Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 94600 dokumen yang sesuai dengan query
cover
Falah Riski Kuskendrianto
"ABSTRAK
Nitrogen sebagai unsur yang banyak terdapat di alam dapat dimanfaatkan sebagai gas yang diserap untuk membantu dalam mengkarakterisasi material, khususnya pada permukaan material. Menurut Brunauer-Emmet-Teller (BET) teori, nitrogen digunakan sebagai gas pengkarakterisasi material karena kemampuan pada kemurniannya yang tinggi dan dapat berinteraksi dengan zat padat. Sejauh ini BET hanya menghasilkan data berupa sifat kuantitatif namun tidak menunjukkan fenomena-fenomena yang dapat terlihat oleh karena itu, digunakan simulasi dinamika molekuler dan membuat pemodelannya untuk mengamati fenomena yang terjadi pada saat adsorpsi nitrogen pada silika amorf yang merupakan material berpori dengan luas permukaan yang besar. Pada penelitian ini simulasi dinamika molekuler yang dilakukan diatur dalam keadaan isotermis, dimana temperatur yang digunakan sebanyak 3 variabel yakni : 77 K, 100 K, dan 150 K pada variasi tekanan yang digunakan 1,3,5,7,  dan 10 atm. Berdasarkan hasil yang diperoleh dari simulasi menunjukkan pada saat temperatur 77 K memiliki kemampuan yang optimal dalam mengadsorpsi nitrogen dibandingkan temperatur 100 K dan 150 K.

 


Nitrogen as an element that is widely found in nature, can be used as a gas that is absorbed to help characterize materials, especially on the surface of the material. According Brunauer-Emmet-Teller (BET) is a theory where nitrogen is used as a gas characterizing material because of its ability to high purity and can interact with solid elements. So far, BET only produces data in the form of quantitative properties but does not show phenomena that can be seen, because of that, molecular dynamics simulations can be done and modeling it to observe the phenomenon that occurs during nitrogen adsorption in amorphous silica which is a porous material with a large surface area. In this study the molecular dynamics simulations are arranged in a state of isotherm, where the temperature used is 3 variables: 77 K, 100 K and 150 K in the variation of pressure used 1, 3, 5, 7, and 10 atm. Based on the results obtained from the simulation, it was found that on 77 K temperature had the optimal ability to adsorb nitrogen compared to 100 K and 150 K."

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Hanif Abdurrahman
"ABSTRAK

Hidrogen merupakan salah satu sumber energi masa depan karena bersifat ramah lingkungan. Namun dalam pengembangannya masih terdapat beberapa masalah dalam metode penyimpanannya. Pada beberapa penelitian, ditemukan bahwa material berbasis silikon merupakan salah satu kandidat yang baik sebagai media penyimpanan hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada silika amorf dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones. Pada simulasi ini temperatur yang digunakan yaitu 233, 253, 273 dan 293 K serta tekanan pada setiap temperatur bervariasi yaitu 1, 2, 5, 10 dan 15 atm. Simulasi ini berhasil menggambarkan dan mengindikasikan bahwa silika amorf memiliki kemampuan untuk menyimpan hidrogen yang cukup baik dimana temperatur dan tekanan mempengaruhi jumlah hidrogen yang teradsorpsi. Pengaruh temperatur yaitu pada temperatur yang lebih rendah (233 K), maka jumlah konsentrasi hidrogen yang terserap pada silika amorf akan semakin besar. Sementara pada temperatur yang lebih tinggi maka hasilnya akan menurun. Hasil adsorpsi terbaik terjadi pada tekanan yang lebih tinggi (15 atm) pada temperatur rendah (233 K) dengan konsentrasi hidrogen sebesar 0,048116%.


