Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 207695 dokumen yang sesuai dengan query
cover
Mohammad Novaldy Sangadji
"ABSTRAK
Pulau Sumba memiliki salah satu rasio elektrifikasi terendah di Indonesia yaitu 50,9%. Dua tantangan geografis utama yang dihadapi Pulau Sumba adalah logistik dan kekeringan berkala yang menyebabkan sulitnya akses ke air bersih. Studi ini dimulai dengan menentukan permintaan energi untuk mendapatkan volume LNG yang dibutuhkan sambil mempertimbangkan permintaan air bersih. Analisis batimetri dilakukan untuk menentukan lokasi dermaga yang tepat dan konfigurasi lokasi terminal yang tepat berdasarkan kedalaman laut. Teknologi ini menggunakan IFV dengan refrigeran HFE-7100 untuk menghasilkan gas regasified yang secara bersamaan menggunakan energi dingin LNG untuk mendinginkan air laut ke titik eutektik -21,11oC. Aspek teknologi yang diteliti adalah aspek desain unit regasifikasi dan unit desalinasi air laut. Simulasi proyek dilakukan dengan menggunakan Unisim Desing dan Superpro Design. Hasil perhitungan untuk mendapatkan gas yang dibutuhkan adalah 2 MMSCFD dengan 1038 BTU / scf GHV dan menghasilkan 99,78% air murni dari 3.408.880 liter / hari menggunakan energi dingin 870 kJ / kg. Aspek ekonomi yang diteliti adalah analisis studi kelayakan menggunakan metode arus kas dengan proyek PPP dengan skema BOT. Analisis profitabilitas memperoleh skema S-4 sebagai opsi paling ekonomis dengan WACC 9,16%, NPV $ 3,564, PBP 8,11 tahun dan IRR 9,16%. Harga gerbang pabrik dihitung menjadi $ 15,93 / MMBTU dengan kontribusi harga regasifikasi $ 6,80 / MMBTU.

ABSTRACT
Sumba Island has one of the lowest electrification ratios in Indonesia at 50.9%. The two main geographical challenges facing Sumba Island are logistics and periodic drought which makes it difficult to access clean water. The study begins by determining the energy demand to obtain the required LNG volume while considering the demand for clean water. Bathymetry analysis is carried out to determine the exact location of the pier and the configuration of the correct terminal location based on the depth of the sea. This technology uses IFV with HFE-7100 refrigerant to produce regasified gas which simultaneously uses cold LNG energy to cool sea water to the eutectic point of -21.11 ° C. The technological aspects studied are the design aspect of the regasification unit and seawater desalination unit. Project simulations are carried out using Unisim Desing and Superpro Design. The calculation result to get the gas needed is 2 MMSCFD with 1038 BTU / scf GHV and produces 99.78% pure water from 3,408,880 liters / day using cold energy of 870 kJ / kg. The economic aspect studied is the analysis of the feasibility study using the cash flow method with PPP projects under the BOT scheme. Profitability analysis obtained the S-4 scheme as the most economical option with a WACC of 9.16%, NPV of $ 3,564, PBP of 8.11 years and IRR of 9.16%. The factory gate price is calculated to be $ 15.93 / MMBTU with a regasification price contribution of $ 6.80 / MMBTU."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dio Prakoso
"Krisis air bersih sedang terjadi di seluruh dunia, termasuk di Indonesia. Kondisi Indonesia yang merupakan negara perairan memunculkan ide untuk memanfaatkan air laut sebagai sumber air bersih. Teknik desalinasi yang sudah ada terkendala masalah tingginya energi operasi yang dibutuhkan. Masalah ini dapat teratasi dengan Microbial Desalination Cell (MDC), sebuah sel bioelektrokimia yang memiliki kemampuan mendesalinasi air garam. Penelitian tentang MDC sebelumnya yang dilakukan di Universitas Indonesia telah berhasil memanfaatkan kultur murni Saccharomyces cerevisiae untuk mereduksi 34,52% garam tanpa sumber listrik atau termal. Dalam penelitian kali ini, kultur murni akan diganti dengan model limbah tempe, agar menambahkan efek tambahan berupa penguraian limbah dan menimisasi biaya substrat. Variasi penggunaan buffer, tipe elektrolit, dan penambahan kultur campuran bakteri limbah tempe dilakukan untuk melihat pengaruh terhadap pengurangan kadar garam. Hasil penelitian ini menunjukan bahwa dengan elektrolit KCl + NH4Cl dan pengontrolan pH dengan buffer pH 7 dan penambahan kultur campuran menghasilkan kinerja desalinasi terbaik dengan laju pengurangan garam 33,78%.

