Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 157195 dokumen yang sesuai dengan query
cover
Anggoro Gagah Nugroho
"Plat nomor merupakan suatu jenis identifikasi kendaraan bermotor. Setiap kendaraan bermotor yang beroperasi dijalanan diwajibkan untuk melengkapi kendaraannya dengan plat nomor atau Tanda Nomor Kendaraan Bermotor (TNKB) yang sesuai dengan kode wilayah, nomor registrasi dan masa berlaku. Plat nomor di Indonesia terdapat 3 warna yang dipakai yaitu hitam, merah dan kuning dengan masing masing warna untuk fungsi yang berbeda. Dengan jumlah kendaraan di Indonesia, sistem pengenalan plat nomor dibuat secara otomatis bisa di implementasikan untuk memudahkan berbagai hal dalam pendataan plat nomor diantaranya pengecekan plat nomor ketika di area parkir, menemukan kendaraan yang dicuri ataupun mobil yang melanggar lampu merah. Pada penelitian ini terdapat 2 metode yang sering digunakan untuk pengenalan plat nomor otomatis yaitu KNN (K-Nearest Neighbour) dan NN (Neural Network). Setelah dilakukan pengujian menggunakan 3 analisis uji yang sudah dilakukan oleh penulis, akurasi metode neural network berhasil mencapai 88,8% sedangkan pada K-Nearest Neighbor akurasinya mencapai 72,2%. Metode NN lebih baik daripada KNN pada pengujian kali ini disebabkan adanya modifikasi pada variable yang dapat membuat akurasi NN lebih baik daripada KNN. Sedangkan pada metode KNN tidak dapat merubah akurasi yang telah didapatkan.

Number plate is a type of motor vehicle identification. Every motorized vehicle operating on the road is required to complete the vehicle with a license plate or Motor Vehicle Number (TNKB) that matches the area code, registration number and validity period. Number plates in Indonesia there are 3 colors used, namely black, red and yellow with each color for different functions. With the number of vehicles in Indonesia, the number plate recognition system is made automatically can be implemented to facilitate various things in number plate registration including checking license plates when in the parking area, finding stolen vehicles or cars that violate red lights. In this study there are 2 methods that are often used for automatic number plate recognition, namely K-Nearest Neighbor and NN (Neural Network). After testing using 3 test analyzes carried out by the author, the accuracy of the neural network method reached 88.8% while the K-Nearest Neighbor accuracy was 72.2%. The NN method is better than KNN in this test due to a modification in the variable that can make the accuracy of NN better than KNN. While the KNN method cannot change the accuracy that has been obtained."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Manurung, Patardo Marasi
"Skripsi ini dibuat untuk merancang dan mengimplementasikan perangkat lunak yang dapat mengenali karakter (berupa angka dan huruf) pada plat nomor mobil pribadi di Indonesia dari citra hasil pemotretan kamera digital dengan menggunakan jaringan syaraf tiruan tipe Kohonen dan kompetitif.sebagai metode pengenalan.
Terdapat 3 tahapan proses yang digunakan dalam pembuatan perangkat lunak yaitu tahap pre-processing, tahap pelatihan jaringan syaraf tiruan tipe kohonen dan kompetitif dan tahap pengenalan. Pada tahap pre-processing bertujuan untuk mendeteksi lokasi dan ekstraksi plat nomor lalu mengekstaksi karakter huruf dan angka dari plat nomor. Untuk mendeteksi plat nomor digunakan assymetric filter (rank filter) terhadap citra yang telah dilakukan proses vertical edge detection. Untuk mengekstraksi karakter angka dan huruf dilakukan proses background equalization terlebih dahulu. Pada tahap pelatihan jaringan bertujuan untuk pembentukan suatu database angka dan database huruf yang akan dibutuhkan pada tahap pengenalan. Perbedaan pola dari masing-masing angka dan huruf merupakan suatu ciri yang akan digunakan untuk data masukan jaringan syaraf tiruan. Tahap pengenalan merupakan suatu pattern recognition untuk mengenali angka dan huruf pada plat nomor. Jaringan syaraf tiruan tipe Kohonen digunakan untuk pengenalan huruf dan tipe kompetitif untuk pengenalan angka. Analisis yang dilakukan bertujuan untuk menentukan pengaruh jumlah sampel pada tahap pelatihan jaringan, pengaruh tipe jaringan syaraf tiruan, dan penyebab kesalahan pada tahap pre-processing dan tahap pengenalan.