ABSTRACT
Hydrogen is one of the future source energy because it has environmentally friendly. However, there are still some problems in the storage method of hydrogen. In several studies, it was found that Silicon based material is a promising candidate as a hydrogen storage medium. In this study, the effect of various temperature and pressure to the adsorption of hydrogen on amorphous silica with molecular dynamics simulation using Lennard-Jones potential. In this simulation, the temperature that i used are 233, 253, 273 and 293 K with pressure at each temperature are 1, 2, 5, 10, and 15 atm. The simulations had successfully visualize and indicate that amorphous silica has a good hydrogen storage capability where temperature and pressure affect the amount of hydrogen adsorbed.. At low temperature (233 K), the hydrogen concentration are relatively high than at higher temperature. The best result of hydrogen capacity is 0,048116% that occurred at high pressure (15 atm) with low temperature (233 K) condition.

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Billy Adhitya Ramadhan
"ABSTRAK
Hidrogen merupakan salah satu unsur yang melimpah dimuka bumi, hidrogen ditemukan bersenyawa dengan atom lain sehingga banyak terdapat di udara (seperti H2 dan NH2) maupun air (H2O), ketersediannya di kerak bumi sebesar 15,4%. Karena ketersediannya yang melimpah dan kemampuan menghasilkan sumber energi tanpa menghasilkan polusi udara dan air, maka hidrogen diproyeksikan sebagai sumber energi masa depan. Namun pemilihan material untuk alat penyimpanan hidrogen sangat penting karena hidrogen dalam fasa gas merupakan molekul yang reaktif sehingga membutuhkan penyimpanan dengan material yang tepat. Selain dari faktor keamanan, efektivitas adsorpsi hidrogen ke permukaan material juga menjadi fokusan utama. Oleh karena itu dipilihlah Grafena oksida, Grafena oksida adalah lembaran yang terbentuk dari lapisan tunggal Grafit oksida yang mudah untuk disintetis yang memiliki sifat elektoronik dan optik yang baik. Kelebihan menggunakan material Grafena oksida adalah harganya yang lebih murah dibanding Grafena murni dan tersedia dengan jumlah yang banyak. Gas yang dapat diserap material ini antara lain H2, CH4, CO2, N2, NH3, NO2, H2S, dan SO2. Riset yang dilakukan secara simulasi ini memungkinkan untuk menguji efektivitas adsorpsi dengan variasi temperatur dan tekanan yang lebih luas dan menggunakan biaya yang relatif lebih rendah dibandingkan dengan riset eksperimental. Maka riset yang dilakukan penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan adalah 77 K, 100 K, 200 K, 250 K, 295K dan tekanan memiliki variasi 1 bar, 5 bar, 10 bar, 20 bar, 40 bar dan 80 bar pada sistem yang dibuat konstan. Hasil yang didapat akan dibandingkan dengan literatur hasil riset secara ekperimental.

ABSTRACT
Hydrogen is one of the abundant elements on earth, hydrogen is found in compound with other atoms so that there are many in the air (such as H2 and NH2) and water (H2O), its availability in the earth's crust is 15.4%. Due to its abundant availability and ability to produce energy sources without producing air and water pollution, hydrogen is projected as a future energy source. But the selection of materials for hydrogen storage devices is very important because hydrogen in the gas phase is a reactive molecule that requires storage with the right material. Aside from safety factors, the effectiveness of hydrogen adsorption onto the surface of the material is also the main focus. Therefore graphene oxide was chosen, graphene oxide is a sheet formed from a single layer of graphite oxide which is easy to synthesize which has good electric and optical properties. The advantage of using graphene oxide material is that the price is cheaper than pure graphene and is available in large quantities. The gases that can be absorbed by this material include H2, CH4, CO2, N2, NH3, NO2, H2S, and SO2. Research conducted in this simulation makes it possible to test the effectiveness of adsorption with a wider variety of temperatures and pressures and uses a relatively lower cost compared to experimental research. Then the research conducted by the author uses the Molecular Dynamics Simulation method. The temperature variations used are 77 K, 100 K, 200 K, 250 K, 295 K, the pressure has a variation of 1 bar, 5 bar, 10 bar, 20 bar, 40 bar and 80 bar in a constant system. The results obtained will be compared with the research results experimentally."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Jabbar
"Krisis energi merupakan salah satu permasalahan serius yang dihadapi saat ini. Kebutuhan akan sumber energi yang dapat diperbaharui dan bebas dari polusi menjadikan hidrogen sebagai salah satu sumber energi alternatif yang sangat berpotensi untuk dikembangkan. Namun, dalam penggunaan hidrogen sebagai sumber energi masih menemui kendala dalam proses penyimpanannya. Yakni, membutuhkan tangki bertekanan tinggi atau disimpan dalam keadaan dicairkan hingga suhu cryogenik. Salah satu cara mengatasi kendala tersebut adalah dengan sistem adsorpsi. Carbon Nanotube (CNT) merupakan media penyimpan yang baik karena memiliki luas permukaan dan volume pori yang besar. Penelitian secara eksperimental umumnya masih memerlukan biaya yang mahal, maka perlu didukung metoda lain untuk menunjangnya seperti Simulasi Dinamika Molekular. Simulasi kali ini akan dilakukan dalam kondisi isotermis, dimana temperatur yang akan digunakan adalah 253 K, 273 K, dan 293 K pada tekanan yang bervariasi dari 1- 18 atm. Hasil simulasi menunjukkan temperatur 253 K memiliki kemampuan adsorpsi lebih baik dari temperatur lainnya.