Water crisis is a world scale problem happening also in Indonesia. As an archipelago, infinite clean water can be achieved by processing seawater. Current desalination technique need high input energy for heat or electricity. Microbial Desalination Cell (MDC), a bioelectrochemistry cell which has desalination function. Former desalination study in Universitas Indonesia show that Saccharomyces cerevisiae culture can remove 34,52 % salt. In this study, the culture is replaced by tempe wastewater for efficiency and show the wastewater treatment potential from MDC. The variations involving effect of buffer usages, type of electrolyte, and addition of tempe wastewater bacteries mix culture to salt removal. This research shows that MDC using NH4Cl + KCl as electrolyte, usage of buffer pH 7, and addition of mix culture shows best salt removal (33,78%)"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S55340
UI - Skripsi Membership  Universitas Indonesia Library
cover
Simangunsong, Valerie Deva
"Air bersih merupakan kebutuhan pokok dalam kehidupan manusia. Namun demikian, kebutuhan akan air bersih di Indonesia masih diselimuti berbagai permasalahan kompleks. Sulitnya akses untuk memperoleh air bersih, rendahnya kualitas air yang diperoleh menjadi masalah utama yang menimpa sebagian masyarakat, terutama yang tinggal di daerah pinggiran. Masyarakat di daerah pantai maupun muara, menghadapi masalah dimana mereka menggunakan air asin yang memiliki tingkat salinitas 5 permil - 30 permil untuk memenuhi kebutuhan sehari-hari. Ketiadaan pasokan listrik pada sebagian daerah semakin membatasi masyarakat dalam penggunaan teknologi desalinasi aktif untuk mengolah air yang tersedia. Dengan demikian, desalinasi tenaga matahari adalah jawaban yang tepat atas permasalahan yang ada.
Penelitian ini bertujuan untuk mengetahui bagaimana karakteristik dari alat desalinasi tenaga surya, Solar Still X dalam menghasilkan air tawar jika dioperasikan di Indonesia dengan menggunakan air laut. Penelitian ini dilakukan dengan merekayasa beberapa faktor yang berpengaruh, seperti sudut inklinasi, dan jenis air input. Pengambilan data temperatur, kelembapan, dan hasil air terdesalinasi dilakukan dari pukul 06.00 ndash; 18.00 WIB. Rekapitulasi jumlah air dan tingkat salinitas dilakukan setiap jam. Berdasarkan pengujian yang telah dilakukan, diperoleh hasil bahwa sudut inklinasi efektif di wilayah Depok adalah sebesar 20o, dan efisiensi harian alat ini sebesar 20,48.

Freshwater is the basic needs in human life. However, the need of freshwater in Indonesia still faces some complex problems. Difficulty of freshwater access, low quality of water obtained are the main problems facing society, especially people who live in estuary area. People who live near to estuary, suffer from this problem where they use brackish water, which salinity is around 5 permil 30 permil for daily needs.Lack of electricity in some area limits people to use active desalination technology to desalinate the water available. This condition makes solar desalination technology as an appropriate answer for these problems.