Berdasarkan hasil simulasi, perangkat lunak pengenalan plat nomor yang dibuat telah berhasil mengenali pola huruf dengan tingkat akurasi 88,89% dan pola angka dengan tingkat akurasi 98.3% dan pengenalan plat dengan tingkat akurasi 60%.

This final project is created to design and to implement software which can recognize Indonesian license plate number from digital camera image using competitive and Kononen Neural Network as recognition method.
There are 3 process which are used in making software which are: pre-processing phase, training phase of kohonen and competitive neural network and recognition phase. The purposes of pre-processing phase are to be able to localize and to extract license plate then to extract number and letter from the license plate. The license plate is detected by applying asymmetric rank filter to the image that has been vertical edge detected. Background equalization process is needed first for the License Plate Character Segmentation. The purposes of training phase are able to make number database and letter database that wil be needed in recognition phase. Pattern difference from each number and letter is a characteristic that will be used for input data of neural network. Recognition phase is a pattern recognition to recognize letter and number from license plate. Kohonen neural network is used to recognize letter and competitive neural network is used to recognize number. The final project analyzed the influence from a number of sample, the influence of neural network type, and cause of error in pre-processing phase and recognition phase.
From the simulation output, the software can achieve 88,89% accuracy in recognize theletter, 98.3% accuracy in recognize the number, and 60% accuracy in recognize plate."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40468
UI - Skripsi Open  Universitas Indonesia Library
cover
Wahyu Hutomo Nugroho
"Proses segmentasi organ secara manual memakan waktu dan hasilnya subyektif terhadap definisi batas-batas kontur. Pemanfaatan teknologi Machine Learning (ML) berjenis 3D convolutional neural network (3D CNN) untuk mensegmentasi organ secara otomatis dapat mempercepat dan menstandarisasi hasil segmentasi organ. Penelitian ini mengimplementasilan network ML berbasis VoxResNet dan memanfaatkan 60 dataset CT Scan toraks dari Grand Callenge AAPM 2017 untuk melatih, memvalidasi, dan menguji model-model ML dengan berbagai variasi hyperparameter. Pengaruh variasi hyperparameter terhadap hasil segmentasi model juga dipelajari. Dataset dibagi menjadi 3 yaitu, 36 untuk perlatihan, 12 untuk validasi, dan 12 untuk pengujian. Dalam penelitian ini paru-paru kiri dan paru-paru kanan dijadikan satu jenis OAR bernama paru-paru, esophagus dan spinal cord dijadikan satu OAR bernama ESP, sedangkan jantung tetap OAR tersendiri. Variasi hyperparameter adalah variasi ukuran patch, jumlah batch, dan weight class. Hasil segmentasi model-model dievaluasi dan diperbandingkan untuk mencari model terbaik dengan hyperparameter-nya yang mampu menghasilkan kualitas hasil segmentasi organ terbaik. Kemampuan network dalam proses perlatihan dan validasi dievaluasi menggunakan kurva pembelajaran. Kualitas hasil segmentasi model organ dievaluasi menggunakan boxplot distribusi populasi nilai metrik Dice Similiarity Coefficient (DSC) dan Housdorf Distance (HD) setiap slice. Peningkatan atau penurunan kinerja model akibat variasi hyperparameter dinilai menggunakan skor peningkatan metrik. Terakhir, metrik DSC dan HD95 secara 3D hasil segmentasi model terbaik dibandingkan dengan hasil segmentasi oleh interrater variability AAPM 2017 dan hasil segmentasi team virginia. Hasil kurva pembelajaran tidak mengalami underfitting menunjukkan bahwa network mampu mempelajari data perlatihan dengan baik. Overfitting terjadi pada model organ jantung dan ESP. Hasil eksperimen variasi ukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja moukuran patch menunjukkan bahwa besar ukuran patch tidak selalu linier dengan kinerja model. Model ukuran patch tengah memberikan kualitas distribusi metrik dan skor paling baik dibandingkan model ukuran patch terkecil dan terbesar pada semua OAR dengan skor 11, 13, dan 13 dari 16. Hasil eksperimen variasi jumlah batch menunjukkan bahwa peningkatan jumlah batch tidak selalu berdampak positif terhadap kinerja model. Untuk model jantung ukuran patch terbesar, peningkatan batch dapat meningkatkan skor dari 2 menjadi 12. Untuk model ESP ukuran patch terbesar, peningkatan batch menurunkan skor dari 13 menjadi 2. Hasil eksperimen variasi weight class (W) menunjukkan bahwa baik model jantung maupun ESP cenderung memberikan distribusi metrik dan skor terbaik di sekitar W = [1,3.67] atau W = [1, C1 < 11]. Dibandingkan dengan interrater variability AAPM, model jantung terbaik menghasilkan nilai metrik yang comparable, yaitu untuk DSC 3D 0.932 ± 0.016 = 0.931 ± 0.015 dan untuk HD95 4.00 ± 0.25 < 6.42 ± 1.82. Sedangkan untuk model paru-paru memberikan metrik lebih baik, yaitu 0.964 ± 0.025 > 0.956 ± 0,019 dan 4,72± 0,21 < 6.71 ± 3,91. Dibandingkan dengan team virginia, model jantung terbaik berhasil memberikan nilai metrik yang lebih baik. yaitu 0.932 ± 0.016 > 0.925 ± 0.015 dan 4.00 ± 0.25 < 6.57 ± 1.50, sedangkan model ESP terbaik menghasilkan metrik yang comparable, yaitu 0.815 ± 0.049 = 0,810 ± 0,069 dan 4,68 ± 0,17 < 8,71 ± 10,59. Dari hasil-hasil ini memberikan potensi adanya perpaduan ukuran patch, jumlah batch, dan weight class tertentu yang dapat menyebabkan hasil segmentasi model ukuran patch lebih kecil dapat mengimbangi hasil segmentasi model ukuran patch lebih besar sehingga tuntutan akan perangkat dengan spesifikasi tinggi dan mahal dapat berkurang.