Energy crisis is one of the serious problems faced at present. The need for renewable energy sources and free of pollution makes hydrogen as one of alternative energy sources that are potentially to be developed. However, in the use of hydrogen as an energy source are still encountered obstacles in the process of storage. That is, the need of a high-pressure tank or stored in a liquified state to cryogenic temperature. One way of overcoming these barriers is by adsorption system. Carbon Nanotubes (CNT) is a storage medium that is good because it has a large surface area and large pore. Experimental research is generally still require a high cost, then it needs to be supported by other methods to support it as Molecular Dynamics Simulations. Simulation of this time will be performed in conditions of isotermis, where the temperature is to be used is 253 K, 273 K, and 293 K at a pressure varying from 1-18 atm. The result shows that temperature 253 K have better adsorption than the others."
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1754
UI - Skripsi Open  Universitas Indonesia Library
cover
Frezer, Ronald
"Skripsi ini membahas tentang peristiwa adsorpsi gas nitrogen dan metana pada suatu padatan adsorben dalam hal ini zeolit alam Malang. Adapun penelitian ini dapat digunakan sebagai aplikasi untuk proses pemisahan gas alam dari nitrogen ataupun dapat digunakan untuk proses penangkapan kembali gas metana di dalam gas buang. Metodologi penelitian yang digunakan dalam penelitian ini terdiri dari preparasi zeolit, persiapan peralatan Adsorpsi Isotermis, adsorpsi isotermis N2, adsorpsi gas CH4, pemodelan adsorpsi gas N2 dan CH4 dengan model BET.
Adapun data yang diperoleh dalam penelitian ini menunjukkan bahwa kapasitas adsorpsi zeolit dalam mengasorpsi nitrogen dan metana lebih besar pada suhu 30°C dibandingkan pada suhu 40°C dan 50°C pada kondisi tekanan yang sama, dimana kapasitas adsorpsi pada tekanan 900 Psia (6 MPa) untuk gas nitrogen adalah 2,55 mmol/g zeolit, 2,43 mmol/g zeolit dan 2,20 mmol/g zeolit untuk temperatur 30°C, 40°C dan 50°C secara berturut-turut sedangkan kapasitas adsorpsi pada tekanan 900 Psia untuk gas metana adalah 3,02 mmol/g zeolit, 2,90 mmol/g zeolit dan 2,22 mmol/g zeolit untuk temperatur 30°C, 40°C dan 50°C secara berturut-turut.
Pemodelan BET yang digunakan dalam merepresentasikan data hasil uji percobaan menunjukkan persentase deviasi rata-rata (% AAPD) untuk Model BET pada adsorpsi gas nitrogen adalah adalah 1,69 dan gas metana adalah 4,16. Selektivitas zeolit pada suhu 30°C ditunjukkan dengan adanya harga yang maksimum dari perbandingan CH4ads/N2ads sebesar 1,15 pada 3 Mpa. Pada suhu 40°C diperoleh dengan tekanan tinggi maka daya adsorpsinya menurun, dengan tekanan maksimum 1 Mpa yaitu 1,27, dan pada suhu 50°C didapatkan bahwa zeolit lebih mudah menyerap nitrogen dibandingkan metana.

