Ditemukan 6521 dokumen yang sesuai dengan query
Chuvieco, Emilio
Boca Raton : Taylor and Francis, 2016
621.367 8 CHU f
Buku Teks Universitas Indonesia Library
Robinson, I.S.
New York: John Wiley & Sons, 1994
551.46 ROB s
Buku Teks Universitas Indonesia Library
"The book focuses on new challenging prospects for the use of EO in archaeology not only for probing the subsurface to unveil sites and artifacts, but also for the management and valorization as well as for the monitoring and preservation of cultural resources. The book provides a first-class understanding of this revolutionary scenario which was unthinkable several years ago.
The book offers : (i) an excellent collection of outstanding articles focusing on satellite data processing, analysis and interpretation for archaeological applications, (ii) impressive case studies, (iii) striking examples of the high potential of the integration of multi-temporal, multi-scale, multi-sensors techniques.
"
Dordrecht, Netherlands: Springer, 2012
e20405583
eBooks Universitas Indonesia Library
"Indonesia's geographic expanse and urgent need monitoring natural resourches make it a potentially large user of satellite remote sensing products. After a brief presentation of major institutions, universities, and organizations dealing with this technique, the paper reviews and analyses major constraints, i.e. cloud cover, atmosphere, landscape, and equipment. It is followed by some examples of SPOT-derived local operational achievements. These are related to cartographic aspects, land cover mapping, agricultural-suburban interface, forestly, soils and geology. Finally, economic aspects and perspectives are considered. As confirmed by other independent works, the SPOT-derived examples stress that this type of data, especially the 10m resolution data, seem to offer a viable alternative to more expensive aerial photographs, particularly when repetive coverage is required."
GEOUGM 21:62 (1991)
Artikel Jurnal Universitas Indonesia Library
Rahmat Rizkiyanto
"Awan merupakan salah satu objek dalam citra satelit penginderaan jauh sensor optis yang keberadaanya sering kali mengganggu proses pengolahan citra penginderaan jauh. Deteksi awan secara akurat merupakan tugas utama dalam banyak aplikasi penginderaan jauh. Oleh karena itu, deteksi awan secara tepat khususnya pada citra satelit optis resolusi sangat tinggi merupakan suatu pekerjaan yang sangat menantang. Penelitian ini bertujuan untuk mendeteksi objek awan pada data citra satelit penginderaan jauh resolusi sangat tinggi. Penelitian ini menggunakan algoritma deep learning yaitu Convolutional Neural Network (CNN) dan segmentasi Simple Linear Iterative Clustering (SLIC) superpixel untuk mendeteksi objek awan pada citra satelit penginderaan jauh. Penelitian ini menggunakan SLIC untuk mengelompokkan citra ke dalam superpiksel. Penelitian ini juga merancang CNN untuk mengekstrak fitur dari citra dan memprediksi superpiksel sebagai salah satu dari dua kelas objek yaitu awan dan bukan awan. Penelitian ini menggunakan data citra satelit resolusi sangat tinggi Pleiades multispectral dengan resolusi 50 cm. Deteksi awan dilakukan dengan berbagai macam skenario. Hasilnya, metode yang diusulkan mampu mendeteksi objek awan dengan performa akurasi sebesar 91.33%.
Clouds are one of the objects in optical sensor remote sensing satellite images whose presence often interferes with the remote sensing image processing process. Accurate cloud detection is a key task in many remote sensing applications. Therefore, precise cloud detection, especially in very high-resolution optical satellite imagery, is a very challenging task. This study aims to detect cloud objects in very high-resolution remote sensing satellite imagery data. This study uses a deep learning algorithm, namely Convolutional Neural Network (CNN) and Simple Linear Iterative Clustering (SLIC) superpixel segmentation to detect cloud objects in remote sensing satellite images. This study uses SLIC to group images into superpixels. This study also designed a CNN to extract features from the image and predict the superpixel as one of two classes of objects, namely cloud, and non-cloud. This study uses very high-resolution Pleiades multispectral satellite imagery data with a resolution of 50 cm. Cloud detection is carried out in various scenarios. As a result, the proposed method can detect cloud objects with an accuracy performance of 91.33%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership Universitas Indonesia Library
London : Taylor and Francis, 2002
363.702 ENV
Buku Teks Universitas Indonesia Library
Santa Barbara: Hamilton, 1974
910.02 REM
Buku Teks Universitas Indonesia Library
Manahan, Stanley E.
New York: CRC Pres, 2009
540 MAN f
Buku Teks Universitas Indonesia Library
Manahan, Stanley E.
Boca Raton: Lewis Publishers, 1993
577.14 MAN f
Buku Teks Universitas Indonesia Library
Rajan, Mohan Sundara
Manila : Asian Development Bank, 1986
621.367 8 RAJ s
Buku Teks Universitas Indonesia Library