Ditemukan 189537 dokumen yang sesuai dengan query
Fauzie Rachman
"Berdasarkan data Kementerian Perindustrian, industri kabel diperkirakan akan mengalami pertumbuhan sekitar 10% -15% beberapa tahun ke depan. Industri kabel saat ini sedang aktif menyuplai industri otomotif, kenaikan penjualan otomotif dan variasi produk ini yang sangat sulit di antisipasi permintaannya. Oleh karena itu, untuk menghadapi ketidakpastian ini, pelaku bisnis harus memiliki alat atau strategi agar rencana strategis perusahaan menjadi andal. Beberapa penelitian sebelumnya tentang prediksi jumlah stok produk di masa depan, menyimpulkan bahwa inventori, baik dalam bentuk bahan baku, barang dalam proses, produk setengah jadi dan produk jadi, pada biaya inventori 20% hingga 40% dari nilai produk. Dengan demikian, pengendalian inventori sangat penting dalam bisnis perusahaan. Kontribusi utama dari penelitian ini adalah membuat model pendukung keputusan dengan memprediksi pesanan dari pelanggan untuk meminimalkan risiko kegagalan persediaan. Oleh karena itu, kombinasi
Fuzzy Analytic Hierarchy Process (
Fuzzy AHP) dan
Artificial Neural Network (ANN) dilakukan untuk manajemen inventori.
Based on data from the Ministry of Industry, the cable industry is expected to experience growth of around 10% -15% in the next few years. The cable industry is currently actively supplying the automotive industry, the increase in automotive sales and variations in these products are very difficult to anticipate demand. Therefore, to deal with this uncertainty, business people must have a tool or strategy so that the company`s strategic plan becomes reliable. Some previous studies on the prediction of the number of product stocks in the future, concluded that inventory, both in the form of raw materials, in-process goods, semi-finished products and finished products, at inventory costs 20% to 40% of product value. Thus, inventory control is very important in the company`s business. The main contribution of this research is to make a decision support model by predicting orders from customers to minimize the risk of inventory failure. Therefore, a combination of Fuzzy Analytic Hierarchy Process (Fuzzy AHP) and Artificial Neural Network (ANN) is carried out for inventory management."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54237
UI - Tesis Membership Universitas Indonesia Library
Fariz Zhafari
"Sistem pendingin pada sebuah bangunan menyumbang energy yang cukup besar pada total energy dari bangunan tersebut. Pemilihan dan penghematan system pendingin yang tepat akan membantu untuk mengurangi konsumsi energy pada system pendingin bangunan. Salah satu cara penghematan pada system pendingin adalah dengan menggunakan bahan-bahan renewable energy sebagai sumber energinya. Gedung Mechanical Research Center yang berada di wilayah Fakultas Teknik Universitas Indonesia, Depok, Jawa Barat telah menggunakan system pendingin absorpsi tenaga matahari guna memanfaatkan sumber panas terbarukan yang dapat menghemat konsumsi energy pada suatu gedung.
Tujuan penelitian ini mencoba untuk mengevaluasi besar konsumsi energy yang dikeluarkan oleh absorption chiller pada gedung MRC, evaluasi dilakukan dengan simulasi menggunakan perangkat lunak IES-VE, IES-VE adalah perangkat lunak yang membantu penggunanya untuk mendesain dan mengevaluasi fenomena-fenomena pada suatu bangunan hasil yang didapat dari simulasi ini akan digunakan sebagai perbandingan terhadap hasil artificial intelligence menggunakan metode artificial neural network dan fuzzy.
Cooling systems in a building contribute considerable energy to the total energy of the building. Choosing and saving the right cooling system will help to reduce energy consumption in building cooling system. One way of saving on the cooling system is to use renewable energy as a source of energy. Building Mechanical Research Center located in the Faculty of Engineering, University of Indonesia, Depok, West Java has been using solar energy absorption cooling system to utilize renewable heat sources that can save energy consumption in a building. The purpose of this study was to evaluate the energy consumption of absorption chiller in the MRC building, the evaluation was done by simulation using IES VE software, IES VE is software that help its users to design and evaluate phenomena in a building result Obtained from this simulation will be used in comparison to artificial intelligence result using artificial neural network and fuzzy method."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67968
UI - Skripsi Membership Universitas Indonesia Library
New York: McGraw-Hill, 1996
006.32 FUZ
Buku Teks SO Universitas Indonesia Library
Mendrofa, Gabriella Aileen
"Pilar adalah unit struktural penting yang digunakan untuk memastikan keselamatan penambangan di tambang batuan keras bawah tanah. Oleh karena itu, prediksi yang tepat mengenai stabilitas pilar bawah tanah sangat diperlukan. Salah satu indeks umum yang sering digunakan untuk menilai stabilitas pilar adalah Safety Factor (SF). Sayangnya, batasan penilaian stabilitas pilar menggunakan SF masih sangat kaku dan kurang dapat diandalkan. Penelitian ini menyajikan aplikasi baru dari Artificial Neural Network-Backpropagation (ANN-BP) dan Deep Ensemble Learning untuk klasifikasi stabilitas pilar. Terdapat tiga jenis ANN-BP yang digunakan untuk klasifikasi stabilitas pilar dibedakan berdasarkan activation function-nya, yaitu ANN-BP ReLU, ANN-BP ELU, dan ANN-BP GELU. Dalam penelitian ini juga disajikan alternatif pelabelan baru stabilitas pilar dengan mempertimbangkan kesesuaiannya dengan SF. Stabilitas pilar diperluas menjadi empat kategori, yaitu failed dengan safety factor yang sesuai, intact dengan safety factor yang sesuai, failed dengan safety factor yang tidak sesuai, dan intact dengan safety factor yang tidak sesuai. Terdapat lima input yang digunakan untuk setiap model, yaitu pillar width, mining height, bord width, depth to floor, dan ratio. Hasil penelitian menunjukkan bahwa model ANN-BP dengan Ensemble Learning dapat meningkatkan performa ANN-BP dengan average accuracy menjadi 86,48% dan nilai F2 menjadi 96,35% untuk kategori failed dengan safety factor yang tidak sesuai.
