (MobileDiagnost wDr dan Essenta DR Compact) menggunakan fantom in-house dan fantom pro-digi dilihat dari kualitas citranya. Parameter kualitas citra direpresentasikan sebagai koefisien linearitas (CL) yaitu korelasi antara Signal Difference to Noise Ratio (SDNR) dengan kedalaman obyek, dan koefisien variasi (CV) yaitu konsistensi nilai SDNR obyek terhadap perubahan ukuran. Selain itu, Modulation Transfer Function (MTF) juga dievaluasi sebagai parameter tambahan. Pengambilan citra dilakukan dengan empat variasi filter (0 mm Al, 1 mm Al + 0.1 mm Cu, 1 mm Al + 0.2 mm Cu, dan 2 mm Al) juga dengan dan tanpa antiscatter grid. Penelitian ini menunjukan desain dari fantom in-house dapat digunakan untuk Quality control (QC) pada sistem DR tetapi penggunaannya tidak dapat digeneralisasi pada semua DR dikarenakan setiap alat memiliki karakteristik masing-masing.

This study aims to discuss the characteristics of two digital radiography systems, namely Mobile Diagnosis WDR and Essenta DR Compact using in-house phantoms and Pro-Digi in terms of image quality. Proposed image quality parameters are linearity coefficients (CL), namely the correlation between the Signal Difference to Noise Ratio (SDNR) and the depth of the object, and the coefficient of variation (CV), namely the consistency of the SDNR value of an object to size change. In addition, Modulation Transfer Function (MTF) was also evaluated as additional parameter. Phantom images were taken with four filter variations (0 mm Al, 1 mm Al + 0.1 mm Cu, 1 mm Al + 0.2 mm Cu, and 2 mm Al) with and without antiscatter grid. This study shows that the in-house phantom can be utilized for Quality Control (QC) in the DR system but its use cannot be generalized to all DRs due to unique characteristics of each devices."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irfan Nur Fathur Rahman
"Pada penelitian ini, telah dilakukan studi karakter pada CR AGFA 85-X dalam hal sensitivitas detektor dan kualitas citra sekaligus untuk mendeskripsikan rekomendasi penggunan fantom in-house yang dibuat khusus untuk studi ini. Uji karakter sensitivitas detektor dilakukan dengan memetakan korelasi antara nilai piksel dan dosis pada reseptor citra, sedangkan evaluasi kualitas citra dilakukan berdasarkan nilai SDNR dari masing-masing obyek pada fantom in-house.
Hasil dari evaluasi citra direpresentasikan dengan koefisien variasi (CV), koefisien linearitas (CL), dan Modulation Transfer Function (MTF). CV merupakan nilai yang menunjukkan konsistensi kontras terhadap perubahan ukuran obyek, sedangkan CL merepresentasikan linearitas perubahan kontras terhadap perubahan kedalaman obyek. Sementara itu, MTF sebagai ukuran resolusi spasial dievaluasi dengan menggunakan metode slanted edge dengan menggunakan lempengan tembaga pada fantom in-house.
Hasil uji sensitivitas detektor memperlihatkan korelasi logaritmik terbalik antara nilai piksel dengan dosis reseptor dengan persamaan y=-18.5ln(x) + 79.655dengan nilai R2=0.9642. Fantom in-house yang telah dibuat direkomendasikan untuk digunakan pada 70 kVp atau 75 kVp pada representasi anatomi abdomen, 110 kVp atau 115 kVp untuk mensimulasikan pemeriksaan thorax dan 75 kVp atau 80 kVp pada simulasi pemeriksaan cranial.

In this research, the characters of AGFA CR 85-X in terms of detector sensitivity and image quality has been performed. The study was carried out also to provide recommendations on the use of in-house phantom specifically constructed for this study. Detector sensitivity was characterized by plotting the correlation between pixel value and dose on image receptor, while image quality evaluation was performed based on the Signal Difference Noise Ratio (SDNR) values of each object at the in-house phantom.
Resulting image quality were represented by coefficient of variance (CV), coefficient of linearity (CL), and Modulation Transfer Function (MTF). CV represent the consistency of contrast (SDNR) with the change of object size, while CL reflect the linearity of contrast with the change of object depth. Meanwhile, MTF served as a measure of spatial resolution and was evaluated using the slanted edge method using copper plates at the in-house phantom.