This research is aiming to obtain the characteristics of Solar Still X solar desalination technology to produce freshwater if it is operated in Indonesia using seawater. In this research, some factors influenced such as inclination and water input type are varied. The measurement of temperature, relative humidity, and amount of freshwater water produced was done from 06.00 ndash 18.00. The recapitulation of water produced and salinity level was taken per hour. Based on this research it is obtained that the effective inclination for desalination panel operated in Depok is 20o and the efficiency of this desalination solar still is 20,48.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anindya Widyadhari
"Tesis ini bertujuan untuk mengoptimalkan sistem desalinasi air laut yang menggunakan energi surya berbasis Mechanical Vapor Compression (MVC) di Sumba Tengah sebagai solusi atas tingginya permintaan air di wilayah tersebut. Tiga jenis sistem fotovoltaik (PV), yaitu off-grid, hybrid, dan on-grid, akan dievaluasi melalui serangkaian simulasi menggunakan perangkat lunak HOMER untuk mengoptimalkan aspek teknis dan ekonomi dari proyek ini. Konfigurasi hybrid ditemukan sebagai yang paling optimal karena memberikan keseimbangan terbaik antara biaya dan kinerja output listrik, dengan Net Present Cost (NPC) sebesar Rp5,7 miliar dan produksi listrik tahunan sebesar 126.335 kWh. Sistem hybrid juga menghasilkanLevelized Cost of Energy (LCOE) sebesar Rp807/kWh, sehingga sesuai dengan tarif listrik industri.

This thesis aims at optimizing a sea water desalination system powered by solar energy which is based on Mechanical Vapor Compression (MVC) in Central Sumba as a solution to the existing high demand of water in the area. Three types of photovoltaic (PV) systems, namely: off-grid, hybrid, and on-grid will be evaluated through a series of simulation using the software HOMER for the purpose of optimizing both technical and economic aspects of the project. The hybrid configuration is found to be the most optimal through better trade-offs between cost and electricity output performance with Net Present Cost (NPC) of Rp5,7 billion and annual electricity generation of 126.335 kWh. The hybrid system also provides the lowest Levelized Cost of Energy (LCOE) at Rp807/kWh, thus favoring industrial electricity tariffs."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kalih Sholli Rizki
"Dalam beberapa dekade terakhir, pemenuhan kebutuhan air bersih untuk keperluan sehari-hari menjadi salah satu permasalahan utama dunia. Desalinasi berbasis tenaga matahari merupakan salah satu solusi aplikatif untuk menghasilkan air tawar di Indonesia. Sebagai negara kepulauan dan berada di bawah garis khatulistiwa, Indonesia memiliki potensi dalam mengembangkan desalinasi berbasis tenaga matahari dimana kedua sumber daya baik tenaga matahari dan air laut cukup berlimpah di negara ini. Sebelumnya telah dilakukan penelitian mengenai desalinasi ini, namun hasil yang didapatkan masih relatif rendah, yaitu pada angka 150 ml/m2/hari.
Penelitian dan perancangan ini bertujuan membuat prototipe serta meningkatkan performa dari alat desalinasi yang menghasilkan air tawar dan garam. Prototyping ini dilakukan dengan merekayasa beberapa faktor yang berpengaruh, seperti sudut kemiringan, kedalaman air, permukaan kondenser dan absorber, serta aplikasi double deck pada prototipe. Berdasarkan prototipe yang telah di uji coba, hasil air maksimal yang didapatkan mencapai 900 ml/m2/hari dari 6500 ml air laut.

In recent decade the fulfillment of the need for clean water for everyday purposes becomes one of the world's major proble,. Including Indonesia. Desalination solar energy is one solution applicable to produce freshwater in Indonesia. As an archipelago and is located below the equator, Indonesia has the potential to develop solar desalination where both resources both solar and ocean water is quite abundant in this country.It had been researched before, but it is still has low performance. The freshwater result is still in 150 ml m2 day.