This 'skripsi' describes about adsorption of nitrogen and methane experiments into solid like Malang natural zeolite. The information gathered in this research can be used for natural gas separation from nitrogen or can catch methane in the off-gases. The experiment methods used involves preparation of zeolite, preparation of isotherm adsorption's equipment, isotherm adsorption N2, isotherm adsorption CH4, and the modelling of nitrogen and methane adsorption using BET's Model.
The results show that the adsorption capacity of nitrogen and methane on zeolite is greater at 30°C than 40°C and 50°C for the same pressure condition. Adsorption capacity of nitrogen at 900 Psia(6 MPa) are 2.55 mmol/g zeolite, 2.43 mmol/g zeolite, 2.20 mmol/g zeolite at 30°C, 40°C and 50°C respectively. Meanwhile, the adsorption capacity of methane at 900 Psia(6 MPa) are 3.02 mmol/g zeolite, 2.90 mmol/g zeolite, 2.22 mmol/g zeolite at 30°C, 40°C and 50°C respectively.
Modeling of BET in representing the data shows that, the average Absolute Percent Deviation (% AAD) of BET Model is 1.69% for nitrogen adsorption and 4.16% for methane adsorption. Selectivity of zeolite at 30°C is shown by a maximum value of ratio CH4/N2 = 1.15 at 3 MPa. At 40°C, ratio of CH4/N2 decreases as the pressure increases, and its maximum value is 1.27 at 1 MPa. Different phenomena occurs at 50°C, when adsorption capacity of methane is less than of nitrogen.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52226
UI - Skripsi Open  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Demam berdarah merupakan penyakit yang disebarkan melalui virus DEN-V dengan perantara nyamuk. Penyakit ini berbahaya karena belum ada obat, vaksin, ataupun antiviral khusus terhadap virus DEN-V, sehingga perlu dilakukan penemuan obat untuk demam berdarah. Enzim RNA dependent RNA polymerase (Rdrp) pada DEN-V dapat dijadikan target obat karena berperan penting pada proses replikasi virus. Pada penelitian ini dilakukan simulasi in silico terhadap tiga senyawa bioflavonoid, sub-kelas flavanon, yaitu Hesperetin, Hesperidin, dan Naringenin. Simulasi penambatan molekuler dan dinamika molekuler dilakukan untuk mengetahui kebolehjadian senyawa tersebut sebagai inhibitor target Rdrp. Hasil simulasi senyawa flavanon dibandingkan dengan Quercetin, dengan parameter penilaian penambatan molekuler, energi ikatan, RMSD, RMSF, dan kontak ligan-target. Hasil nilai penambatan molekuler untuk masing-masing ligan terendah yaitu Hesperidin, Quercetin, Hesperetin, dan Naringenin dengan nilai berturut-turut yaitu -9,842 kcal/mol, -8,513 kcal/mol, -7,761 kcal/mol, dan -5,634 kcal/mol. Hasil MM-GBSA energi ikatan terbaik adalah ligan Hesperidin, Naringenin, Hesperetin, dan Quercetin dengan nilai ikatan energi bebas secara berturut-turut yaitu -69,31 kcal/mol, -64,90 kcal/mol, -60,93 kcal/mol, dan -57,83 kcal/mol. Hasil dari studi ini memprediksi bahwa Hesperidin dapat menjadi inhibitor terhadap target Rdrp yang lebih baik dibandingkan Quercetin, sementara Hesperetin dan Naringenin juga memiliki aktivitas inhibisi tetapi tidak sebaik Quercetin.