The detector sensitivity test results shown inverse logarithmic correlation between pixel values ​​and receptor doses with the equation y = -18.5ln (x) + 79,655 with the value of R2 = 0.9642. The constructed in-house phantom was recommended to be used at 70 kVp or 75 kVp when representing the abdominal anatomy, 110 kVp or 115 kVp for thorax examination and 75 kVp or 80 kVp in cranial examination simulation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ainun Erfina
"Pemeriksaan thoraks merupakan pemeriksaan radiologi diagnostik yang paling sering dan rutin dilakukan sehingga perlu adanya proteksi radiasi berupa optimisasi. Meninjau dari hal tersebut maka dilakukan audit dosis pada pemeriksaan thoraks di Rumah Sakit Sint Carolus. Dari hasil audit dosis yang telah dilakukan mengindikasikan bahwa typical value pada pemeriksaan thoraks AP/PA berada di bawah DRL nasional, namun di atas DRL ARPANSA Australia. Sedangkan typical value pada pemeriksaan thoraks LAT jauh di bawah DRL ARPANSA. Untuk itu, penelitian ini dilakukan sebagai upaya dalam mengkaji typical value ICRP 135 tidak melebihi Diagnostic Reference Level (DRL) nasional dan mengidentifikasi kebutuhan optimisasi pada pemeriksaan thoraks di Rumah Sakit Sint Carolus. Kemudian dari hasil identifikasi mengindikasikan bahwa tindakan optimisasi diperlukan untuk kedua pemeriksaan thoraks. Dalam penelitian ini dilakukan metode optimasi dua tahap, yaitu variasi kVp dan filter menggunakan fantom in-house KUCING 2.0 dan variasi mAs menggunakan fantom anthropomorphic. Sedangkan evaluasi kualitas citra dilakukan dengan dua metode penilaian yakni objektif dan subjektif. Pada tahap pertama meliputi pengukuran dosis Incident Air Kerma (IAK) dengan penilaian kualitas gambar objektif berdasarkan parameter kualitas citra Figure of Merit (FOM). Dari tahap pertama, diperoleh nilai FOM optimal pada penggunaan filter tambahan 2 mm Al dan 73 kVp untuk AP/PA dan filter tambahan 2 mm Al dan 85 kVp untuk LAT. Selanjutnya, pada tahap kedua dilakukan pengukuran dosis melalui estimasi dosis dan evaluasi kualitas citra secara subjektif. Kemudian dari hasil survei oleh dokter radiologi yang berpengalaman di Rumah Sakit Sint Carolus diperoleh pemilihan 6 mAs untuk AP/PA dan 22 mAs untuk LAT. Dengan demikian, dari optimisasi yang telah dilakukan diperoleh penurunan typical value pada pemeriksaan thoraks AP/PA dengan kombinasi faktor eksposi optimalnya yakni 2 mm Al, 73 kVp, dan 6 mAs. Kemudian diperoleh kenaikan typical value pada thoraks LAT dengan kombinasi faktor eksposi optimalnya yakni 2 mm Al, 85 kVp, dan 22 mAs.

Thorax examination is the most frequently and routinely performed diagnostic radiology examination, so it is necessary to have radiation protection in the form of optimization. In view of this, a dose audit was conducted on thorax examinations at Sint Carolus Hospital. The results of the dose audit indicate that the typical value of the AP/PA thorax examination is below the national DRL, but above the Australian ARPANSA DRL. While the typical value in LAT thorax examination is far below the ARPANSA DRL. For this reason, this study was conducted as an effort to assess the typical value of ICRP 135 does not exceed the national Diagnostic Reference Level (DRL) and identify optimization needs in thorax examinations at Sint Carolus Hospital. Then the identification results indicated that optimization actions were needed for both thorax examinations. In this study, a two-stage optimization method was performed, namely kVp and filter variations using the in-house phantom KUCING 2.0 and mAs variations using an anthropomorphic phantom. Meanwhile, image quality evaluation was conducted using two assessment methods, namely objective and subjective. The first stage includes measurement of Incident Air Kerma (IAK) dose with objective image quality assessment based on Figure of Merit (FOM) image quality parameters. From the first stage, the optimal FOM value was obtained using an additional filter of 2 mm Al and 73 kVp for AP/PA and an additional filter of 2 mm Al and 85 kVp for LAT. Furthermore, in the second stage, dose measurement was carried out through dose estimation and subjective image quality evaluation. Then from the survey results by experienced radiologists at Sint Carolus Hospital, a selection of 6 mAs for AP/PA and 22 mAs for LAT was obtained. Thus, from the optimization that has been carried out, a decrease in typical value is obtained in the AP/PA thoracic examination with the optimal combination of exposure factors, namely 2 mm Al, 73 kVp, and 6 mAs. Then an increase in typical value was obtained in LAT thorax with the optimal combination of exposure factors of 2 mm Al, 85 kVp, and 22 mAs.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samiyah
