Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 187435 dokumen yang sesuai dengan query
cover
Arief Adi Nugroho
"Dalam sistem tenaga listrik yang kompleks, terjadinya ganggan short circuit dapat timbul kapan saja. Dampak dari gangguan tersebut akan semakin parah dan berpengaruh terhadap kestabilan sistem yang ada. Pada sistem tenaga listrik Pacitan, terdapat jalur transmisi pembangkit yang merupakan jalur utama penyaluran daya aktif dari pembangkit menuju gardu-gardu induk di sekitarnya. Oleh karenanya, jalur tersebut harus diminimalisir dampak dari gangguannya. Selain itu, kapasitas cadangan dari PLTU Pacitan masih tersisa banyak untuk menyuplai beban-beban yang berlebih dan perencanaan beban yang akan mendatang. Namun, apabila kapasitas standar pembangkit ditingkatkan akan terjadi ketidakstabilan pada sudut rotor maupun daya aktif pembangkitnya. Oleh karena itu, Unified Power Flow Controller (UPFC) salah satu divais Flexible AC Transmission System (FACTS) merupakah jawaban dari kedua permasalahan tersebut. Dengan pemasangan UPFC, kestabilan dari sudut rotor dan osilasi daya aktif pembangkit dapat teredam sehingga masih dalam ambang stabil. Injeksi yang diberikan UPFC kepada sistem berupa daya reaktif dan tegangan p.u pada saluran transmisi PLTU Pacitan-Nguntoronadi dengan menganut pemasangan dengan impedansi paling besar juga memberikan keunggulan dalam menangani bus-bus yang undervoltage serta pemerataan aliran daya aktif saat pembangkit ditingkatkan 10 MW dari kapasitas standarnya.

In complex electric power systems, the occurrence of a short circuit can occur at any time. The impact of these disturbances will be more severe and affect the stability of the existing system. In the Pacitan power system, there is a generator transmission line which is the main channel for channeling active power from the generator to the surrounding substations. Therefore, the pathway must be minimized from the impact. Apart from that, there is still a lot of spare capacity from the PLTU PLTU to supply excessive loads and plan future loads. However, if the standard capacity of the generator is increased there will be instability in the rotor angle and the active power of the generator. Therefore, the Unified Power Flow Controller (UPFC), one of the Flexible AC Transmission System (FACTS) devices, is the answer to these two problems. With the installation of UPFC, the stability of the rotor angle and generator active oscillation can be damped so that it is still in a stable threshold. The injection given by UPFC to the system in the form of reactive power and p.u voltage on the transmission line of the Pacitan-Nguntoronadi PLTU with the highest impedance installation also provides advantages in handling undervoltage buses and even distribution of active power when the plant is increased by 10 MW from its standard capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faya Safirra
"Dalam sistem tenaga listrik, penyaluran tenaga listrik yang baik merupakan hal yang vital dalam memenuhi kebutuhan beban. Pada sistem tenaga listrik Jawa Bali, terdapat permasalahan dalam transmisi tenaga listrik dari timur ke barat Jawa, yaitu ketidakseimbangan pembebanan jalur utara (Sirkit Ungaran-Mandiracan 1&2) dan jalur selatan (Sirkit Pedan-Tasik & sirkit Pedan-Kesugihan-Tasik) karena perbedaan impedansi saluran, juga masalah penurunan tegangan pada sisi barat Jawa. Permasalahan tersebut bisa diselesaikan dengan memasang UPFC pada sistem tenaga listrik Jawa Bali. Hasil simulasi menunjukkan bahwa pemasangan UPFC pada sirkit Pedan-Tasik dapat membantu meningkatkan transfer jalur selatan sampai sebesar 5% dan menurunkan transfer jalur utara sampai sebesar 5% untuk semua skenario transfer. Peningkatan nilai tegangan pada sisi barat Jawa yaitu region 1 dan 2 juga bisa didapat. Kestabilan sistem setelah terjadi gangguan juga bisa dicapai dalam waktu yang lebih singkat jika dibandingkan dengan sistem tanpa UPFC.
In electric power system, a good power transmission is vital in meeting the needs of the load. In Java Bali electric power system, there are problems in the transmission of electric power from east to west of Java, namely the loading imbalance of north transmission line (Ungaran-Mandiracan 1 & 2) and the south transmission line (Pedan-Tasik & Pedan-Kesugihan-Tasik) because of differences in line impedance, also the voltage drop problem on the west side of Java. Those problems can be solved by using the UPFC in the Java-Bali power system. The simulation results show that UPFC installation on Pedan-Tasik circuit can improve the transfer of the south transmission line up to 5% and lower the transfer of north transmission line up to 5% for all transfer scenarios. Increasing the voltage on the western side of Java, the region 1 and 2, can also be obtained. In addition, the stability of the system after an interruption can be achieved in a shorter time compared to system without UPFC."