Dengue fever is a disease spread by the DEN-V virus through mosquitoes. This disease is dangerous because there is no specific drug, vaccine, or antiviral against the DEN-V virus, insisting the need of drug discovery for dengue fever. RNA dependent RNA polymerase (Rdrp) enzyme in DEN-V can be a drug target because it has an important role in the virus replication process. In this research, in silico simulations were carried out on bioflavonoid compounds, flavanone sub-class, namely Hesperetin, Hesperidin, and Naringenin. Molecular docking simulations and molecular dynamics were carried out to determine the probability of these compounds to be inhibitors of Rdrp targets. The results obtained from the simulation of the flavanones was compared with quercetin, which are docking score, energy binding, RMSD, RMSF, and ligand-target contact. The molecular docking results, docking score, for each of all ligands from the lowest were Hesperidin, Quercetin, Hesperetin, and Naringenin with values of -9.842 kcal/mol, -8.513 kcal/mol, -7.761 kcal/mol, and -5.634 kcal/mol, respectively. The best bond energy MM-GBSA results were Hesperidin, Naringenin, Hesperetin, and Quercetin with the value of free energy bonding respectively, namely -69.31 kcal/mol, -64.90 kcal/mol, -60.93 kcal/mol , and -57.83 kcal/mol. The results of this study predict that Hesperidin can be a better inhibitor to target Rdrp than Quercetin, while Hesperetin and Naringenin also have inhibitory activity but not as well as Quercetin."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cenmidtal Cuaca Mulyanto
"Sebagai upaya dalam memahami netralisasi virus H5N1 oleh antibodi manusia, simulasi dinamika molekuler dua kompleks antibodi-antigen dilakukan. Tiga struktur molekul yang membentuk dua kompleks tersbeut dibentuk termasuk antigen hemagglutinin Vietnam 2IBX, hemagglutinin Indonesia CDC, dan fragmen variabel dari antibodi 8H5 atau 8H5Fv.
Dalam penelitian ini komplesks 8H5Fv-2IBX dan 8H5Fv-CDC diproduksi melalui pemodelan struktur molekul, homology modeling, dan molecular docking. Dua kompleks tersebut lalu melewati simulasi dinamika molekuler selama 2 nanosekon untuk menginvestigasi kestabilan struktur kompleks dan aktivitas netralisasi yang dapat diamati dengan berfokus pada epitope netralisasi masing ? masing hemagglutinin yang didapatkan hasil molecular docking.
Didapatkan bahwa sifat dinamis atom ? atom pembentuk molekul tidak menihilkan aktivitas netralisasi. Dengan mengamati epitope netralisasi masing ? masing hemagglutinin juga didapatkan bahwa aktivitas netralisasi lebih efektif pada hemagglutinin 2IBX (Vietnam) dibandingkan dengan hemagglutinin Indonesia (CDC) berdasarkan kalkulasi solvent accessible surface (SAS), energi, root mean square displacement (RMSD), dan analisis okupansi ikatan hidrogen.