"ABSTRAK
Penelitian ini bertujuan mendapatkan variasi faktor eksposi optimum untuk pemeriksaan pediatrik pada penggunaan detektor computed radiography. Besaran FOM (figure of merit) digunakan sebagai parameter optimasi kualitas citra yang direpresentasikan oleh nilai SDNR (signal difference to noise ratio) dan dosis yang direpresentasikan oleh nilai ESD (entrance surface dose).  Ketebalan fantom representasi pasien divariasikan pada rentang usia 0-15 tahun untuk anatomi toraks, abdomen dan kepala. Evaluasi citra menggunakan fantom in-house sebagai objek uji dan hasil citra diolah menggunakan perangkat lunak imageJ. Penelitian ini juga mengevaluasi nilai MTF dan konsistensi kontras pada citra sebagai bahan pertimbangan untuk penetuan FOM. Hasil penelitian didapatkan kombinasi nilai kV, mAs, dan filter di setiap rentang usia pediatrik pada nilai FOM maksimum. Untuk anatomi abdomen usia 0-1 tahun nilai optimum dicapai pada  48 kV, 5.6 mAs dan 0.2 mmCu filter; usia 1-5 tahun pada  50 kV, 4.5 mAs dan 0.2 mmCu filter; usia 5-10 tahun pada 53.5 kV, 9 mAs dan 0.2 mmCu filter; serta usia 10-15 tahun pada 60 kV, 7.1 mAs dan 0.2 mmCu  filter. Untuk anatomi toraks usia 0-1 tahun nilai optimum dicapai pada 43 kV, 3.2 mAs dan 0.1 mmCu filter; usia 1-5 tahun pada  43 kV, 4 mAs dan 0.2 mmCu filter; usia 5-10 tahun pada 46 kV, 8 mAs dan 0.2 mmCu filter; serta usia 10-15 tahun pada 50 kV, 8 mAs dan 0.2 mmCu filter. Untuk anatomi kepala usia 0-1 tahun nilai optimum dicapai pada  44 kV, 2 mAs dan 0.1 mmCu filter; usia 1-5 tahun pada  47 kV, 4.5 mAs dan 0.2 mmCu filter; usia 5-10 tahun pada 48 kV, 6.3 mAs dan 0.2 mmCu filter; serta usia 10-15 tahun pada 48 kV, 9 mAs dan 0.2 mmCu filter.
ABSTRACT
This study aims to obtain variations of the optimum exposure factors for pediatric examination on the using of computed radiography detectors. The magnitude of FOM (figure of merit) is used as a parameter of image quality optimization represented by the SDNR (signal difference to noise ratio) and the dose represented by the ESD (entrance surface dose). The representation of the phantom thickness of the patients varied in the age range of 0-15 years for the thoracic, abdominal and head anatomy. Image evaluation using in-house phantoms as test objects and image results processed using ImageJ software. This study also evaluates the MTF value and contrast consistency in the image as a consideration for determining FOM. The results showed a combination of kV values, mAs, and filters in each pediatric age range at maximum FOM values. For abdominal anatomy aged 0-1 years the optimum value is achieved at 48 kV, 5.6 mAs and 0.2 mmCu filters; ages 1-5 years at 50 kV, 4.5 mAs and 0.2 mmCu filters; ages 5-10 years at 53.5 kV, 9 mAs and 0.2 mmCu filters; and ages 10-15 years at 60 kV, 7.1 mAs and 0.2 mmCu filters. For the thoracic anatomy of 0-1 years the optimum value is achieved at 43 kV, 3.2 mAs and 0.1 mm Cu filter; ages 1-5 years at 43 kV, 4 mAs and 0.2 mmCu filters; ages 5-10 years at 46 kV, 8 mAs and 0.2 mmCu filters; and ages 10-15 years at 50 kV, 8 mAs and 0.2 mmCu filters. For head anatomy aged 0-1 years the optimum value is achieved at 44 kV, 2 mAs and 0.1 mm Cu filter; ages 1-5 years at 47 kV, 4.5 mAs and 0.2 mm Cu filters; 5-10 years old at 48 kV, 6.3 mAs and 0.2 mmCu filters; and ages 10-15 years at 48 kV, 9 mAs and 0.2 mmCu filters.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Aini
"Pada penelitian ini telah dilakukan studi karakter fantom pada sistem computed radiography (CR) Fuji dalam beberapa parameter kualitas citra yang direpresentasikan dalam evaluasi koefisien linearitas (CL), koefisien variasi (CV), dan modulation transfer function (MTF). Penelitian ini menggunakan tiga fantom yang berbeda sebagai pembanding dengan representasi tubuh abdomen. Koefisien linearitas merupakan nilai yang menunjukkan linearitas perubahan kontras terhadap perubahan kedalaman objek, sedangkan koefisien variasi menunjukkan nilai konsistensi kontras terhadap perubahan ukuran objek.