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65261
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Brian Na'iman Hadi
"Perubahan kondisi pembebanan dapat mempengaruhi kapasitas dan kemampuan pengiriman daya (power transfer capability) pada sistem tenaga listrik. Ketika kondisi pembebanan rendah, sistem tenaga listrik mengalami tegangan lebih akibat kelebihan suplai daya reaktif pada sistem. Selain itu, kondisi tersebut juga dapat menjadi penyebab penurunan kualitas daya pada saluran akibat deviasi tegangan yang melampaui batas nominal sesuai standar yang berlaku. Oleh sebab itu, peralatan Flexible AC Transmission System (FACTS) diperlukan untuk memperbaiki dan memitigasi permasalahan yang terjadi. Pada penelitian ini, peralatan FACTS yang dipasang yaitu Static VAR Compensator (SVC) dengan tujuan untuk memperbaiki profil tegangan dan tetap menjaga kondisi kestabilan tegangan di sistem transmisi DI Yogyakarta 150 kV ketika kondisi beban rendah Idul Adha 2023. Lokasi pemasangan SVC yang optimal ditentukan melalui Metode Novel Collapse Prediction Index (NCPI). Sementara itu, penentuan kapasitas optimal SVC akan dilakukan dengan beberapa variasi kapasitas TCR dan kemudian divalidasi dengan QV Curve pada busbar yang telah ditentukan. Pada penelitian ini, lokasi pemasangan SVC dilakukan pada tiga lokasi busbar, yaitu KNTUNG/1 dengan kapasitas 161.5696 Mvar, BNTUL/2 dengan kapasitas 180.0023 Mvar, BNTUL/1 dengan kapasitas 245.0698 Mvar. Pemasangan SVC di beberapa lokasi tersebut berhasil menurunkan tegangan sebesar 5.499% pada busbar KNTUNG/1, 7.988% pada busbar BNTUL/2, dan 7.608% pada busbar BNTUL/1. Walaupun kondisi kestabilan tegangan terjaga, pemasangan SVC dapat menurunkan reactive power margin sebesar 20.47331% pada busbar KNTUNG/1, 27.96022% pada busbar BNTUL/2, dan 27.18405% pada busbar BNTUL/1.

Loading conditions can affect the power system's capacity and power transfer capability. The power system experiences overvoltage in low-loading conditions due to an excess reactive power supply. In addition, this condition can also cause a decrease in power quality on the line due to voltage deviations that exceed nominal limits according to applicable standards. Therefore, Flexible AC Transmission System (FACTS) equipment is needed to improve and mitigate the problems. In this study, the FACTS equipment installed is the Static VAR Compensator (SVC) to improve the voltage profile and maintain voltage stability in the DI Yogyakarta 150 kV transmission system during low load conditions Eid al-Adha 2023. The Novel Collapse Prediction Index (NCPI) method determines the optimal SVC installation location. Meanwhile, the optimal SVC capacity will be determined with several variations of TCR capacity and then validated with the QV Curve on the specified busbar. In this study, the SVC installation location was carried out at three busbar locations, namely KNTUNG/1 with a capacity of 161.5696 Mvar, BNTUL/2 with a capacity of 180.0023 Mvar, BNTUL/1 with a capacity of 245.0698 Mvar. Installing SVC at some locations reduced the voltage by 5.499% at the KNTUNG/1 busbar, 7.988% at the BNTUL/2 busbar, and 7.608% at the BNTUL/1 busbar. Although the voltage stability condition is maintained, the installation of SVC can reduce the reactive power margin by 20.47331% on the KNTUNG/1 busbar, 27.96022% on the BNTUL/2 busbar, and 27.18405% on the BNTUL/1 busbar."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irana Krisiana
"Kebutuhan energi listrik untuk kehidupan sehari-hari akan terus meningkat seiring dengan pertumbuhan penduduk. Kebutuhan energi listrik tersebut dipenuhi oleh pembangkit-pembangkit listrik berkapasitas besar yang umumnya terletak jauh dari titik beban. Dengan melewati sistem transmisi dan sistem distribusi, tak jarang akan menimbulkan banyak gangguan baik dari faktor internal maupun eksternal. Hal ini akan menurunkan tingkat keandalan sistem tenaga listrik dalam menyediakan kebutuhan listrik kepada konsumen. Demi meningkatkan keandalan sistem distribusi, dipasanglah pembangkit terdistribusi atau Distributed Generation sebagai alternatif pembangkit yang berkapasitas kecil dan dapat dipasang di jaringan distribusi. Menghitung keandalan sistem distribusi ini dilakukan menggunakan metode simulasi menggunakan ETAP dengan hasil peningkatan keandalan yang paling bagus sebesar 78,23 pada SAIFI dan 57,44 pada SAIDI ketika DG dipasang di setiap feeder yang berbeda di dalam satu gardu distribusi yang sama.