In an effort to study the H5N1 virus neutralisation by a human antibody, molecular dynamics simulations on two antibody-antigen complexes were conducted. Three molecular structures were formed in this study including the Vietnamese hemagglutinin 2IBX, the Indonesian hemagglutinin CDC, and a variable fragment of the 8H5 antibody or 8H5Fv.
In this study the complexes 8H5Fv-2IBX and 8H5Fv-CDC, that were produced by molecular modeling, homology modeling and molecular docking, was subjected to a 2 nanosecond molecular dynamics simulation each to investigate the stability of such complexes and the maintenance of the neutralising activity that was observed by focusing on the neutralising epitopes that were predicted by molecular docking.
It is was found that the dynamic nature of the molecules in study did not negate the steric hindrance occuring from the antibody variable fragment 8H5Fv with the hemagglutinins, therefore suggesting that the 8H5 antibody should be able to neutralise these two hemagglutinins. By solvent accessible surface (SAS) calculations, energy analysis, root mean square displacement (RMSD) analysis, and also hydrogen bond occupance it was also found that the the 8H5Fv seem to be more effective against the 2IBX (Vietnamese) hemagglutinin than against the CDC (Indonesian) hemagglutinin.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
S29375
UI - Skripsi Open  Universitas Indonesia Library
cover
Muhammad Bachtiar Yusuf
"ABSTRAK
Hidrogen telah diketahui sebagai faktor penting untuk produk semikondukor silikon. Silikon sebagai material yang paling melimpah dan layak sebagai semikonduktor membutuhkan kondisi layak untuk didapatkan sifat listrik dan optik yang tepat. Fenomena adsorpsi hidrogen pada silikon telah dipelajari menggunakan simulasi komputasi dan eksperimen oleh para peneliti. Simulasi dinamika molekuler menggunakan potensial Lennard-Jones telah dilakukan untuk mendemonstrasikan kemampuan adsorpsi hidrogen permukaan silikon (001) dan (111) dengan variasi temperatur sebesar 233 K, 253 K, 273 K, dan 293 K yang diterapkan pada tekanan 1, 2, 5, 10, dan 15 atm. Berdasarkan hasil simulasi, didapatkan jumlah hidrogen yang diadsorpsi oleh permukaan silikon meningkat apabila jumlah panas dalam sistem berkurang. Tanpa meninjau aspek entropi, permukaan kristal Si (001) memiliki kemampuan adsorpsi lebih tinggi dibandingkan Si (111) disebabkan oleh energi bebas permukaan yang lebih tinggi. Hal tersebut jelas terlihat pada tekanan 15 atm dibandingkan variasi tekanan lainnya Kapasitas adsorpsi paling tinggi dimiliki oleh Si (001) 233 K pada 15 atm dengan jumlah konsentrasi hidrogen teradsorpsi 0,166430075% wt., dan paling rendah dimiliki oleh Si (111) 293K pada 1 atm senilai 0,004759865% wt.