The process of manual organ segmentation is time consuming and the results are subjective in term of definition of contour boundaries. The utilization of Machine Learning (ML) technology using 3D convolutional neural network (3D CNN) to segment organs automatically can speed up the procces as well as standardizing the results of organ segmentation. This study implements a VoxResNet-based ML network and utilizes 60 thoracic CT scan datasets obtained from Grand Callenge AAPM 2017 to train, validate, and test ML models with various hyperparameter variations. The effects of hyperparameter variations on the segmentation results of models are also studied. The dataset is divided into 3 parts, namely 36 for training, 12 for validation, and 12 for testing. In this study the left lung and right lung were combined into one type of OAR called the lung, the esophagus and spinal cord were combined into one OAR called ESP, while the heart remained a separate OAR. Hyperparameter variations are variations in patch size, number of batches, and weight loss. The segmentation results of the models are evaluated and compared each other to find the best model and it’s hyperparameters which is able to produce the best segmentation’s quality. The ability of the network in training and validation procceses is evaluated using learning curve. The quality of the organ model’s segmentation results is evaluated using boxplot of population’s distribution of the Dice Similiarity Coefficient (DSC) and Housdorf Distance (HD) metrics for each slice. The increases or decreases in model performance due to variations in hyperparameters are assessed using the metric improvement score. Finally, the 3D DSC and HD95 metrics of the best model’s segmentation results are compared to the results of segmentation by the AAPM 2017’s interrater variability and to the segmentation results by team virginia. There is no underfitting of learning curve indicates that the network is able to learn the training data. Overfitting occurs in the heart and ESP models. The experimental results from patch size variations show that the size of the patch is not always linear with the performance of the model. The middle patch sized models give the best metric distribution’s quality as well as scores compared to the smallest and largest patch sized models for all OARs with scores of 11, 13, and 13 out of 16. The experimental results from batch number variations show that an increase in batch does not always have a positive impact on model performance. For the largest patch sized heart’s model, the increase increases the score from 2 to 12. For the largest patch sized ESP's model, the increase reduces the score from 13 to 2. The results from variations in weight loss (W) experiment show that both heart’s and ESP's models tend to provide the best distributions in term of metrics and scores around W = [1, 3.67] or W = [1, C1 < 11]. By comparing with AAPM's interrater’s variability, the best heart model produces comparable metric's result, that is 0.932 ± 0.016 = 0.931 ± 0.015 for DSC 3D and 4.00 ± 0.25 < 6.42 ± 1.82 for HD95. The best lungs model produces better metrics, that is 0.964 ± 0.025 > 0.956 ± 0,019 and 4,72 ± 0,21 < 6.71 ± 3,91. By comparing with team virginia's results, the best heart model produces better results that is 0.932 ± 0.016 > 0.925 ± 0.015 and 4.00 ± 0.25 < 6.57 ± 1.50. Meanwhile the best ESP model produces comparable results that is 0.815 ± 0.049 = 0,810 ± 0,069 and 4,68 ± 0,17 < 8,71 ± 10,59. The results of this study suggests that there is a certain combination of patch size, batch, and weight class by which enables smaller patch sized model to produce comparable metric's result produced by larger patch sized model thus decreasing the need to use higher specificationed and expensive computer."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Adam Bachtiar
"Memprediksi Pergerakan Harga Saham selalu menjadi isu yang menarik dan memiliki implikasi yang signifikan dalam membuat keputusan investasi, khususnya di Bursa Efek Indonesia sebagai pasar yang menggeliat. Penelitian membahas prediksi pergerakan harga saham dengan menggunakan Artificial Neural Network (ANN) atau jaringan syaraf tiruan dan Box-Jenkins Autoregressive Integrated Moving Average (ARIMA) di Bursa Efek Indonesia.