The need for electrical energy for everyday life will continue to increase along with population growth. The demand for electrical energy is met by large capacity power plants that are generally located far from the load point. By passing the transmission system and distribution system, sometimes there will be many disturbances both from internal and external factors. To reduce disturbance in order to improve the reliability of the distribution system, a Distributed Generation is installed as an alternative to a small capacity plant and can be installed in a distribution network. Calculating the reliability of the distribution system was performed using a simulation method using ETAP with the best result of reliability improvement of 78.23 at SAIFI and 57.44 on SAIDI when DG installed in each different feeder in the same distribution substation."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezki Zakaria
"Proyek FEED (Front End Engineering Design) Pembangunan Booster Pump Station Batang Heavy Oil di Rokan Hilir, Riau yang dilaksanakan oleh PT Solusi Energy Nusantara merupakan bagian dari Proyek Strategi Nasional National Capital Integrated Coastal Development (NCICD). Praktik keinsinyuran ini adalah mensimulasikan perancangan dan analisis sebuah sistem tenaga listrik dengan menggunakan software engineering ETAP (Electrical Transient Analysis Power) power station 19.5. ETAP mampu bekerja dalam keadaan offline untuk simulasi tenaga listrik dan online untuk pengelolaan data real-time dengan metode pendekatan studi aliran daya (load flow study). Metode pendekatan aliran daya yang akan digunakan dalam praktik keinsinyuran ini adalah metode Newton-Rhapson dengan faktor ketelitian 0,0001. Dari hasil analisis simulasi dan teori aliran daya, maka didapatkan nilai level tegangan dari peralatan listrik yang dihasilkan masih dalam batas yang diperbolehkan, yaitu ± 5%. Power supply dari PLN dengan hasil level tegangan, 20 kV Medium Voltage switchgear (100%); 6,6 kV Medium Voltage Switchgear (99,06%) dan 0,4 kV Low Voltage Switchgear (99,72%), sedangkan power supply dari EDG (Emergency Diesel Generator) diperoleh dengan hasil level tegangan 6,6 kV Medium Voltage switchgear (100%) dan 0,4 kV Low Voltage switchgear (99,3%). Praktik keinsinyuran dilaksanakan mulai dari pengumpulan data sampai dengan pembuatan laporan telah memenuhi aspek profesionalisme, KEI dan K3LL.

The FEED (Front End Engineering Design) Project for the Construction of the Batang Heavy Oil Booster Pump Station in Rokan Hilir, Riau implemented by PT Solusi Energy Nusantara is part of the National Capital Integrated Coastal Development (NCICD) National Strategy Project. This engineering practice is to simulate the design and analysis of an electrical power system using ETAP (Electrical Transient Analysis Power) power station 19.5 engineering software. ETAP is able to work offline for power simulation and online for real-time data management with the load flow study approach method. The power flow approach method that will be used in this engineering practice is the Newton-Rhapson method with an accuracy factor of 0.0001. From the results of simulation analysis and power flow theory, it is obtained that the voltage level value of the electrical equipment produced is still within the allowed limit, which is ± 5%. Power supply from PLN with voltage level results, 20 kV Medium Voltage switchgear (100%); 6.6 kV Medium Voltage Switchgear (99.06%) and 0.4 kV Low Voltage Switchgear (99.72%), while power supply from EDG (Emergency Diesel Generator) is obtained with voltage level results 6.6 kV Medium Voltage switchgear (100%) and 0.4 kV Low Voltage switchgear (99.3%). Engineering practices carried out from data collection to report writing have fulfilled aspects of professionalism, KEI and HSE.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Rao, T.S. Madhava
New Delhi: Khanna, 1974
621.314 RAO p
Buku Teks SO  Universitas Indonesia Library
cover
Edy Junaidi
Depok: Fakultas Teknik Universitas Indonesia, 1992
S38361
UI - Skripsi Membership  Universitas Indonesia Library
cover
Doni Abdul Mukti
"Proteksi adalah pengaman pada sistem tenaga listrik yang terpasang pada sistem distribusi tenaga listrik, trafo tenaga, transmisi tenaga listrik dan generator listrik dipergunakan untuk mengamankan sistem tenaga listrik dari gangguan listrik atau beban lebih dengan cara memisahkan bagian sistem tenaga listrik yang terganggu dengan sistem tenaga listrik yang tidak terganggu sehingga sistem kelistrikan yang tidak terganggu dapat terus bekerja.