ABSTRACT
Hydrogen was known as important factor for silicon semiconductor product. Silicon as the most abundant and feasible material for semiconductor needs precisely proper condition to have the exact optical and electrical properties. The hydrogen adsorption on silicon phenomena had been studied through computational simulations and experiment by researchers. Molecular dynamics simulation using a Lennard-Jones potential was conducted to demonstrate the hydrogen adsorption capability of silicon surface (001) and (111) with various temperatur applied, 233 K, 253 K, 273 K, and 293 K at pressure 1, 2, 5, 10, dan 15 atm. The amount of hydrogen adsorbed by silicon surfaces were higher as the amount heat of the system decreases. Without considering entropy, Si (001) had higher adsorption capability due to its higher energy surface than Si (111). It had shown where the pressure was at 15 atm, the difference seemed way more obvious than other pressure condition. Si (001) on 233 K at 15 atm had the highest adsorption capacity with 0,17% wt., of hydrogen. The lowest amount of hydrogen capacity was achieved by Si (111) on 293 K at 1 atm with 0,0048% wt."
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dian Arifianti
"ABSTRAK
Nitrogen merupakan salah satu unsur dalam manur ayam atau kotoran ayam yang dapat mencemari lingkungan. Nitrogen dalam bentuk gas amonia, nitrat dan nitrit dapat mencemari udara dan air. Tetapi nitrogen sendiri merupakan salah satu unsur hara yang penting bagi tumbuhan, sehingga pada pengolahan manur sebagai pupuk, kandungan nitrogen pada manur perlu diperhatikan.
Sebagian besar hilangnya nitrogen pada manur ayam karena terbentuknya gas amoma. Temperatur ruangan merupakan salah satu faktor yang dapat mempercepat penguapan gas amonia. Apabila pada tempat penyimpanan manur terlewati aliran air, maka nitrogen dalam manur akan semakin berkurang karena garam-garam nitrat dan nitrit yang ada akan terbawa oleh aliran air.
Berbagai cara dilakukan untuk mengurangi kehilangan nitrogen pada manur ayam akibat terbentuknya gas amonia. Di negara-negara maju digunakan zeolit, jerami dan garam-garam kalsium untuk mengurangi terbentuknya gas amoma. Pada penelitian ini digunakan kapur untuk mengurangi kehilangan nitrogen.
Penentuan kadar nitrogen dalam manur ayam dilakukan dengan metode Kjedahl dan dianalisis dengan spektrofotometer. Parameter lain yang diukur pada penelitian ini berupa kadar air, pH, kadar fosfor clan kalium pada manur ayam.
Hasil penelitian menunjukkan bahwa terdapat perbedaan kadar nitrogen pada manur yang menggunakan kapur dan manur kontrol, dimana kadar nitrogen dengan menggunakan kapur sedikit lebih tinggi dari manur kontrol. Sedangkan kadar air pada manur yang ditambah kapur, lebih rendah dari kadar air manur kontrol. Penambahan kapur memberikan peningkatan pH sedikit lebih tinggi selama beberapa hari pengamatan dibandingkan dengan manur kontrol. Kadar kalium dan fosfor dalam manur tidak memperlihatkan penurunan yang berarti, karena kalium dan fosfor tidak terdekomposisi selama manur mengalami dekomposisi."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1997
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahman Hadi
"Gas Hidrogen memiliki manfaat sebagai bahan bakar yang bermanfaat untuk sumber energi masa depan karena menurunkan ketergantungan akan minyak bumi dan pengurangan polusi udara. Penyimpanan hidrogen adalah masalah utama yang harus ditaklukkan untuk keberhasilan implementasi teknologi sel bahan bakar dalam aplikasi transportasi dan ini merupakan tantangan ilmu material utama. Salah satu solusi untuk mengatasi permasalahan tersebut adalah dengan menggunakan metode adsorpsi. Material reduced Graphene Oxide (rGO) merupakan salah satu material yang berpotensial untuk digunakan sebagai media penyimpanan gas hidrogen. Pada penelitian ini, penulis ingin melihat pengaruh temperatur dan tekanan terhadap adsorpsi hidrogen pada reduced Graphene Oxide (rGO) dengan menggunakan simulasi dinamika molekuler menggunakan potensial Lennard-Jones.Pada riset ini, penulis menggunakan metode Simulasi Dinamika Molekuler. Variasi temperatur yang digunakan pada simulasi ini adalah 77, 100, 150, 200, 273, dan 298 K dengan variasi tekanan pada tiap temperatur adalah 1, 2, 5, 10, 15, 20, 40, 80. dan 100 bar. Hasil simulasi kemudian dibandingkan dengan hasil riset secara eksperimental yang telah dilakukan oleh peneliti lainnya. Pada temperatur tinggi, hasil simulasi mendekati hasil riset secara eksperimental. Namun pada temperatur rendah, hasil simulasi memiliki perbedaan secara signifikan dari riset secara eksperimental.

Hydrogen gas has benefits as a useful fuel for future energy sources because it reduces dependence on petroleum and reduces air pollution. Hydrogen storage is a major problem that must be conquered for the successful implementation of fuel cell technology in transportation applications and this is a major material science challenge. One solution to overcome these problems is to use the adsorption method. Reduced Graphene Oxide (rGO) material is a material that has the potential to be used as a storage medium for hydrogen gas. In this study, the authors wanted to see the effect of temperature and pressure on hydrogen adsorption on reduced Graphene Oxide (rGO) using molecular dynamics simulations using Lennard-Jones potential. In this research, the authors used the Molecular Dynamics Simulation method. Temperature variations used in this simulation are 77, 100, 150, 200, 273, and 298 K with variations in pressure at each temperature are 1, 2, 5, 10, 15, 20, 40, 80. and 100 bar. The simulation results are then compared with the results of experimental research conducted by other researchers. At high temperatures, the simulation results approach experimental research results. However, at low temperatures, the simulation results have a significant difference from experimental research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>