Ditemukan 32880 dokumen yang sesuai dengan query
Le, Chap T., 1948-
"Summary:
This new edition continues to provide basic, comprehensive coverage of key methods in categorical data analysis with multiple variables. Maintaining the same nontechnical, user-friendly approach, coverage has been added to the Second Edition to take the topic of categorical data analysis into a more applied direction."
Hoboken, NJ: Wiley, 2010
519.535 LEC a
Buku Teks Universitas Indonesia Library
Fienberg, Stephen E.
Cambridge, UK: Massachusett Institute of Technology, 1980
519.535 FIE a
Buku Teks Universitas Indonesia Library
Agresti, Alan
New York : John Wiley & Sons, 1984
519.535 AGR a
Buku Teks Universitas Indonesia Library
Forthofer, Ron N., 1944-
California: Lifetime Learning, 1981
001.422 FOR p
Buku Teks Universitas Indonesia Library
"Buku ini mengenai pengembangan baru dalam analisis sata kategorikal untuk ilmu sosial dan tingkah laku."
New Jersey: Lawrence Erlbaum Associates, 2005
300.15 NEW
Buku Teks Universitas Indonesia Library
Nelson, Wayne, 1936-
New York: John Wiley & Sons, 1982
620.004 NEL a
Buku Teks Universitas Indonesia Library
Singer, Judith A.
Oxford: Oxford University Press, 2003
001.42 SIN a
Buku Teks Universitas Indonesia Library
Forthofer, Ron N., 1944-
Belmont: Lifetime Learning Publications, 1981
361.3 FOR p
Buku Teks Universitas Indonesia Library
Azizah Zuhriya Nurmadina
"Model deep learning adalah model dengan banyak lapisan jaringan saraf tiruan. Model Bidirectional Gated Recurrent Unit (BiGRU) adalah salah satu jenis model deep learning yang memproses urutan data dalam dua arah, yaitu arah maju dan arah mundur. Hal tersebut memungkinkan model BiGRU untuk mengakses informasi masa depan dan masa lalu dari setiap titik dalam urutan data untuk pemahaman konteks yang lebih baik. Model BiGRU dapat digunakan untuk analisis sentimen, yaitu proses mengategorikan sentimen opini dalam teks menjadi negatif, netral, atau positif. Representasi teks yang digunakan pada penelitian ini adalah Bidirectional Encoder Representations from Transformers (BERT) karena kemampuannya memahami kata secara kontekstual sehingga meningkatkan akurasi. Salah satu masalah umum pada analisis sentimen adalah ketidakseimbangan data Penggunaan data tidak seimbang mempengaruhi kinerja model dalam melakukan klasifikasi sentimen karena bias terhadap kelas mayoritas. Oleh karena itu, penggunaan Synthetic Minority Oversampling Technique (SMOTE) dalam mengatasi ketidakseimbangan kelas pada data dilakukan pada penelitian ini. SMOTE digunakan untuk melakukan oversampling pada data kelas minoritas dan dipasangkan dengan model BiGRU yang menggunakan fungsi kerugian categorical cross entropy menghasilkan kinerja dengan nilai akurasi sebesar 85,52% yang merupakan akurasi tertinggi dibandingkan dengan daripadamodel BiGRU dengan fungsi kerugian categorical cross entropy tanpa penanganan SMOTE (model standar dalam penelitian ini) dan model BiGRU dengan fungsi kerugian weighted cross entropy yang dibangun untuk memperkuat bukti bahwa model yang diajukan adalah model terbaik.
Deep learning models are models with multiple layers of artificial neural networks. The Bidirectional Gated Recurrent Unit (BiGRU) model is one type of deep learning model that processes data sequences in two directions, the forward direction and the backward direction. This allows the BiGRU model to access future and past information from each point in the data sequence for better context understanding. The BiGRU model can be used for sentiment analysis, which is the process of categorizing the sentiment of opinions in text into negative, neutral, or positive. The text representation used in this research is Bidirectional Encoder Representations from Transformers (BERT) because of its ability to understand words contextually to increase accuracy. One of the common problems in sentiment analysis is data imbalance. The use of unbalanced data affects the performance of the model in performing sentiment classification due to bias towards the majority class. Therefore, the use of Synthetic Minority Oversampling Technique (SMOTE) in overcoming class imbalance in the data is done in this study. SMOTE is used to perform oversampling on minority class data and paired with the BiGRU model using the categorical cross entropy loss function results in performance with an accuracy value of 85.52% which is the highest accuracy compared to the BiGRU model with the categorical cross entropy loss function without SMOTE handling (the standard model in this study) and the BiGRU model with the weighted cross entropy loss function built to strengthen the evidence that the proposed model is the best model."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Yuelin, Li
"This book is written for behavioral scientists who want to consider adding R to their existing set of statistical tools, or want to switch to R as their main computation tool. The authors aim primarily to help practitioners of behavioral research make the transition to R. The focus is to provide practical advice on some of the widely-used statistical methods in behavioral research, using a set of notes and annotated examples. The book will also help beginners learn more about statistics and behavioral research. These are statistical techniques used by psychologists who do research on human subjects, but of course they are also relevant to researchers in others fields that do similar kinds of research. The authors emphasize practical data analytic skills so that they can be quickly incorporated into readers’ own research."
New York: [Springer Science, ], 2012
e20419300
eBooks Universitas Indonesia Library