Sistem proteksi pada gardu T75B, T149 dan MG61 terjadi kegagalan kerja dimana saat ada gangguan hubung singkat disisi konsumen, mengakibatkan PMT (Pemutus Tenaga) Penyulang trip. Hal ini mengakibatkan pemadaman meluas yang tidak diharapkan. Untuk mengetahui penyebab kegagalan sistem proteksi dilakukan beberapa pengujian dan analisis menggunakan metode Root Cause Analysis yaitu pengujian koordinasi relay proteksi, pengujian performa alat proteksi, analisis konstruksi sistem proteksi, dan Perhitungan pemilihan alat proteksi.
Pada gardu T75B, penyebab kegagalan sistem proteksi terdapat pada kesalahan pemilihan Transformator Arus yang jenuh saat dialiri arus gangguan melebihi 3.375 A. Pada gardu T149, penyebab kegagalan sistem proteksi terdapat pada pengaturan timing trip antara gardu dstribusi dan penyulang koasi memiliki kesamaan pada kurva Definite Time yaitu 0,2 sekon. Pada gardu MG61, penyebab kegagalan sistem proteksi terdapat pada kesalahan pemilihan Transformator Arus yang jenuh saat dialiri arus gangguan melebihi 1.250 A. Diharapkan dengan hasil pengujian tersebut dapat menjadi acuan untuk perbaikan sistem proteksi sehingga kegagalan serupa tidak terulang kembali.

Protection is a safety in the electric power system installed in the electric power distribution system, power transformer, electric power transmission, and generator used to secure the power system electricity from electrical disturbances or overloads by separating the disturbed parts of the electric power system from the undisturbed electrical power system so that the undisturbed electrical system can continue to work.
The protection system at the Distribution Substation of T75B, T149 and MG61 has a work failure where when there is a short circuit on the consumer side, it causes the PMT (Power Breaker) for the Feeder does not trip. This resulted in an unexpected widespread blackout. To find out the cause of the failure of the protection system, several tests and analyzes were carried out using Root Cause Analysis methods, namely protection relay coordination testing, protection equipment performance testing, protection system construction analysis, and calculation of selection of protection equipment.
At the T75B substation, the cause of the protection system failure is the Current Transformer design error which is saturated when the fault current exceeds 3.375 A. At the T149 substation, the cause of the protection system failure is the timing trip setting between the distribution substation and the feeder which has the same Definite Time curve as 0,2 sec. At the MG61 substation, the cause of the failure of the protection system is the Current Transformer selection which is saturated when the fault current exceeds 1.250 A.It is hoped that the test results can be used as a reference for improvement protection system so that similar failures do not recur.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Aghnia Nur An Nisa
"Sistem Ereke merupakan sistem kelistrikan di kawasan sisi utara pulau Buton yang masuk wilayah Kabupaten Buton Utara. Namun pola operasi pada sistem Ereke dipasok dari sistem Baubau dan dalam beberapa kondisi dioperasikan secara isolated. Dari pola operasi tersebut, terjadi beberapa kondisi yaitu kualitas tegangan yang buruk akibat letak geografis Ereke dan Baubau terlampau jauh ±199,1 kms, kemudian apabila terjadi padam meluas/padam total (Blackout) proses penormalan pada sistem Ereke membutuhkan waktu yang cukup lama karena kondisi Ereke yang berada di ujung jaringan dan tercatat pada tahun 2021, sistem Ereke mengalami padam total sebanyak 63 kali. Dari hasil analisis diperoleh bahwa apabila menggunakan pola operasi dipasok dari sistem Baubau, maka biaya yang dibutuhkan sebesar Rp 1.159.452.493,9/bulan dengan tegangan pangkal 15,6 kV pada pelanggan serta lamanya pemulihan pasca padam meluas/padam total dan apabila isolated Rp 1.622.262.413,2/bulan dengan tegangan pangkal 19,7 kV namun biaya lebih mahal namun dapat mengurangi lama waktu pemulihan pasca gangguan karena jaringan lebih pendek dan rugi jaringan berkurang. Selain itu, nilai SAIDI pada bulan Mei 2021 yaitu 5,03 jam/pelanggan/tahun dan SAIFI 5,97 kali/pelanggan/tahun. Dengan demikian, pilihan terbaik dalam pengembangan sistem pembangkitan di Ereke adalah dengan membangun sistem Ereke interkoneksi dengan sistem Baubau dengan disertai dengan pembangunan sejumlah penyulang untuk menaikkan kualitas tegangan dan kehandalan sistem Ereke dan menggunakan simulasi pada software DigSilent. Semua analisa mempertimbangkan RUPTL terbaru tahun 2021-2030.