Pillars are important structural units used to ensure mining safety in underground hard rock mines. Therefore, precise predictions regarding the stability of underground pillars are required. One common index that is often used to assess pillar stability is the Safety Factor (SF). Unfortunately, such crisp boundaries in pillar stability assessment using SF are unreliable. This paper presents a novel application of Artificial Neural Network-Backpropagation (ANN-BP) and Deep Ensemble Learning for pillar stability classification. There are three types of ANN-BP used for the classification of pillar stability distinguished by their activation functions: ANN-BP ReLU, ANN-BP ELU, and ANN-BP GELU. This research also presents a new labeling alternative for pillar stability by considering its suitability with the SF. Thus, pillar stability is expanded into four categories: failed with a suitable safety factor, intact with a suitable safety factor, failed without a suitable safety factor, and intact without a suitable safety factor. There are five inputs used for each model: pillar width, mining height, bord width, depth to floor, and ratio. The results showed that the ANN-BP model with Ensemble Learning could improve ANN-BP performance with an average accuracy of 86.48% and an F2-score of 96.35% for the category of failed with a suitable safety factor."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership Universitas Indonesia Library
Pandu Apriyanto
"Salah satu upaya meminimalkan hambatan gelombang untuk mengurangi hambatan total adalah konfigurasi multi lambung dengan memvariasikan penempatan outrigger. Penelitian ini bertujuan untuk mencari konfigurasi optimal pentamaran lambung warp-chine untuk mengurangi hambatan total yang signifikan untuk berbagai kecepatan. Terbatasnya informasi penggunaan lambung warp-chine pada multihull berkaitan dengan karakteristik lambung serta optimalisasi penempatan outrigger menjadi dasar dari penggunaan lambung warp-chine pada penelitian ini. Perhitungan dan optimasi menggunakan program komputer MATLAB menggunakan metode Artificial Neural Network dan Algoritma Genetika. Hasil optimasi menunjukkan penurunan hambatan pada saat Fr>0.4 baik koefisien hambatan gelombang maupun koefisien hambatan total dengan penurunan rata-rata dari masing-masing hambatan sebesar 1.47% dan 4.06%. Hasil menunjukkan bahwa proses optimasi pentamaran pada penelitian ini dapat diprediksi dengan baik pada pentamaran dengan kecepatan tinggi, namun belum bisa diprediksi dengan baik pada pentamaran dengan kecepatan rendah.
One effort to minimize wave resistance to reduce total resistance is a multihull configuration by varying the placement of the outrigger. This study aims to find the optimal configuration of the warp chine hull to reduce significant total resistance for various speeds. The limited information about the use of warp chine hull in multihull related to the characteristics of the hull and the optimization of outrigger placement is the basis of the use of warp chine hull in this study. Calculation and optimizations using the MATLAB computer program using Artificial Neural Network methods and Genetic Algorithms. The optimization results show a decrease in resistance when Fr> 0.4 both the wave resistance coefficient and the total resistance coefficient with an average reduction of each resistance by 1.47% and 4.06%. The results show that the optimization process in this study can be predicted well in the high speed application, but it cannot be predicted well in the low speed application."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ikhwan Martias
Depok: Fakultas Teknik Universitas Indonesia, 1995
S38438
UI - Skripsi Membership Universitas Indonesia Library
Hangganis Septiastuti Puspitasari
"Saat ini banyak bermunculan jasa pengiriman paket barang. Hal ini memicu perusahaan pengiriman paket barang memberikan kualitas layanan yang baik kepada para konsumennya. PT Pos Indonesia merupakan BUMN yang bergerak di bidang jasa pengiriman surat dan paket. PT Pos Indonesia sedang berusaha meningkatkan kualitas layanannya untuk mengambil kembali pangsa pasar pengiriman paket barang.