Penelitian ini menggunakan pendekatan kuantitatif dan tergolong dalam studi eksplanatif. Rentang waktu yang digunakan ialah dari Januari 2008 hingga Desember 2012. Penelitian ini berusaha menganalisis signifikansi dari metode ANN dalam peramalan harga saham LQ45 di Indonesia.
Diharapkan hasil dari penelitian ini dapat membantu para investor dan pihak lain yang berkepentingan dalam memilih metode peramalan yang terbaik dan juga keputusan bisnis terbaik. Terdapat empat faktor yang dipilih sebagai variabel independen, yaitu Indeks Harga Saham Gabungan (IHSG), volume perdagangan harian tiap saham, kurs Rupiah terhadap Dollar Amerika dan harga minyak dunia. Penelitian ini menemukan bahwa metode ANN lebih signifikan dibandingkan dengan metode ARIMA dalam peramalan harga saham LQ45 di Indonesia.

Predicting Stock Price Movement is always considered as an interesting issues and has significant impacts in creating investment decision, particularly in the Indonesian Stock Exchange as an emerging market. This research discusses the prediction of stock price movements using Artificial Neural Networks (ANN) method and Box Jenkins Autoregressive Integrated Moving Average (ARIMA) in Indonesian Stock Exchange.
This research is quantitative and explanation in nature. The time scope of this research was from January 2008 up to December 2012. This research intends to analyze the significant of ANN method in forecasting Indonesian LQ45 Stock prices.
It is expected that the results of this research might assist the investors and other interested parties in selecting best forecasting methods and also best investment decision. There are four factors selected as independent variables, such as: Indonesian Composite Index, trading volume of each stocks, local currency exchange rate to USD and oil spot price. The research reveals that ANN is statistically more significant compared.
"
Depok: Fakultas Ilmu Sosial dan Ilmu Politik Universitas Indonesia, 2013
S46653
UI - Skripsi Membership  Universitas Indonesia Library
cover
Risky Agung Septiyanto
"Emisi kendaraan terutama yang menggunakan mesin diesel merupakan masalah yang sudah tidak asing lagi. Nox, HC, O2, CO, CO2 dan asap yang merupakan zat- zat hasil pembakaran mesin diesel dapat di ukur melalui percobaan eksperimental. Tetapi tentunya percobaan eksperimental ini mempunyai beberapa kekurangan seperti pengoperasiannya yang mahal serta prosesnya yang memakan waktu cukup panjang.
Untuk mengatasi masalah itu semua, maka dibuatlah suatu metode pemodelan matematika menggunakan Artificial Neural Network (ANN). Metode ANN yang digunakan dalam skripsi ini adalah Backpropagation. Dengan dilakukannya penelitian ini diharapkan karakter emisi kendaraan mesin diesel dapat diprediksi secara akurat. Hasil dari penelitian ini membuktikan bahwa ANN cukup handal dalam memprediksi emisi bahan bakar mesin diesel.

Vehicle emissions, especially using diesel engine is not a strange problem anymore. NOx, HC, O2, CO, CO2 and smoke emissions comes from the combustion of substances in diesel engines can be measured through experimental test. Certainly this experimental test has several shortcomings such as the operation is expensive and time consuming process which is long enough.