Hasil MTF menunjukkan resolusi spasial yang dievaluasi menggunakan metode slanted edge dengan menggunakan lempengan tembaga yang terdapat pada in-house phantom Hasil yang diperoleh dari penelitian ini adalah pada fantom in-house nilai yang direkomendasikan adalah 75 kV dengan filter 1 mm Al + 0.1 mm Cu untuk linearitas kontras, 65 kV dengan filter 2 mmAl untuk konsistensi kontras, dan 70 kV dengan filter 1 mm Al + 0.2 mm Cu untuk MTF. Sedangkan untuk fantom in-house diperoleh nilai 60 kV dengan filter 1 mm Al + 0.2 mm Cu untuk linearitas kontras dan 60 kV dengan filter 0 mm Al untuk konsistensi kontras.

This study was performed to characterize in-house phantoms on computed radiography (CR) systems in terms of image quality parameters that represented coefficient of linearity (CL), coefficient of variation (CV), and modulation transfer function (MTF). This study used three different phantoms as a comparison, combined with abdominal anatomy representation. The CL is a value that shows the changes of contrast linearity to the changes of object depth, while the coefficient of variation shows the value of contrast consistency to changes of object size.
MTF showed the spatial resolution that evaluated using the slanted edge method using copper slabs in the in-house phantoms. The results obtained from this study are that in-house phantom 1.0 is recommended to be used at 75 kV with filters 1 mm Al + 0.1 mm Cu for contrast linearity, 65 kV with 2 mmAl filters for contrast consistency and 70 kV with 1 mm Al filter + 0.2 mm Cu for MTF. As for the in-house phantom 2.0 the recommended conditions are 60 kV value with a filter of 1 mm Al + 0.2 mm Cu for contrast linearity and 60 kV with a 0 mm Al filter for contrast consistency.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Imam Fajar
"Penelitian ini bertujuan mengevaluasi karakter sistem DR menggunakan fantom in-house untuk mengetahui respon detektor DR. Pesawat DR GE Brivo DRF di eksposi untuk mengetahui karakter linearitas detektor, sensitifitas detektor, dan kualitas citra. Karakterisasi linearitas meninjau hubungan antara nilai piksel dan dosis, sedangkan sensitifitas meninjau hubungan antara dosis dan nilai eksposi (DEI). Karakter kualitas citra dievaluasi dengan parameter linearitas kontras (CL), konsistensi kontras (CV), dan MTF. Parameter CL, CV, dan MTF dievaluasi dengan variasi kVp, mAs, pada tiga simulasi anatomi.
Hasil karakterisasi linearitas pada DR GE menunjukkan hubungan linier positif antara dosis dan nilai piksel, begitupun pada karakter sensitifitas. Nilai CL pada abdomen tidak dipengaruhi faktor eksposi sementara pada toraks dan kranial, nilai CL akan naik seiring kenaikan kVp dan lebih stabil pada mAs yang rendah.Karakter konsistensi kontras (CV) pada abdomen lebih stabil ketika nilai mAs rendah, sementara pada toraks dan kranial, nilai CV tidak dipengaruhi faktor eksposi. Karakter MTF 10% dan 50% pada abdomen, toraks, dan kranial menunjukkan hasil hampir identik pada tiap variasi namun lebih stabil pada keadaan mAs yang tinggi. Fantom in-house yang telah dibuat direkomendasikan untuk digunakan pada 70 kVp pada representasi anatomi abdomen, 120 kVp atau 115 kVp untuk mensimulasikan pemeriksaan thorax dan 65 kVp atau 80 kVp pada simulasi pemeriksaan cranial.

The aim of this study is evaluating DR system character using in-house phantom to identify DR detector responses. DR GE Brivo DRF modality was exposed to discover detector linearity, detector sensitivity, and also image quality character. Linearity character was characterized by plotting the correlation between dose and DEI, while sensitivity was characterized by plotting the correlation between dose and pixel value. Character of image quality was determined by contrast linearity(CL), contrast consistency (CV), and MTF. These parameters were evaluated within exposing variaton such as kVp, mAs, and anatomy simulation. The detector sensitivity test results positive linearity correlation between dose and pixel value. Thiss is as same as result of detecteor lienarity test.