This research is aiming to make a prototype and increase the performance of desalination, which produce fresh water and salt. There are some factors that influece this prototyping, like the angle, water depth, absorber dan condenser surface, and double deck system on prototype. The method of salt rsquo s measurement is waiting seawater becomes dry, take it, and measure the weight of salt. Based on running, it can produce 900 ml m2 day freshwater from 6500 mililiters seawater.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67627
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Agil Fadhel Kurnianto
"Teknologi desalinasi perlu dimanfaatkan untuk memurnikan air garam yang tersedia, termasuk air laut untuk memenuhi kebutuhan air bersih yang semakin meningkat akibat pertumbuhan penduduk serta kebutuhan industry lainnya. Beberapa metode desalinasi, seperti metode termal, membran, dan pertukaran ion, terus dikembangkan tetapi masih memiliki beberapa kekurangan. Oleh karena itu, metode desalinasi alternatif baru dengan atomisasi droplet yang memanfaatkan fenomena air entrainment sedang dikembangkan. Studi ini bertujuan untuk menganalisis pengaruh dari diameter nozzle dan tekanan terhadap sudut semprotan untuk mengkarakterisasi kabut pada proses desalinasi dari hasil perancangan desain menggunakan microbubble. Studi ini menggunakan air laut yang direkayasa kadar garam sebesar 85 ppm, yang dipompa kemudian dialirkan melalui nozzle dengan diameter kecil menjadi droplet. Penggunaan microbubble test section juga digunakan untuk meningkatkan kinerja sistem. Data kuantitatif dari hasil eksperimen diperoleh dari alat ukur dan data kualitatif dalam bentuk video yang diperoleh dengan menggunakan kamera untuk diolah menjadi data kuantitatif dengan menggunakan pengolahan citra Image-J. Hasil studi menunjukkan bahwa tekanan mempengaruhi karakteristik semprotan air berbentuk kerucut penuh. Didapatkan konfigurasi sistem penyemprotan terbaik berdasarkan desain sistem dengan nozel berdiameter 0.2 mm pada tekanan 9 bar dengan nilai laju produksi 8.25 mL/30 menit dan tingkat kadar garam 48 ppm dengan penggunaan injeksi microbubble. Hasil penggunaan injeksi microbubble juga meningkatkan hasil sistem sebesar 16.4% laju produksi air dan 3.5% pengurangan kadar garam. sehingga penggunaan microbubble direkomendasikan untuk diterapkan.

Desalination technology needs to be used to purify available salt water, including sea water to meet the increasing demand for clean water due to population growth and other industrial needs. Several desalination methods, such as thermal, membrane, and ion exchange methods, are being developed but still have some drawbacks. Therefore, a new alternative desalination method with droplet atomization utilizing the air entrainment phenomenon is being developed. This study aims to analyze the effect of the nozzle diameter and pressure on the spray angle to characterize the mist in the desalination process from the results of the design using microbubble. This study uses engineered seawater with a salt content of 85 ppm, which is pumped and then flowed through a nozzle with a small diameter into droplets. The use of microbubble test section is also used to improve system performance. Quantitative data from experimental results obtained from measuring instruments and qualitative data in the form of video obtained by using a camera to be processed into quantitative data using Image-J image processing. The results of the study show that pressure affects the characteristics of a full cone-shaped water spray. The best spraying system configuration was obtained based on the system design with a nozzle diameter of 0.2 mm at a pressure of 9 bar with a production rate of 8.25 mL/30 minutes and a salinity level of 48 ppm with the use of microbubble injection. The results of using microbubble injection also increased the system yield by 16.4% water production rate and 3.5% reduction in salt content. so the use of microbubble is recommended to be applied"
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fatyya Hasanah
"Semakin meningkatnya populasi, semakin besar pula kebutuhan akan air minum sehingga ketersediaan air bersih pun semakin berkurang. Desalinasi berbasis tenaga matahari merupakan salah satu solusi aplikatif untuk menghasilkan air tawar di Indonesia. Sebagai negara kepulauan dan berada di bawah garis khatulistiwa, Indonesia memiliki potensi dalam mengembangkan desalinasi berbasis tenaga matahari dimana kedua sumber daya baik tenaga matahari dan air laut cukup berlimpah di negara ini.
Penelitian ini menggunakan rancangan sederhana distiler dengan model seperti solar kolektor dan memanfaatkan fenomena natural evaporasi-kondensasi. Distiler pada penelitian ini dimanufaktur dengan menggunakan material sederhana yang sudah banyak berada di pasaran seperti aluminum, kayu, kaca, plastik filem, dan rangka lemari. Penelitian ini berkonsentrasi dalam kemampuan distiler dalam menyerap energi kalor matahari dan penggunaan energi kalor tersebut dalam proses kondensasi guna memproduksi air tawar. Pengukuran volume dilakukan selama 4 hari pada intensitas matahari yang berbeda-beda di setiap harinya.