To cope with this problem, then a mathematical modeling method using Artificial Neural Network (ANN) was made. ANN method used in this thesis is Backpropagation. This research expect to predict characters of diesel engine emissions accurately. The results of this study proves that ANN quite good to predict diesel engine emission.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43928
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Hakim Mustaqim
"ABSTRAK

Kanker Payudara (KPD) merupakan salah satu penyakit penyebab kematian terbesar. Indonesia merupakan negara dengan jumlah KPD cukup besar. KPD ini merupakan benjolan. Benjolan ini dapat diperiksa menggunakan cara manual yaitu diraba bagian dekat dengan putting susu. Jika benjolan tidak kunjung mengecil dianjurkan untuk memeriksa ke dokter. Pendektesian KPD ini dapat dilakukan dengan menggunakan proses pencitraan. Data yang digunakan pada penelitian ini diambil dari website Pilot European Image Processing Archive (PEIPA) yaitu dataset Mammographic Image Analysis Society (MIAS). Pendektesian dilakukan dengan menganalisa gambar payudara (mammography) pasien dengan menggunakan metode Principal Component Analysis (PCA) mengubah gambar dalam bentuk matriks. Matriks ini akan digunakan sebagai data yang akan digunakan dalam Neural Network (jaringan saraf tiruan) dengan metode Backpropagation Neural Network (BNN). Dari hasil Percobaan dapat diketahui bahwa metode ini menghasilkan nilai akurasi pembelajaran dari deep learning supervised sebesar 98%.


ABSTRACT
Breast Cancer is one of the biggest causes of death. Indonesia is a country with a large number of KPDs. This KPD is a lump. This lump can be examined using a manual method that is palpated near the nipple. If the lump does not go away it is recommended to see a doctor. This breast cancer assessment can be done using the imaging process. . The data used in this study was taken from the website of the Pilot European Image Processing Archive (PEIPA) namely the Mammographic Image Analysis Society (MIAS) dataset. The assessment is done by analyzing the breast image (mammography) of the patient using the Principal Component Analysis (PCA) method to change the image in the form of a matrix. This matrix will be used as data to be used in Neural Networks with the Backpropagation Neural Network (BNN) method. From the results of the Experiment it can be seen that this method produces the value of accuracy of learning from supervised deep learning about 98%.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sangky Aryadhi
"Dalam skripsi ini dibuat perangkat lunak yang dapat mengenali tipe ABO golongan darah manusia melalui pengolahan citra berbasiskan Jaringan Syaraf Tiruan (JST). Pola sampel darah yang direaksikan dengan reagen akan memiliki hasil pasangan penggumpalan yang berbeda. Jenis reagen yang direaksikan adalah antigen-A dan antigen-B. Pola pasangan darah dan reagen serta bentuk penggumpalan citra darah menjadi ciri dan kombinasi yang unik untuk membedakan tipe-tipe darah yang ada.
Data sampel darah berupa citra digital yang diperoleh menggunakan kamera digital. Sampel darah direaksikan dengan reagen di atas preparat dengan urutan reagen anti-A ditempatkan pada bagian kiri preparat dan reagen anti-B pada bagian kanan. Sebelum diolah dalam sistem JST, data melewati pra-proses, yaitu proses perbaikan citra digital yang terdiri dari proses pencuplikan, gray-level quantization, dan normalisasi dalam bentuk matriks. Hasil akhirnya berupa citra fitur hitam putih dalam matriks berukuran 5×5. Hasil pra-proses kemudian dihitung nilai parameter karakteristiknya, yaitu nilai rata-rata matriks tersebut. Nilai ini selanjutnya akan dijadikan input bagi proses pelatihan jaringan syaraf tiruan dengan metode backpropagation.
Jumlah data sampel sebanyak 120 set, dimana 80 di antaranya digunakan untuk melatih JST, dan sisanya digunakan untuk menguji JST. Hasil simulasi menunjukkan sistem mampu mengenali golongan darah dengan tingkat akurasi hingga 90%.

In this research, an identification system of human blood type is designed using image processing techniques and the Artificial Neural Network (ANN) with backpropagation algorithms. The pattern of human blood type was formed using a chemical reaction between the blood and a reagent. The reagent that used in the reaction process are anti-A and anti-B reagent. Using a flat glass preparat as a media, the anti-A reagent is mixed to the blood sample on the left side and the anti-B reagent on the right side. Combination of blood coagulation pairs could distinguish the blood type.