Character of contrast linearity on abdomen simulations results no correlation within exposing factors (kVp and mAs), meanwhile CL value on thorax and cranial tend to increase as kVp increasing. Character of contrast consistency in thorax simulation has no correlation with exposing factors, meanwhile CV value in abdomen and cranial simulation seems more stable on low mAs. Characters MTF 10% and MTF 50% on three anatomies showed almost identic results for each condition, however MTF values were more stable when they are on high mAs. The constructed in-house phantom was recommended to be used at 70 kVp when representing the abdominal anatomy, 120 kVp or 115 kVp for thorax examination and 65 kVp or 80 kVp in cranial examination simulation.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aisyah Maharani
"Pada penelitian ini telah dilakukan uji karakterisasi pada detektor Careview 1500Cw yang bersifat retrofit, Philips Mobile wDR, dan GE Optima XR 220amx untuk mengetahui sensitifitas detektor dan kualitas citra yang dihasilkan. Sensitifitas respon detektor Philips Mobile Diagnost wDR dan GE Optima XR diuji dengan menyatakan korelasi hubungan antara dosis dan indeks eksposur, nilai piksel dengan dosis, dan hubungan dosis dengan nilai SDNR pada kondisi berkas standar RQA 5. Sementara itu, uji sensitivitas respon detektor pada detektor Careview 1500Cw hanya korelasi hubungan antara dosis dan nilai piksel saja. Selain pengujian respon detektor, dilakukan pula uji kualitas detektor berdasarkan protokol dari IPEM No.91. Kemudian, untuk uji kualitas citra direpresentasikan dengan Modulation Transfer Function (MTF) sebagai parameter utama, koefisien variasi (CV), dan koefisien linearitas (CL) sebagai parameter tambahan. Pertama, uji sensitifitas detektor menghasilkan hubungan antara nilai piksel dengan dosis berupa korelasi linear positif dengan persamaan y = 0.2975x + 2207 dan R2 = 0.945 untuk detektor Careview 1500Cw. Kedua, untuk Philips Mobile Diagnost wDR memiliki hubungan logaritma positif dengan persamaan y = 2632ln(x) + 13848 dan nilai R2 = 0.999. Terakhir, pada GE Optima XR 220amx hubungan antara dosis dengan nilai piksel pada kedua pesawat adalah linear dengan persamaan y = 216.46x + 4.6746 dan R2 = 0.9999 untuk pesawat 1. Sementara itu, untuk pesawat 2 hubungannya linear yang memenuhi persamaan y = 106.25x + 4.9704 dan R2 = 1. Sementara itu, korelasi hubungan dosis dengan indeks eksposur dan SDNR menghasilkan hubungan linear positif untuk setiap jenis detektor. Setiap hasil pengukuran parameter uji IPEM No.91 memenuhi persyaratan, sehingga dapat digunakan sebagai pedoman untuk uji kualitas kontrol rutin berikutnya.

In this reasearch, a characterization test was carried out on the Careview 1500Cw retrofit detector, Philips Mobile wDR, and the GE Optima XR 220amx to determine the sensitivity of the detector and the resulting image quality. The response sensitivity of the Philips Mobile Diagnostics wDR detector and the GE Optima XR was tested by stating the correlation between the dose and exposure index, the pixel value with the dose, and the dose relationship with the SDNR value in the RQA 5 standard beam condition. Meanwhile, test the detector response sensitivity on the Careview detector. 1500Cw is only a correlation of the relationship between dose and pixel value only. Apart from testing the detector response, a detector quality test was also conducted based on the protocol from IPEM No. Then, the image quality test is represented by the Modulation Transfer Function (MTF) as the main parameter, the coefficient of variation (CV), and the linearity coefficient (CL) as additional parameters. First, the detector sensitivity test produces a relationship between the pixel value and the dose in the form of a positive linear correlation with the equation y = 0.2975x + 2207 and R2 = 0.945 for the Careview 1500Cw detector. Second, for the Philips Mobile Diagnostics wDR has a positive logarithmic relationship with the equation y = 2632ln (x) + 13848 and the value of R2 = 0.999. Finally, in GE Optima XR 220amx the relationship between dose and pixel value on both planes is linear with the equation y = 216.46x + 4.6746 and R2 = 0.9999 for plane 1. Meanwhile, for plane 2 the relationship is linear which satisfies the equation y = 106.25x + 4.9704 and R2 = 1. Meanwhile, the correlation between dose and exposure index and SDNR produces a positive linear relationship for each type of detector. Each measurement result of the IPEM No.91 test parameter meets the requirements, so it can be used as a guideline for the next routine quality control test.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>