Melalui penelitian ini dapat disimpulkan bahwa intensitas matahari telah ada saat cahaya matahari mulai terlihat di pagi hari pada pukul 6 pagi dan difusi energi kalor matahari telah mulai dimanfaatkan pada pagi hari tersebut. Akan tetapi kinerja distiller masih sangat rendah, hal ini terlihat dari angka efisiensi yang hanya mencapai 3,81%. Rendahnya kinerja distiller disebabkan antara lain losses yang terjadi pada distiller dari segi desain, proses kerja, maupun cuaca. Karenanya dibutuhkan rekayasa pada distiller berupa perubahan variabel fisis maupun teknis.

The increasing population, the greater the need for drinking water, so the availability of clean water also decreases. Desalination solar energy is one solution applicable to produce freshwater in Indonesia. As an archipelago and is located below the equator, Indonesia has the potential to develop solar desalination where both resources both solar and ocean water is quite abundant in this country.
This study used a simple design of distiller with model such as solar collector and utilize the natural phenomenon of evaporation-condensation. The distiller in this study was manufactured by using a common material thas has been on the market such as aluminum, wood, glass, plastic film, and iron frame. This study concentrates on the ability of distiller to absorb solar heat energy and the use of that heat energy in the process of condensation to produce freshwater. Volume measurement of the produces water performed during 4 days in the sun‟s intensity varying each day.
Through this study we can conclude that the intensity of the sun has been there as the sunlight began to be seen in the morning at 6 am and diffused solar heat energy has begun to be exploited in that early morning. However, distiller's performance is still very low, as seen from the efficiency figures which only reached 3.81%. The low performance of distiller due among other losses that occur in the distiller in terms of design, work processes, and the weather. Hence the distiller be required engineering changes by changing the variables both physical and technical.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S62650
UI - Skripsi Membership  Universitas Indonesia Library
cover
Forth, Gregory L.
The Hague: Martinus Nijhoff, 1981
306.095 986 FOR r
Buku Teks SO  Universitas Indonesia Library
cover
Muhammad Azkia Rifqi Amarullah
"Adanya kesepakatan Paris 2015 mengenai emisi gas rumah kaca membuat gas bumi mulai banyak dipilih sebagai bahan baku untuk pembangkit listrik. Distribusi gas bumi sebagai sumber bahan bakar alternatif mengharuskan dalam bentuk cair (Liquefied Natural Gas) apabila jarak yang ditempuh cukup jauh. Selain itu, apabila LNG akan digunakan sebagai sumber bahan bakar pembangkit listrik, dibutuhkan proses regasifikasi terlebih dahulu Oleh karena itu value chain dari rantai pasok LNG menjadi yang terpanjang dibanding bahan bakar lain. Penelitian ini bertujuan untuk mendapatkan skema distribusi LNG yang optimal dengan melakukan optimisasi meminimalkan biaya distribusi dan biaya regasifikasi. Optimisasi dilakukan dengan cara mencari data investasi dan spesifikasi dari kapal LNG dan terminal regasifikasi, beserta permintaan LNG di lokasi pemenuhan rantai pasok. Optimisasi dilakukan dengan metode MILP menggunakan perangkat lunak GAMS dengan solver CPLEX. Hasil optimisasi memperlihatkan bahwa klaster Bangka-Belitung-Pontianak menggunakan jaringan distribusi hub-spoke dengan kapal LNG berukuran 1.500 m3 sebanyak satu buah, 2.500 m3 sebanyak satu buah, 10.000 m3 sebanyak empat buah, dan 12.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 2.000 m3, 3.000 m3, 3.500 m3, 15.000 m3 dan 17.000 m3. Biaya pengapalan pada klaster Bangka-Belitung-Pontianak berada pada rentang $1,06 - $3,23 per MMBtu dan biaya regasifikasi pada rentang $0,58 - $0,87 per MMBtu. Sedangkan untuk klaster Sulawesi menggunakan jaringan distribusi milk-run dengan ukuran kapal LNG 20.000 m3 sebanyak dua buah dan 23.000 m3 sebanyak dua buah serta kapasitas penyimpanan berukuran 1.000 m3, 2.000 m3, 3.000 m3, 4.500 m3, 8.500 m3, dan 10.000 m3. Biaya pengapalan pada klaster Sulawesi berada pada rentang $1,55 - $1,71 per MMBtu dan biaya regasifikasi pada rentang $1,18 - $1,66 per MMBtu. Perubahan sumber LNG pada masing-masing klaster tidak mengubah jaringan distribusi terpilih, namun tetap mengubah rute dan infrastruktur logistik sehingga mengubah pula biaya pengapalan dan biaya regasifikasi.