Dalam upaya meningkatkan kualitas layanannya diperlukan sebuah metode pengukuran kualitas layanan yang bisa memberikan gambaran secara akurat penilaian kualitas menurut persepsi pelanggan. Artificial Neural Network (ANN) merupakan salah satu bagian dari data mining yang dapat digunakan untuk pengukuran kualitas. Namun, ANN memiliki keterbatasan dalam penentuan nilai parameter yang digunakan.
Penelitian ini bertujuan mengintegrasikan Genetic Algortihm dan ANN untuk mengoptimasi nilai paramater sehingga diperoleh hasil pengukuran kualitas yang akurat. Data penilaian kualitas menurut persepsi pelanggan diperoleh melalui survey menggunakan kuesioner.
Hasil pengukuran kualitas menggunakan integrasi ANN-GA menunjukkan bahwa nilai kualitas layanan paket barang PT Pos Indonesia secara keseluruhan sudah baik. Selain itu, performa hasil pengukuran menggunakan integrasi ANN-GA lebih bagus daripada menggunakan metode ANN.
Today many emerging parcel delivery services. This triggers the parcel delivery company provide good quality service to its customers. PT Pos Indonesia is a state-owned enterprise engaged in mail and parcel delivery services. PT Pos Indonesia is trying to improve the quality of its services to take back market share package delivery goods. In an effort to improve service quality required a method of measuring the quality of service that can give an accurate quality assessment according to customer perceptions. Artificial Neural Network (ANN) is one part of data mining that can be used to measure quality. However, ANN has limitations in determining value of the parameters used. This research aims to integrate Genetic algorithm and ANN to optimize value of parameters in order to obtain an accurate quality measurement results. Data quality assessment according to customers' perceptions obtained through surveys using questionnaires. Quality measurement results using ANN-GA integration shows that service quality of parcel delivery PT Pos Indonesia as a whole has been good. In addition, the performance measurement results using the integration ANN-GA better than using ANN."
Depok: Fakultas Teknik Universitas Indonesia, 2015
T41483
UI - Tesis Membership Universitas Indonesia Library
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.
Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough. To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership Universitas Indonesia Library
M. Titan Kemal Latif
"Pada masa sekarang ini perkembangan teknologi cenderung memiliki kemampuan untuk berpikir dan mengambil keputusan layaknya manusia. Salah satu dari banyak metode untuk mengembangkan teknologi yang cerdas adalah dengan menggunakan Adaptive Neuro Fuzyy Inference System. Penelitian ini dilakukan dengan menerapkan ANFIS tipe Sugeno pada data-data penelitian umum, seperti data tanaman iris dan data ionosphere, melihat efek perubahan parameter-parameter terhadap recognisinya, lalu melakukan ANFIS terhadap data citra wajah.
The technology nowadays tends to have abbility to think and to size up decision, just like us humans. One of the kind of method to enhance smart technology is by using Adaptive Neuro Fuzyy Inference System. This research is done by using ANFIS Sugeno type on general research data, such as iris plant data and ionosphere data, observing the effect of the changing parameter over the recognition, then using ANFIS on face image data."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S47312
UI - Skripsi Membership Universitas Indonesia Library
Yudi Lifiandri
"Pengendali logika fuzzy biasa mampu memperbaiki tanggapan waktu suatu sistem kendali. Keberhasilan pengendali logika fuzzy biasa ini, sangat dipengaruhi oleh pengetahuan seorang operator ahli dalarn menentukan nilai-nilai aturan fuzzy, fungsi keanggotaan masukan dan keluaran fuzzynya. Kendala tersebut dapat diatasi dengan menerapkan jaringan syaraf buatan (intelligent neural ntwork) ke dalam perancangan pengendali logika fuzzy. Pada tugas sloipsi ini mencoba menerapkan sualu struktur jaringan syaraf buatan pada perancangan pengendali Iogika fuzzy untuk mengendalikan suatu sistem kendali yang selanjutnya disimulasikan dengan suatu perangkat lunak sederhana (visual basic 3.0). Struktur jaringan syaraf buatan tersebut adalah struktur normalized fuzzy neural network (NT-NN). Pengendali yang dirancang disebut pengendali NFNN. Dalam pengendalian suatu sistem, pengendali NFNN ini membutuhkan suatu identifikasi. Identifikasi disini berfungsi untuk memperoleh perubahan sinyal keluaran plant terhadap perubahan sinyal masukan plant. Dengan kemampuan belajar dari jaringan syaraf buatannya, pengendali NFNN ini mampu memperbaharui nilai aturan fuzzy, fungsi keanggotaan masukan dan fungsi keanggotaan keluaran dalam usaha memperbaiki keluaran suatu sistem kendali. Dengan demikian, pengendali NFNN ini mengurangi kerja operator ahli dalam menentukan nilai aturan-aturan fuzzy, timgsi keanggotaan masukan dan keluaran fuzzy. Hasil simulasi yang dilakukan dengan menggunakan pengendali NFNN ini diperoleh perbaikan pada rise time, settling time, dan kesalahan tunak suatu sistem yang dikendalikan."
Depok: Universitas Indonesia, 1996
S38768
UI - Skripsi Membership Universitas Indonesia Library