The Ereke system was an electrical system used on the northern Buton island, a part of the North Buton Regency. The operating methods on the Ereke system were the operation method which was supplied from Baubau system and, in some conditions, isolated operation. There were several conditions caused by those operating methods, which were the poor voltage quality due to the geographical distance from Ereke to Baubau that were too far (±199,1 kms) and the long duration of the normalization process if there was a widespread blackout since Ereke was located at end of the network. In addition, the Ereke system experienced a total of 63 outages in 2021. From the analysis result, it was obtained that the operating method which was supplied from the Baubau system will cost Rp. 1,159,452,439.9/month with 15.6 kV base voltage and a long normalization duration after blackout/total blackout. On the other hand, it was also obtained that the isolated operation method will cost Rp. 1,622,262,413.2/month with 19.7 kV base voltage which was more expensive but with a shorter normalization duration after interruptions due to shorter network and the decreased network loss. Otherwise, the SAIDI value in May 2021 is 5.03 hours/customer/year and SAIFI 5.97 times/customer/year Therefore, developing interconnection of Ereke system and Baubau system along with the constructions of feeders to increase the voltage quality and reliability also with the use of DigSilent simulation software will improve the quality of electrical generation development in Ereke. The latest RUPTL (2021-2030) was considered through every analysis."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Humam Nauvally Hammam
"Energi listrik pada saat ini telah menjadi suatu kebutuhan esensial untuk menunjang kehidupan manusia sehari-hari. Pada Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) Tahun 2021-2030 disebutkan bahwa akan terjadi penambahan jaringan distribusi mencapai 456.5 ribu kms dengan persentase pertumbuhan listrik sebesar 4.9%. Oleh karena itu, dalam rangka memenuhi kebutuhan listrik sampai tahun 2030, diperlukan rencana untuk meningkatkan keandalan serta jaminan kontinuitas suplai listrik yang tidak terputus, salah satunya adalah dengan menerapkan konsep Zero Down Time (ZDT). Zero Down Time (ZDT) merupakan sebuah upaya untuk meminimalkan keluhan pelanggan terkait adanya pemadaman listrik. Penelitian ini memanfaatkan implementasi konsep jaringan Zero Down Time (ZDT) dalam upaya meningkatkan keandalan sehingga sistem dapat beroperasi secara optimal tanpa henti, yang dimodelkan menggunakan perangkat lunak ETAP 19.0.1. Analisis keandalan disimulasikan untuk melihat hasil implementasi rekonfigurasi jaringan dengan konsep Zero Down Time (ZDT) dalam mengurangi waktu pemadaman secara signifikan dan memungkinkan untuk pemulihan pasca terjadi gangguan. Hasil dari penelitian ini menujukkan bahwa nilai keandalan dari jaringan konfigurasi Zero Down Time (ZDT) memiliki nilai yang lebih baik, dengan persentase penurunan indeks SAIDI sebesar 89.5% dan indeks SAIFI sebesar 79.3% dibandingkan dengan jaringan konfigurasi spindel serta masih dalam standar maksimum yang ditentukan.

Electricity has become an essential requirement to support human life. In the Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) for 2021–2030, it is stated that there will be an additional distribution network reaching 456.5 thousand kms with a percentage of electricity growth of 4.9%. Therefore, in order to meet the demand for electricity until 2030, a plan is needed to improve reliability and guarantee the continuity of uninterrupted electricity supply, one of which is implementing the Zero Down Time (ZDT) concept. Zero Down Time is an effort to minimize customer complaints regarding power outages. This research utilizes the implementation of the Zero Down Time (ZDT) network concept in an effort to improve reliability so that the system can operate optimally without interruption, which is modeled using the ETAP 19.0.1 software. Reliability analysis is simulated to see the results of the implementation of network reconfiguration with the Zero Down Time (ZDT) concept in significantly reducing blackout time and allowing for post-fault recovery. The results of this study show that the reliability value of the Zero Down Time (ZDT) configuration network has a better value, with a SAIDI index decrease of 89.5% and a SAIFI index decrease of 79.3% compared to the spindle configuration network and still within the specified maximum standards.
"
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>