Paris agreement on greenhouse gas emissions has made natural gas chosen as a raw material for electricity generation. Natural gas distribution as an alternative fuel source requires in the form of liquid (Liquefied Natural Gas) if the distance traveled is far enough. Also, if LNG is to be used as a fuel source for power plants, a regasification process is needed. Therefore, the value chain of the LNG supply chain is the longest compared to other fuels. This study aims to obtain an optimal LNG distribution scheme by optimizing distribution costs and regasification costs. The optimization is carried out by finding investment data and specifications from the LNG ship and regasification terminal, along with LNG demand at the supply chain fulfillment location. Optimization using MILP method with GAMS software with the CPLEX solver. Optimization results show that Bangka-Belitung-Pontianak cluster uses hub-spoke distribution network with one 1,500 m3 LNG vessel, one 2,500 m3, four 10,000 m3, and two 12,000 m3 also storage capacity is 2,000 m3, 3,000 m3, 3,500 m3, 15,000 m3 and 17,000 m3. Shipping costs in Bangka-Belitung-Pontianak cluster are in the range of $1.06 - $3.23 per MMBtu and regasification costs in the range of $0.58 - $0.87 per MMBtu. As for the Sulawesi cluster, it uses milk-run distribution network with two 20,000 m3 LNG vessels and two 23,000 m3 LNG vessels also storage capacity is 1,000 m3, 2,000 m3, 3,000 m3, 4,500 m3, 8,500 m3, and 10,000 m3. Shipping costs in the Sulawesi cluster are in the range of $1.55 - $1.71 per MMBtu and regasification costs in the range of $1.18 - $1.66 per MMBtu. Changes in LNG sources in each cluster do not change the distribution network, but still change the route and logistics infrastructure so that it also changes shipping costs and regasification costs."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fachryan Zuhri
"Indonesia merupakan salah satu negara di dunia yang diproyeksikan akan mengalami krisis air bersih pada tahun 2025. Microbial Desalination Cell (MDC) merupakan teknologi baru yang berkelanjutan untuk mendesalinasi air garam menjadi air bersih dengan memanfaatkan langsung listrik hasil dari proses oksidasi senyawa organik oleh bakteri. Potensi penggunaan limbah sebagai bahan bakar pada MDC kini mulai menarik perhatian. Pada penelitian ini, limbah cair tempe dimanfaatkan sebagai substrat. Untuk meningkatkan kinerja MDC, maka akan dievaluasi pengaruh konsentrasi metilen biru (MB) 0,1, 0,2, dan 0,4 mM sebagai mediator redoks pada ruang anoda, laju aerasi 250 dan 500 mL/menit pada ruang katoda, dan jenis limbah tempe yang digunakan (limbah model dan limbah lndustri). Terlihat peningkatan power density dengan penambahan MB dan aerasi katoda, namun sebaliknya kinerja desalinasi mengalami penurunan. Hasil terbaik dari penelitian ini didapatkan pada penggunaan limbah tempe industri, tanpa penambahan MB, dan tanpa aerasi katoda dengan besar salt removal 17,89%, dan besar power density rata-rata yang dihasilkan 44,74 mW/m3.

Indonesia is one of countries in the world that will undergo water crisis phenomena in 2025. Microbial desalination cell (MDC) offers a new and sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during organic matter oxidation. The potential use of waste as fuel in MDC has started to attract the attention. In this research, tempe wastewater will be used as substrate. To improve the performance of MDC, the effect of methylene blue concentration (MB) 0,1, 0,2, dan 0,4 mM in anolyte, cathodic aeration rate 250 and 500 mL/min, and types of tempe wastewater (model and industrial) are evaluated. The addition of MB and cathodic aeration can increase power density, but decrease the desalination rate. This research shows that MDC using industrial tempe wastewater without addition of MB and cathodic aeration, give the best performance by salt removal 17,89%, and average power density 44,74 mW/m3."
Depok: Fakultas Teknik Universitas Indonesia, 2015
S59744
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>