The blood coagulation pair is converted into digital images after taken by a digital camera. The image is then pre-processed and normalized to 50×50 matrix size. The matrix is divided to different blocks and reduced to 5×5 grayscale image. The preprocessing involved sampling, gray-level quantization, and normalization. After preprocessing, the mean of 5×5 gray scale image will be calculated and used as the input for the ANN.
The total number of blood sample data is 140 pairs, 80 set of them are used for training process of the ANN and the rest are used for identification. The simulation result shows that the system is able to identify up to 90% level of accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S40587
UI - Skripsi Open  Universitas Indonesia Library
cover
Rosandi Prarizki
"ABSTRAK
Algoritma pembelajaran jaringan saraf tiruan dewasa ini semakin beragam.
Masing-masing algoritma memiliki kelebihan dan kekurangan dan menjadi hal
yang menarik untuk dipelajari. Pada penelitian ini akan dibahas mengenai
algoritma pembelajaran metode Levenberg-Marquardt yang akan digunakan
untuk jaringan saraf tunggal dan Ensemble Neural Network. Hasil percobaan
menunjukan bahwa metode Levenberg-Marquardt memiliki keunggulan dalam
kecepatan dan kestabilan.

ABSTRACT
Neural network learning algorithm is more diverse today. Each algorithm has
advantages and disadvantages, and those are interesting thing to learn. This
research will be discussed on the learning algorithm Levenberg-Marquardt
method to be used for a single neural network and Ensemble Neural Network.
Results of this research shows Levenberg-Marquardt learning algorithm has a
good speed and stability."
Fakultas Teknik Universitas Indonesia, 2012
S42239
UI - Skripsi Open  Universitas Indonesia Library
cover
Siauw, Luke
"Perkembangan bare dalam neural network telah memberikan keuntungan-keuntungan dalam aplikasi sistem kontrol. Berdasarkan teori stale space dan pendekatan neural network, dikembangkan suatu algoritma yang disebut Stochastic Neural Direct Adaptive Control (SNDAC) untuk mengendalikan plant yang diketahui sebagian matriks sistemnya, yaitu matdks masukan B(.) dan matriks keluaran C(.). Pengendali neural network menggunakan algoritma SNDAC untuk mengubah bobot-bobotnya sehingga dihasilkan sinyal kendali yang mengoptimalkan quadratic performance index. Parameter yang berpengaruh pada pengendalian adalah banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar. Pemilihan banyaknya neuron pada lapisan tersembunyi dan besarnya koefisien belajar tidak dapat dilakukan secara eksak, tetapi dengan trial and error. Dengan pemilihan yang tepat dihasilkan pengendalian yang stabil dengan toleransi kesalahan yang kecil, seperti terlihat pada hasiI simulasi."
Depok: Universitas Indonesia, 1997
S38826
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yodi Deza
"Peran transformasi wavelet dalam bidang kompresi dan pengkodean citra telah sangat dikenal dan telah menghasilkan standar format citra digital. Dengan konsep multiskala dan multiresolusi, sebuah citra dapat memberikan representasi yang informatif dengan titur-fitur yang ada. Fitur-fitur ini dapat dimanfaat untuk sebuah sistem pengenalan citra. Jaringan syaraf tiruan sebagai pengklasifikasi telah digunakan secara umum dengan tujuan pengenalan terhadap suatu objek ataupun fungsi. Kelebihan yang dimilikinya karena penggunakan metode training. Training dilakukan terhadap sekumpulan training set yang representatif untuk dapat melakukan proses klasifikasi terhadap objek yang akan dikenali. Skripsi bertujuan untuk memanfaatkan kemampuan transformasi wavelet untuk ekstraksi fitur dengan pengklasifikasi jaringan syaraf tiruan. Penerapannya dilakukan terhadap citra tekstur yang memiliki pola teratur. Pengambilan fitur-fiturnya menggunakan wavelet histogram signazures yang memperlihatkan fitur-fitur wavelet dalam karakteristik statistik orde pertama. Percobaan dilakukan dengan sebuah simulasi software pengenalan pola yang dibuat dengan MATLAB. Sistem dibuat berdasarkan transformasi wavelet dan jaringan syaraf tiruan. Hasil dari percobaan adalah berapa persen jumlah keberhasilan pengenalan sistem terhadap objek pengujian yang diberikan. Pengujian juga dilakukan terhadap tekstur yang diberi gangguan (noise)."
Depok: Fakultas Teknik Universitas Indonesia, 2004
S39977
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>